- 1.
Del Giudice, P. Skin Infections Caused by Staphylococcus aureus. Acta Derm. Venereol. 2020, 100, adv00110. https://doi.org/10.2340/00015555-3466.
- 2.
Available online: https://pmc.ncbi.nlm.nih.gov (accessed on 28 January 2025).
- 3.
Cetik Yildiz, S. Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus (MRSA) Carriage and Infections; IntechOpen: London, UK, 2023.
- 4.
Idrees, M.; Sawant, S.; Karodia, N.; et al. Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. Int. J. Environ. Res. Public Health 2021, 18, 7602.
- 5.
Ioannou, P.; Zacharioudaki, M.; Spentzouri, D.; et al. A Retrospective Study of Staphylococcus aureus Bacteremia in a Tertiary Hospital and Factors Associated with Mortality. Diagnostics 2023, 13, 1975.
- 6.
Cieza, M.Y.R.; Bonsaglia, E.C.R.; Rall, V.L.M.; et al. Staphylococcal Enterotoxins: Description and Importance in Food. Pathogens 2024, 13, 676.
- 7.
Hindy, J.R.; Quintero-Martinez, J.A.; Lee, A.T.; et al. Incidence Trends and Epidemiology of Staphylococcus aureus Bacteremia: A Systematic Review of Population-Based Studies. Cureus 2022, 13, 676.
- 8.
Minter, D.J.; Appa, A.; Chambers, H.F.; et al. Contemporary Management of Staphylococcus aureus Bacteremia-Controversies in Clinical Practice. Clin. Infect. Dis. 2023, 77, e57–e68.
- 9.
Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2019, 21, 169–176.
- 10.
Shariati, A.; Dadashi, M.; Moghadam, M.T.; et al. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12689.
- 11.
Chalmers, S.J.; Wylam, M.E. Methicillin-Resistant Staphylococcus aureus Infection and Treatment Options. Methods Mol. Biol. 2020, 2069, 229–251.
- 12.
Scully, J.; Mustafa, A.S.; Hanif, A.; et al. Immune Responses to Methicillin-Resistant Staphylococcus aureus Infections and Advances in the Development of Vaccines and Immunotherapies. Vaccines 2024, 12, 1106.
- 13.
Mirzaei, B.; Babaei, R.; Zeighami, H.; et al. Staphylococcus aureus Putative Vaccines Based on the Virulence Factors: A Mini-Review. Front. Microbiol. 2021, 12, 704247.
- 14.
Lee, A.S.; de Lencastre, H.; Garau, J.; et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 1–23.
- 15.
Murray, C.J.; Ikuta, K.S.; Sharara, F.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655.
- 16.
WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024.
- 17.
de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184.
- 18.
Lazar, V.; Oprea, E.; Ditu, L.M. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness—Current State and Envisioned Solutions for the Near Future. Pathogens 2023, 12, 746.
- 19.
Knobling, B.; Franke, G.; Carlsen, L.; B et al. Phenotypic Variation in Clinical S. aureus Isolates Did Not Affect Disinfection Efficacy Using Short-Term UV-C Radiation. Microorganisms 2023, 11, 1332.
- 20.
Lazar, V.; Holban, A.M.; Curutiu, C.; et al. Modulation of Quorum Sensing and Biofilms in Less Investigated Gram-Negative ESKAPE Pathogens. Front. Microbiol. 2021, 12, 676510. https://doi.org/10.3389/fmicb.2021.676510.
- 21.
Xu, W.; Dielubanza, E.; Maisel, A.; et al. Staphylococcus aureus impairs cutaneous wound healing by activating the expression of a gap junction protein, connexin-43 in keratinocytes. Cell Mol. Life Sci. 2021, 78, 935–947.
- 22.
Keim, K.; Bhattacharya, M.; Crosby, H.A.; et al. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. bioRxiv 2024, 2024, 11.
- 23.
Mihai, M.M.; Popa, M.I.; Holban, A.M.; et al. Clinical and microbiological features of host-bacterial interplay in chronic venous ulcers versus other types of chronic skin ulcers. Front. Microbiol. 2024, 14, 1326904.
