2505000689
  • Open Access
  • Article
Novel Antibiotic Molecules in Clinical Settings, a Systematic Review
  • Mihai-Octav Hogea 1, 2,   
  • Bogdan-Florin Ciomaga 1, *,   
  • Andrei-Alexandru Muntean 1, 2,   
  • Edgar-Costin Chelaru 1, 2,   
  • Crina Dinuță 1,   
  • Diana-Maria Preoteasa 1,   
  • Mircea-Ioan Popa 1, 2, *

Received: 01 Jan 2025 | Revised: 01 Apr 2025 | Accepted: 13 May 2025 | Published: 26 May 2025

Abstract

Background/Objectives: The European Medicines Agency (EMA) approved new antimicrobial agents against Gram-negative bacteria, such as cefiderocol, eravacycline, and aztreonam-avibactam, for the treatment of infection with carbapenem-resistant (CR)/carbapenemase-producing microorganisms. However, real-life data regarding their efficacy in clinical settings is still scarce. This systematic review refers to relevant studies aiming to establish whether these novel therapeutic options remain viable alternatives in treating infections caused by highly resistant Gram-negative microorganisms. Methods: To conduct our study, Pubmed, Web of Science, Science Direct, and ClinicalTrials.gov were screened. Studies published between the validation report provided by EMA for each molecule and 15 September 2024 were selected and then assessed based on their reference to patient clinical outcomes. The main inclusion criteria were first-hand results of their clinical experience with the molecules, treatment regimens, and clinical and microbiological outcomes (mortality, cure rates, and recurrence). Exclusion criteria included the absence of clinical data, studies not belonging to the specified time frame, and others. Results: Most studies using eravacycline and cefiderocol demonstrated at least non-inferiority regarding their clinical efficacy compared to the best-available therapy. Studies have yet to emerge on the aztreonam-avibactam combination. Conclusions: Eravacycline and cefiderocol present promising results, offering similar or superior results to the already available antibiotic options. They create new possibilities for treating patients with highly resistant Gram-negative microorganisms. More studies are required to draw definite conclusions. Nonetheless, the new molecules offer hope for an otherwise grim future.

References 

  • 1.
    Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 9 October 2024).
  • 2.
    Tenover, F.C.; Nicolau, D.P.; Gill, C.M. Carbapenemase-producing Pseudomonas aeruginosa—An emerging challenge. Emerg. Microbes Infect. 2022, 11, 811–814. https://doi.org/10.1080/22221751.2022.2048972.
  • 3.
    Patel, B.; Hopkins, K.L.; Freeman, R.; et al. Carbapenemase-producing Enterobacterales: A challenge for healthcare now and for the next decade. Infect. Prev. Pract. 2020, 2, 100089. https://doi.org/10.1016/j.infpip.2020.100089.
  • 4.
    Rosas, N.C.; Wilksch, J.; Barber, J.; et al. The evolutionary mechanism of non-carbapenemase carbapenem-resistant phenotypes in Klebsiella spp. eLife. 2023, 12, e83107. https://doi.org/10.7554/eLife.83107.
  • 5.
    Majumdar, R.; Karthikeyan, H.; Senthilnathan, V.; et al. Review on Stenotrophomonas maltophilia: An Emerging Multidrug- resistant Opportunistic Pathogen. Recent Pat. Biotechnol. 2022, 16, 329–354. https://doi.org/10.2174/1872208316666220512121205.
  • 6.
    Lorenzin, G.; Gona, F.; Battaglia, S.; et al. Detection of NDM-1/5 and OXA-48 co-producing extensively drug-resistant hypervirulent Klebsiella pneumoniae in Northern Italy. J. Glob. Antimicrob. Resist. 2022, 28, 146–150. https://doi.org/10.1016/j.jgar.2022.01.001.
  • 7.
