Open Access
Editorial
Microbial Biofilms in Healthcare-Associated Infections
Gianfranco Donelli
Author Information
Submitted: 13 Sept 2024 | Accepted: 25 Sept 2024 | Published: 28 Nov 2024
References
1.
Høiby, N.; Bjarnsholt, T.; Moser, C.; et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 2015, 21, S1–S25.
2.
Percival, S.L.; Suleman, L.; Vuotto, C.; et al. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. Med. Microbiol. 2015, 64, 323–341.
3.
Donelli, G.; Vuotto, C. Biofilm-based infections in long-term care facilities. Future Microbiol. 2014, 9, 175–188.
4.
Hathroubi, S.; Mekni, M.A.; Domenico, P.; et al. Biofilms: Microbial Shelters Against Antibiotics. Microb. Drug Resist. 2017, 23, 147–156.
5.
Høiby, N.; Bjarnsholt, T.; Givskov, M.; et al. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–323.
6.
Römling, U.; Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 2012, 272, 541–561.
7.
Flemming, H.C.; van Hullebusch, E.D.; Neu, T.R.; et al. The biofilm matrix: Multitasking in a shared space. Nat. Rev. Microbiol. 2023, 21, 70–86.
8.
Donelli, G.; Francolini, I.; Romoli, D.; et al. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob. Agents Chemother. 2007, 51, 2733–2740.
9.
Kaplan, J.B. Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 2010, 89, 205–218.
10.
Kaplan, J.B.; Sukhishvili, S.A.; Sailer, M.; et al. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens 2024, 13, 668.
11.
Li, X.; Lin, S.; Wang, Y.; et al. Application of biofilm dispersion-based nanoparticles in cutting off reinfection. Appl. Microbiol. Biotechnol. 2024, 108, 386. https://doi.org/10.1007/s00253-024-13120-7.
12.
Borriello, G.; Werner, E.; Roe, F.; et al. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother. 2004, 48, 2659–2664.
13.
Lewis, K. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 2008, 322, 107–131.
14.
Pasquaroli, S.; Zandri, G.; Vignaroli, C.; et al. Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms. J. Antimicrob. Chemother. 2013, 68, 1812–1817.
15.
Ciofu, O.; Moser, C.; Jensen, P.Ø.; et al. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022, 20, 621–635.
16.
Defraine, V.; Fauvart, M.; Michiels, J. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resist. Updates 2018, 38, 12–26.
17.
Harper, D.R.; Parracho, H.M.; Walker, J.; et al. Bacteriophages and Biofilms. Antibiotics 2014, 3, 270–284.
18.
Gordon, M.; Ramirez, P. Efficacy and Experience of Bacteriophages in Biofilm-Related Infections. Antibiotics 2024, 13, 125.
19.
Harriott, M.M.; Noverr, M.C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance. Antimicrob. Agents Chemother. 2009, 53, 3914–3922.
20.
Shirtliff, M.E.; Peters, B.M.; Jabra-Rizk, M.A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 2009, 299, 1–8.
21.
Schlecht, L.M.; Peters, B.M.; Krom, B.P.; et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 2015, 161, 168–181.
22.
Adlhart, C.; Verran, J.; Azevedo, N.F.; et al. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018, 99, 239–249.
23.
Bertesteanu, S.; Chifiriuc, M.C.; Grumezescu, A.M.; et al. Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies. Curr. Med. Chem. 2014, 21, 3383–3390.
24.
Francolini, I.; Vuotto, C.; Piozzi, A.; et al. Antifouling and antimicrobial biomaterials: An overview. APMIS 2017, 125, 392–417.
25.
Brackman, G.; Coenye, T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015, 21, 5–11.
26.
Fleming, D.; Rumbaugh, K.P. Approaches to Dispersing Medical Biofilms. Microorganisms 2017, 5, 15.
27.
Roy, R.; Tiwari, M.; Donelli, G.; et al. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554.
28.
Coenye, T.; Ahonen, M.; Anderson, S.; et al. Global challenges and microbial biofilms: Identification of priority questions in biofilm research, innovation and policy. Biofilm 2024, 4, 100210.
29.
Vuotto, C.; Donelli, G. Novel Treatment Strategies for Biofilm-Based Infections. Drugs 2019, 79, 1635–1655.
30.
Lu, L.; Hu, W.; Tian, Z.; et al. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019, 14, 11.
Issue
Volume 1, Issue 1How to Cite
Donelli, G. (2024). Microbial Biofilms in Healthcare-Associated Infections. Journal of Microbes in Health and Disease, 1(1), 100001.
RIS
BibTex
Copyright & License

Copyright (c) 2025 by the authors.
This work is licensed under a This work is licensed under a Creative Commons Attribution 4.0 International License.