- 24.
Preda, M.; Mihai, M.M.; Popa, L.I.; et al. Phenotypic and genotypic virulence features of staphylococcal strains isolated from difficult-to-treat skin and soft tissue infections. PLoS ONE 2021, 16, e0246478.
- 25.
Raghavan, S.; Kim, K.S. Host immunomodulation strategies to combat pandemic-associated antimicrobial-resistant secondary bacterial infections. Int. J. Antimicrob. Agents 2024, 64, 107308.
- 26.
Huemer, M.; Mairpady Shambat, S.; Brugger, S.D.; et al. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034.
- 27.
Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; et al. Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins 2021, 13, 677.
- 28.
Spaan, A.N.; van Strijp, J.A.G.; Torres, V.J. Leukocidins: Staphylococcal Bi-Component Pore-Forming Toxins Find Their Receptors. Nat. Rev. Microbiol. 2017, 15, 435–447.
- 29.
de Jong, N.W.M.; van Kessel, K.P.M.; van Strijp, J.A.G. Immune Evasion by Staphylococcus aureus. Microbiol. Spectr. 2019, 7, 10–1128.
- 30.
Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The Staphylococcal Exopolysaccharide PIA—Biosynthesis and Role in Biofilm Formation, Colonization, and Infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334.
- 31.
Elmesseri, R.A.; Saleh, S.E.; Elsherif, H.M.; et al. Staphyloxanthin as a potential novel target for deciphering promising anti-Staphylococcus aureus agents. Antibiotics 2022, 11, 298.
- 32.
Speziale, P.; Pietrocola, G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front. Microbiol. 2020, 11, 2054.
- 33.
Foster, T.J. The MSCRAMM Family of Cell-Wall-Anchored Surface Proteins of Gram-Positive Cocci. Trends Microbiol. 2019, 27, 927–941.
- 34.
Jiang, Z.; Nero, T.; Mukherjee, S.; et al. Searching for the secret of stickiness: How biofilms adhere to surfaces. Front. Microbiol. 2021, 12, 686793.
- 35.
Madani, A.; Garakani, K.; Mofrad, M.R.K. Molecular Mechanics of Staphylococcus aureus Adhesin, CNA, and the Inhibition of Bacterial Adhesion by Stretching Collagen. PLoS ONE 2017, 12, e0179601.
- 36.
Corrigan, R.M.; Rigby, D.; Handley, P.; et al. The Role of Staphylococcus aureus Surface Protein SasG in Adherence and Biofilm Formation. Microbiology 2007, 153, 2435–2446.
- 37.
Costa, F.G.; Mills, K.B.; Crosby, H.A.; Horswill, A.R. The Staphylococcus aureus Regulatory Program in a Human Skin-Like Environment. mBio 2024, 15, e0045324.
- 38.
Divyakolu, S.; Chikkala, R.; Ratnakar, K.S.; et al. Hemolysins of Staphylococcus aureus—An Update on Their Biology, Role in Pathogenesis and as Targets for Anti-Virulence Therapy. Adv. Infect. Dis. 2019, 9, 80–104.
- 39.
Imanishi, I.; Nicolas, A.; Caetano, A.C.B.; et al. Exfoliative Toxin E, a New Staphylococcus aureus Virulence Factor with Host-Specific Activity. Sci. Rep. 2019, 9, 16336.
- 40.
Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and Virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569.
- 41.
Thomas, S.; Liu, W.; Arora, S.; et al. The Complex Fibrinogen Interactions of the Staphylococcus aureus Coagulases. Front. Cell Infect. Microbiol. 2019, 9, 106.
- 42.
Gonzalez, C.D.; Ledo, C.; Cela, E.; et al. The Good Side of Inflammation: Staphylococcus aureus Proteins SpA and Sbi Contribute to Proper Abscess Formation and Wound Healing During Skin and Soft Tissue Infections. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2657–2670.
- 43.
Williams, M.R.; Bagood, M.D.; Enroth, T.J.; et al. Staphylococcus epidermidis Activates Keratinocyte Cytokine Expression and Promotes Skin Inflammation Through the Production of Phenol-Soluble Modulins. Cell Rep. 2023, 42, 113024.