    Magobo, R.E.; Ismail, H.; Lowe, M.; et al. Outbreak of NDM-1- and OXA-181-Producing Klebsiella pneumoniae Bloodstream Infections in a Neonatal Unit, South Africa. Emerg. Infect. Dis. 2023, 29, 1531–1539. https://doi.org/10.3201/eid2908.230484.
  • 8.
    Xerava. European Medicines Agency (EMA). 2018. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xerava (accessed on 9 October 2024).
  • 9.
    Fetcroja. European Medicines Agency (EMA). 2020. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja (accessed on 9 October 2024).
  • 10.
    Emblaveo. European Medicines Agency (EMA). 2024. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/emblaveo (accessed on 9 October 2024).
  • 11.
    Eljaaly, K.; Ortwine, J.K.; Shaikhomer, M.; et al. Efficacy and safety of eravacycline: A meta-analysis. J. Glob. Antimicrob. Resist. 2021, 24, 424–428. https://doi.org/10.1016/j.jgar.2021.02.009.
  • 12.
    Soriano, M.C.; Montufar, J.; Blandino-Ortiz, A. Cefiderocol. Rev. Esp. Quimioter. 2022, 35 (Suppl. 1), 31–34. https://doi.org/10.37201/req/s01.07.2022.
  • 13.
    McCreary, E.K.; Heil, E.L.; Tamma, P.D. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob. Agents Chemother. 2021, 65, e02171-20. https://doi.org/10.1128/AAC.02171-20.
  • 14.
    Nichols, W.W.; Newell, P.; Critchley, I.A.; et al. Avibactam Pharmacokinetic/Pharmacodynamic Targets. Antimicrob. Agents Chemother. 2018, 62, e02446-17. https://doi.org/10.1128/AAC.02446-17.
  • 15.
    Mauri, C.; Maraolo, A.E.; Di Bella, S.; et al. The Revival of Aztreonam in Combination with Avibactam against Metallo-β-Lactamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics 2021, 10, 1012. https://doi.org/10.3390/antibiotics10081012.
  • 16.
    Emeraud, C.; Bernabeu, S.; Dortet, L. In Vitro Susceptibility of Aztreonam-Vaborbactam, Aztreonam-Relebactam and Aztreonam-Avibactam Associations against Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antibiotics 2023, 12, 1493. https://doi.org/10.3390/antibiotics12101493.
  • 17.
    Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; et al The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. https://doi.org/10.1136/bmj.n71.
  • 18.
    Solomkin, J.S.; Gardovskis, J.; Lawrence, K.; et al. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin. Infect. Dis. 2019, 69, 921–929. https://doi.org/10.1093/cid/ciy1029.
  • 19.
    Alosaimy, S.; Morrisette, T.; Lagnf, A.M.; et al. Clinical Outcomes of Eravacycline in Patients Treated Predominately for Carbapenem-Resistant Acinetobacter baumannii. Microbiol. Spectr. 2022, 10, e0047922. https://doi.org/10.1128/spectrum.00479-22.
  • 20.
    Alexander, C.; Hill, D. A Retrospective Case-Control Study of Eravacycline for the Treatment of Carbapenem-Resistant Acinetobacter Infections in Patients with Burn Injuries. J. Burn. Care Res. 2024, 45, 487–492. https://doi.org/10.1093/jbcr/irad183.
  • 21.
    Solomkin, J.S.; Sway, A.; Lawrence, K.; et al. Eravacycline: A new treatment option for complicated intra-abdominal infections in the age of multidrug resistance. Future Microbiol. 2019, 14, 1293–1308. https://doi.org/10.2217/fmb-2019-0135.
  • 22.
    Kunz Coyne, A.J.; Alosaimy, S.; Lucas, K.; et al. Eravacycline, the first four years: Health outcomes and tolerability data for 19 hospitals in 5 U.S. regions from 2018 to 2022. Microbiol. Spectr. 2023, 12, e02351-23. https://doi.org/10.1128/spectrum.02351-23.
  • 23.