- 44.
Lacey, K.A.; Mulcahy, M.E.; Towell, A.M.; et al. Clumping Factor B Is an Important Virulence Factor During Staphylococcus aureus Skin Infection and a Promising Vaccine Target. PLoS Pathog. 2019, 15, e1007713.
- 45.
Xu, Z.; Li, Y.; Xu, A.; et al. Cell-Wall-Anchored Proteins Affect Invasive Host Colonization and Biofilm Formation in Staphylococcus aureus. Microbiol. Res. 2024, 285, 127782.
- 46.
Schilcher, K.; Horswill, A.R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19.
- 47.
Hort, M.; Bertsche, U.; Nozinovic, S.; et al. The Role of β-Glycosylated Wall Teichoic Acids in the Reduction of Vancomycin Susceptibility in Vancomycin-Intermediate Staphylococcus aureus. Microbiol. Spectr. 2021, 9, e0052821.
- 48.
Le, K.Y.; Villaruz, A.E.; Zheng, Y.; et al. Role of Phenol-Soluble Modulins in Staphylococcus epidermidis Biofilm Formation and Infection of Indwelling Medical Devices. J. Mol. Biol. 2019, 431, 3015–3027.
- 49.
Liesenborghs, L.; Verhamme, P.; Vanassche, T. Staphylococcus aureus, Master Manipulator of the Human Hemostatic System. J. Thromb. Haemost. 2018, 16, 441–454.
- 50.
Apetrei, R.; Gheorghe, I.; Chifiriuc, C.; et al. Molecular determinism of methicillin resistant Staphylococcus aureus virulence mechanisms in Sepsis. Atherosclerosis 2021, 331, e196.
- 51.
Zipperer, A.; Konnerth, M.; Laux, C.; et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016, 535, 511–516. https://doi.org/10.1038/nature18634.
- 52.
Pidwill, G.R.; Gibson, J.F.; Cole, J.; et al. The Role of Macrophages in Staphylococcus aureus Infection. Front. Immunol. 2021, 11, 620339.
- 53.
Thammavongsa, V.; Kim, H.K.; Missiakas, D.; et al. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol. 2015, 13, 529–543.
- 54.
Spaan, A.N.; Surewaard, B.G.; Nijland, R.; et al. Neutrophils versus Staphylococcus aureus: A biological tug of war. Annu. Rev. Microbiol. 2013, 67, 629–650.
- 55.
Reshamwala, K.; Cheung, G.Y.; Hsieh, R.C.; et al. Identification and characterization of the pathogenic potential of phenol-soluble modulin toxins in the mouse commensal Staphylococcus xylosus. Front. Immunol. 2022, 13, 999201.
- 56.
Malak, H.A.; Abulreesh, H.H.; Organji, S.R.; et al. Immune System Evasion Mechanisms in Staphylococcus aureus: Current Understanding. J. Pure Appl. Microbiol. 2020, 14, 2219–2234.
- 57.
Muttar, A.; Numan, I.T. Cloning & expression of SAK enzyme from Staphylococcus aureus in E. coli BL21-CodonPlus. J. Med. Life 2022, 15, 768–771.
- 58.
Kudryashova, E.; Seveau, S.M.; Kudryashov, D.S. Targeting and inactivation of bacterial toxins by human defensins. Biol. Chem. 2017, 26, 1069–1085.
- 59.
Arora, K.; Maheshwari, N.; Sahni, G. Design of a thrombin inhibitory staphylokinase based plasminogen activator with anti-reocclusion potential. Int. J. Biol. Macromol. 2020, 144, 791–800.
- 60.
Jenul, C.; Horswill, A.R. Regulation of Staphylococcus aureus virulence. Microbiol. Spectr. 2019, 7, 10–1128.
- 61.
Bhattacharya, M.; Horswill, A.R. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol. Rev. 2024, 48, fuae002.
- 62.
Gehrke, A.-K.E.; Giai, C.; Gómez, M.I. Staphylococcus aureus Adaptation to the Skin in Health and Persistent/Recurrent Infections. Antibiotics 2023, 12, 1520.
- 63.
Zheng, Y.; Shang, W.; Peng, H.; et al. Virulence determinants are required for brain abscess formation through Staphylococcus aureus infection and are potential targets of antivirulence factor therapy. Front. Microbiol. 2019, 10, 682.
- 64.
Ganesan, N.; Mishra, B.; Felix, L.; et al. Antimicrobial peptides and small molecules targeting the cell membrane of Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 2023, 87, e00037-22.
- 65.
Jhelum, H.; Čerina, D.; Harbort, C.J.; et al. Panton-Valentine leukocidin–induced neutrophil extracellular traps lack antimicrobial activity and are readily induced in patients with recurrent PVL+ -Staphylococcus aureus infections. J. Leukoc. Biol. 2024, 115, 222–234.
- 66.
Argudín, M.A.; Deplano, A.; Nonhoff, C.; et al. Epidemiology of the Staphylococcus aureus CA-MRSA USA300 in Belgium. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2335–2347.
- 67.
Wójcik-Bojek, U.; Różalska, B.; Sadowska, B. Staphylococcus aureus—A known opponent against host defense mechanisms and vaccine development—Do we still have a chance to win? Int. J. Mol. Sci. 2022, 23, 948.
- 68.
Nappi, F. Infectious Deployment of Staphylococcus aureus on the Endothelium of Blood Vessels and on Blood Components. Preprints 2025, https://doi.org/10.20944/preprints202504.0393.v1.
- 69.
Thomer, L.; Schneewind, O.; Missiakas, D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annu. Rev. Pathol. 2016, 11, 343–364.
- 70.
Aboelnaga, N.; Elsayed, S.W.; Abdelsalam, N.A.; et al. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: From molecular signaling to nanotherapeutic advances. Cell Commun. Signal. 2024, 22, 188.
- 71.
Yu, J.; Jiang, F.; Zhang, F.; et al. Thermonucleases Contribute to Staphylococcus aureus Biofilm Formation in Implant-Associated Infections—A Redundant and Complementary Story. Front. Microbiol. 2021, 12, 687888.
- 72.
Wu, X.; Wang, H.; Xiong, J.; et al. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024, 7, 100175.
- 73.
Recker, M.; Laabei, M.; Toleman, M.S.; et al. Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nat. Microbiol. 2017, 2, 1381–1388.
- 74.
Lazar, V. Innate immunity–an old property, but not less efficient and currently reconsidered for the therapeutic potential of its components. Rom. Arch. Microbiol. Immunol. 2023, 82, 169–170.
- 75.
Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; et al. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745.
- 76.
Wan, T.W.; Teng, L.J.; Yamamoto, T. Structures of a highly variable cell-wall anchored protein-encoding the spj gene from ST8/SCCmecIVl community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA/J) isolated from 2003 onwards: An indicator of a strongly invasive pathotype. Microbiol. Immunol. 2019, 63, 186–193.
- 77.
Tan, L.; Huang, Y.; Shang, W.; et al. Accessory Gene Regulator (agr) Allelic Variants in Cognate Staphylococcus aureus Strain Display Similar Phenotypes. Front. Microbiol. 2022, 13, 700894.
- 78.
Le, K.; Otto, M. Quorum-sensing regulation in staphylococci-an overview. Front. Microbiol. 2015, 6, 1174.
- 79.
Grundstad, M.L.; Parlet, C.P.; Kwiecinski, J.M.; et al. Quorum Sensing, Virulence, and Antibiotic Resistance of USA100 Methicillin-Resistant Staphylococcus aureus Isolates. mSphere 2019, 4, e00553.
- 80.
Marroquin, S.; Gimza, B.; Tomlinson, B.; et al. MroQ is a novel Abi-domain protein that influences virulence gene expression in Staphylococcus aureus via modulation of Agr activity. Infect. Immun. 2019, 87, 10–1128.
- 81.
Coll, F.; Blane, B.; Bellis, K.L.; et al. The mutational landscape of Staphylococcus aureus during colonisation. Nat. Commun. 2025, 16, 302.
- 82.