    Tetraphase Pharmaceuticals, Inc. A Phase 3, Randomized, Double-Blind, Double-Dummy, Multicenter, Prospective Study to Assess the Efficacy and Safety of Eravacycline Compared with Meropenem in Complicated Intra-Abdominal Infections. Report No.: NCT02784704. Available online: https://clinicaltrials.gov/study/(accessed on 9 October 2024).
  • 24.
    Tetraphase Pharmaceuticals, Inc. A Phase 3, Randomized, Double-Blind, Double-Dummy, Multicenter, Prospective Study to Assess the Efficacy and Safety of Eravacycline Compared with Ertapenem in Complicated Intra-Abdominal Infections. Report No.: NCT01844856. Available online: https://clinicaltrials.gov/study/NCT01844856 (accessed on 9 October 2024).
  • 25.
    Tetraphase Pharmaceuticals, Inc. A Phase 2, Randomized, Double-Blind, Double-Dummy, Multicenter, Prospective Study to Assess the Efficacy, Safety, and PK of 2 Dose Regimens of TP-434 Compared with Ertapenem in Adult Community-Acquired Complicated Intra-Abdominal Infections. Report No.: NCT01265784. Available online: https://clinicaltrials.gov/study/NCT01265784 (accessed on 9 October 2024).
  • 26.
    Tetraphase Pharmaceuticals, Inc. A Phase 3, Randomized, Double-Blind, Double-Dummy, Multicenter, Prospective Study to Assess the Efficacy and Safety of IV Eravacycline Compared with Ertapenem in Complicated Urinary Tract Infections. Report No.: NCT03032510. Available online: https://clinicaltrials.gov/study/NCT03032510 (accessed on 9 October 2024).
  • 27.
    Tetraphase Pharmaceuticals, Inc. A Phase 3, Randomized, Double-Blind, Double-Dummy, Multicenter, Prospective Study to Assess the Efficacy and Safety of Eravacycline Compared with Levofloxacin in Complicated Urinary Tract Infections. Report No.: NCT01978938. Available online: https://clinicaltrials.gov/study/NCT01978938 (accessed on 9 October 2024).
  • 28.
    Contreras, D.A.; Fitzwater, S.P.; Nanayakkara, D.D.; et al. Coinfections of Two Strains of NDM-1- and OXA-232-Coproducing Klebsiella pneumoniae in a Kidney Transplant Patient. Antimicrob. Agents Chemother. 2020, 64, e00948-19. https://doi.org/10.1128/AAC.00948-19.
  • 29.
    Bassetti, M.; Echols, R.; Matsunaga, Y.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021, 21, 226–240. https://doi.org/10.1016/S1473-3099(20)30796-9.
  • 30.
    Falcone, M.; Tiseo, G.; Leonildi, A.; et al. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. https://doi.org/10.1128/aac.02142-21.
  • 31.
    Falcone, M.; Giordano, C.; Leonildi, A.; et al. Clinical Features and Outcomes of Infections Caused by Metallo-β-Lactamase-Producing Enterobacterales: A 3-Year Prospective Study From an Endemic Area. Clin. Infect. Dis. 2024, 78, 1111–1119. https://doi.org/10.1093/cid/ciad725.
  • 32.
    Piccica, M.; Spinicci, M.; Botta, A.; et al. Cefiderocol use for the treatment of infections by carbapenem-resistant Gram-negative bacteria: An Italian multicentre real-life experience. J. Antimicrob. Chemother. 2023, 78, 2752–2761. https://doi.org/10.1093/jac/dkad298.
  • 33.
    Sajib, M.I.; Monteforte, M.; Go, R. Clinical Outcome of Cefiderocol for Infections with Carbapenem-Resistant Organisms. Antibiotics 2023, 12, 936. https://doi.org/10.3390/antibiotics12050936.
  • 34.