Matilla, M.A.; Krell, T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol. Rev. 2018, 42, fux052.
- 83.
Samad, T.; Billings, N.; Birjiniuk, A.; et al. Swimming bacteria promote dispersal of non-motile staphylococcal species. ISME J. 2017, 11, 1933–1937.
- 84.
Liu, C.C; Lin, M.H. Involvement of Heme in Colony Spreading of Staphylococcus aureus. Front. Microbiol. 2020, 11, 170.
- 85.
Liu, C.C; Lin, M.H. Hitchhiking motility of Staphylococcus aureus involves the interaction between its wall teichoic acids and lipopolysaccharide of Pseudomonas aeruginosa. Front. Microbiol. 2023, 13, 1068251.
- 86.
Carrel, M.; Perencevich, E.N.; David, M.Z. USA300 Methicillin-Resistant Staphylococcus aureus, United States, 2000–2013. Emerg. Infect. Dis. 2015, 21, 1973–1980.
- 87.
Levy, S.B. The Antibiotic Paradox. How Miracle Drugs Are Destroying the Miracle; Springer: Berlin/Heidelberg, Germany, 1992.
- 88.
Kong, C.; Neoh, H.; Nathan, S. Targeting Staphylococcus aureus Toxins: A potential form of Anti-Virulence Therapy. Toxins 2016, 8, 72.
- 89.
Zhang, K. Molecular Evolution and Pathogenicity of Methicillin-Resistant Staphylococcus aureus. Antibiotics 2024, 13, 953.
- 90.
Yamaguchi, T.; Ono, D.; Sato, A. Staphylococcal Cassette Chromosome mec (SCCmec) Analysis of MRSA. Methods Mol Biol. 2020, 2069, 59–78.
- 91.
Larsen, J.; Raisen, C.L.; Ba, X.; et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022, 602, 135–141.
- 92.
Diekema, D.J.; Pfaller, M.A.; Schmitz, F.J.; et al. Survey of infections due to Staphylococcus species: Frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 2001, 32 (Suppl. S2), S114–S132.
- 93.
Wan, T.W.; Teng, L.J.; Yamamoto, T. Unique surface structures of community-associated methicillin-resistant Staphylococcus aureus ST8/SCCmecIVl. J. Microbiol. Immunol. Infect. 2021, 54, 527–530.
- 94.
Ishitobi, N.; Wan, T.W.; Khokhlova, O.E.; et al. Fatal case of ST8/SCCmecIVl community-associated methicillin-resistant Staphylococcus aureus infection in Japan. New Microbes New Infect. 2018, 26, 30–36.
- 95.
Roy, R.; Tiwari, M.; Donelli, G.; et al. Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action. Virulence 2018, 9, 522–554.
- 96.
Salinas, N.; Povolotsky, T.L.; Landau, M.; et al. Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol. Mol. Biol. Rev. 2021, 85, 10–1128.
- 97.
Zheng, Y.; He, L.; Asiamah, T.K.; et al. Colonization of medical devices by staphylococci. Environ. Microbiol. 2018, 9, 3141–3153.
- 98.
Delcaru, C.; Alexandru, I.; Podgoreanu, P.; et al. Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies. Pathogens 2016, 5, 65.
- 99.
Spengler, C.; Nolle, F.; Thewes, N.; et al. Using knock-out mutants to investigate the adhesion of Staphylococcus aureus to abiotic surfaces. Int. J. Mol. Sci. 2021, 22, 11952.
- 100.
Flemming, H.C.; van Hullebusch, E.D.; Neu, T.R.; et al. The biofilm matrix: Multitasking in a shared space. Nat. Rev. Microbiol. 2023, 21, 70–86.
- 101.
Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 2013, 3, 010306.
- 102.
Manna, A.C.; Leo, S.; Girel, S.; et al. Teg58, a small regulatory RNA, is involved in regulating arginine biosynthesis and biofilm formation in Staphylococcus aureus. Sci. Rep. 2022, 12, 14963.
- 103.
Ciofu, O.; Moser, C.; Jensen, P.Ø.; et al. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022, 20, 621–635.
- 104.
Conlon, B.P.; Rowe, S.E.; Gandt, A.B.; et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat. Microbiol. 2016, 1, 1–7.
- 105.
Bustamante, P.; Ramos-Corominas, M.N.; Martinez-Medina, M. Contribution of Toxin–Antitoxin Systems to Adherent-Invasive, E. coli Pathogenesis. Microorganisms 2024, 12, 1158.
- 106.
Moldovan, A.; Krischke, M.; Huber, C.; et al. The AusAB non-ribosomal peptide synthase in Staphylococcus aureus preferentially incorporates exogenous phenylalanine and tyrosine into the aureusimine natural products. bioRxiv 2024, https://doi.org/10.1101/2024.03.22.586303.
- 107.
Meléndez-Carmona, M.Á.; Mancheño-Losa, M.; Ruiz-Sorribas, A.; et al. Strain-to-strain variability among Staphylococcus aureus causing prosthetic joint infection drives heterogeneity in response to levofloxacin and rifampicin. J. Antimicrob. Chemother. 2022, 77, 3265–3269.
- 108.
Bowden, L.C.; Finlinson, J.; Jones, B.; et al. Beyond the double helix: The multifaceted landscape of extracellular DNA in Staphylococcus aureus biofilms. Front. Cell. Infect. Microbiol. 2024, 14, 1400648.
- 109.
Tran, N.N.; Morrisette, T.; Jorgensen, S.C.; et al. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2023, 43, 816–832.
- 110.
Sivori, F.; Cavallo, I.; Kovacs, D.; et al. Role of extracellular DNA in dalbavancin activity against methicillin-resistant Staphylococcus aureus (MRSA) biofilms in patients with skin and soft tissue infections. Microbiol. Spectr. 2022, 10, e00351-22.
- 111.
Kaplan, J.B. Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 2010, 89, 205–218.
- 112.
Kim, J.S.; Lim, M.C.; Kim, S.M.; et al. Extracellular matrix-degrading enzymes as a biofilm control strategy for food-related microorganisms. Food Sci. Biotechnol. 2023, 32, 1745–1761.
- 113.
Cioce, A.; Cavani, A.; Cattani, C.; et al. Role of the skin immune system in wound healing. Cells 2024, 13, 624.
- 114.
Moran, M.C.; Brewer, M.G.; Schlievert, P.M.; et al. S. aureus virulence factors decrease epithelial barrier function and increase susceptibility to viral infection. Microbiol. Spectr. 2023, 11, e01684-23.
- 115.
Periasamy, S.; Joo, H.S.; Duong, A.C.; et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1281–1286.
- 116.
Subbarayudu, S.; Snega Priya, P.; Rajagopal, R.; et al. Impact of acidic and alkaline conditions on Staphylococcus aureus and Acinetobacter baumannii interactions and their biofilms. Arch. Microbiol. 2024, 206, 426.
- 117.
NIH Common Fund Office Human Microbiome Project website. Available online: http://commonfund.nih.gov/hmp (accessed on 28 January 2025).
- 118.
Grothe, C.; Taminato, M.; Belasco, A.; et al. Prophylactic treatment of chronic renal disease in patients undergoing peritoneal dialysis and colonized by Staphylococcus aureus: A systematic review and meta-analysis. BMC Nephrol. 2016, 17, 115.
- 119.
Sachar, M.; Shah, A. Epidemiology, management, and prevention of exit site infections in peritoneal dialysis patients. Ther. Apher. Dial. 2022, 26, 275–287.
- 120.
Poovelikunnel, T.; Gethin, G.; Humphreys, H. Mupirocin resistance: Clinical implications and potential alternatives for the eradication of MRSA. J. Antimicrob. Chemother. 2015, 70, 2681–2692.
- 121.
Chowdhury, S.; Nandi, N. Dynamics of the catalytic active site of isoleucyl tRNA synthetase from Staphylococcus aureus bound with adenylate and mupirocin. J. Phys. Chem. B 2022, 126, 620–633.
- 122.
Grumezescu, A.M.; Chifiriuc, M.C.; Marinaş, I.; et al. Ocimum Basilicum and Mentha Piperita Essential Oils Influence the Antimicrobial Susceptibility of Stapylococcus aureus Strains. Lett. Appl. Nano Bio. Sci. 2012, 1, 14.
- 123.
Kourkoutas, Y.; Chorianopoulos, N.; Lazar, V.; et al. Bioactive Natural Products. Biomed. Res. Int. 2018, 2018, 5063437.
- 124.
Lazar, V.; Holban, A.M.; Curutiu, C.; et al. Modulation of Gut Microbiota by Essential Oils and Inorganic Nanoparticles: Impact in Nutrition and Health. Front. Nutr. 2022, 9, 920413.
- 125.
Roman, H.; Niculescu, A.G.; Lazăr, V.; et al. Antibacterial efficiency of Tanacetum vulgare essential oil against ESKAPE pathogens and synergisms with antibiotics. Antibiotics 2023, 12, 1635.
- 126.
Ilie, C.I.; Spoiala, A.; Geana, E.I.; et al. Bee bread: A promising source of bioactive compounds with antioxidant properties—First report on some antimicrobial features. Antioxidants 2024, 13, 353.
- 127.
Patel, D.R.; Bhartiya, S.K.; Kumar, R.; et al. Use of customized bacteriophages in the treatment of chronic nonhealing wounds: A prospective study. Int. J. Low Extrem. Wounds 2021, 20, 37–46.
- 128.
Chifiriuc, M.C.; Bleotu, C.; Ditu, L.M.; et al. In vivo experimental model for the study of the influence of subinhibitory concentrations of phenyllactic acid on Staphylococcus aureus pathogenicity. Roum. Arch. Microbiol. Immunol. 2009, 68, 34–37.
- 129.
Cavallo, F.M.; Jordana, L.; Friedrich, A.W.; et al. Bdellovibrio Bacteriovorus: A Potential ‘Living Antibiotic’ to Control Bacterial Pathogens. Crit. Rev. Microbiol. 2021, 47, 630–646.
- 130.
Tran, V.L.; Hagiu, I.; Popovici, A.; et al. Antimicrobial Efficiency of Some Essential Oils in Antibiotic-Resistant Pseudomonas aeruginosa Isolates. Plants 2022, 11, 2003.
- 131.
Otto, M. Critical Assessment of the Prospects of Quorum-Quenching Therapy for Staphylococcus aureus Infection. Int. J. Mol. Sci. 2023, 24, 4025. https://doi.org/10.3390/ijms24044025.
- 132.
Zhang, J.; Suo, Y.; Zhang, D.; et al. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus. Front. Microb. 2018, 9, 598.
- 133.
Hansen, A.M.; Peng, P.; Baldry, M.; et al. Lactam hybrid analogues of solonamide B and autoinducing peptides as potent S. aureus AgrC antagonists. Eur. J. Med. Chem. 2018, 152, 370–376.
- 134.
Chakraborty, N.; Srinivasan, S.; Yang, R.; et al. Comparison of transcriptional signatures of three staphylococcal superantigenic toxins in human melanocytes. Biomedicines 2022, 10, 1402.
- 135.
Salman, M.K.; Abuqwider, J.; Mauriello, G. Anti-quorum sensing activity of probiotics: The mechanism and role in food and gut health. Microorganisms 2023, 11, 793.
- 136.
Ghoul, M.; Mitri, S. The Ecology and Evolution of Microbial Competition. Trends Microbiol. 2016, 24, 833–845.
- 137.
Heilbronner, S.; Foster, T.J. Staphylococcus lugdunensis: A Skin Commensal with Invasive Pathogenic Potential. Clin. Microbiol. Rev. 2020, 34, e00205-20.
- 138.
Glatthardt, T.; Campos, J.C.D.M.; Chamon, R.C.; et al Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus. Appl. Environ. Microbiol. 2020, 86, e02539-19.
- 139.
Zhang, L.; Liang, E.; Cheng, Y.; et al. Is Combined Medication with Natural Medicine a Promising Therapy for Bacterial Biofilm Infection? Biomed. Pharmacother. 2020, 128, 110184.