    Rando, E.; Cutuli, S.L.; Sangiorgi, F.; et al. Cefiderocol-containing regimens for the treatment of carbapenem-resistant A. baumannii ventilator-associated pneumonia: A propensity-weighted cohort study. JAC-Antimicrob. Resist. 2023, 5, dlad085. https://doi.org/10.1093/jacamr/dlad085.
  • 35.
    Calò, F.; Onorato, L.; De Luca, I.; et al. Outcome of patients with carbapenem-resistant Acinetobacter baumannii infections treated with cefiderocol: A multicenter observational study. J. Infect. Public Health 2023, 16, 1485–1491. https://doi.org/10.1016/j.jiph.2023.06.009.
  • 36.
    El Ghali, A.; Kunz Coyne, A.J.; Lucas, K.; et al. Cefiderocol: Early clinical experience for multi-drug resistant gram-negative infections. Microbiol. Spectr. 2024, 12, e0310823. https://doi.org/10.1128/spectrum.03108-23.
  • 37.
    Satlin, M.J.; Simner, P.J.; Slover, C.M.; et al. Cefiderocol Treatment for Patients with Multidrug- and Carbapenem-Resistant Pseudomonas aeruginosa Infections in the Compassionate Use Program. Antimicrob. Agents Chemother. 2023, 67, e0019423. https://doi.org/10.1128/aac.00194-23.
  • 38.
    Bavaro, D.F.; Papagni, R.; Belati, A.; et al. Cefiderocol Versus Colistin for the Treatment of Carbapenem-Resistant Acinetobacter baumannii Complex Bloodstream Infections: A Retrospective, Propensity-Score Adjusted, Monocentric Cohort Study. Infect. Dis. Ther. 2023, 12, 2147–2163. https://doi.org/10.1007/s40121-023-00854-6.
  • 39.
    Karruli, A.; Massa, A.; Andini, R.; et al. Clinical efficacy and safety of cefiderocol for resistant Gram-negative infections: A real-life, single-centre experience. Int. J. Antimicrob. Agents 2023, 61, 106723. https://doi.org/10.1016/j.ijantimicag.2023.106723.
  • 40.
    Gavaghan, V.; Miller, J.L.; Dela-Pena, J. Case series of cefiderocol for salvage therapy in carbapenem-resistant Gram-negative infections. Infection 2023, 51, 475–482. https://doi.org/10.1007/s15010-022-01933-5.
  • 41.
    Desmoulin, A.; Sababadichetty, L.; Kamus, L.; et al. Adaptive resistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB): Microbiological and clinical issues. Heliyon 2024, 10, e30365. https://doi.org/10.1016/j.heliyon.2024.e30365.
  • 42.
    Giannella, M.; Verardi, S.; Karas, A.; et al. Carbapenem-Resistant Acinetobacter spp Infection in Critically Ill Patients with Limited Treatment Options: A Descriptive Study of Cefiderocol Therapy During the COVID-19 Pandemic. Open Forum Infect. Dis. 2023, 10, ofad329. https://doi.org/10.1093/ofid/ofad329.
  • 43.
    Mabayoje, D.A.; NicFhogartaigh, C.; Cherian, B.P.; et al. Compassionate use of cefiderocol for carbapenem-resistant Acinetobacter baumannii prosthetic joint infection. JAC-Antimicrob. Resist. 2021, 3 (Suppl. 1), i21–i24. https://doi.org/10.1093/jacamr/dlab055.
  • 44.
    de la Fuente, C.; Rodríguez, M.; Merino, N.; et al. Real-life use of cefiderocol for salvage therapy of severe infections due to carbapenem-resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2023, 62, 106818. https://doi.org/10.1016/j.ijantimicag.2023.106818.
  • 45.
    Travi, G.; Peracchi, F.; Merli, M.; et al. Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak. Antibiotics 2024, 13, 770. https://doi.org/10.3390/antibiotics13080770.
  • 46.
    Larcher, R.; Laffont-Lozes, P.; Roger, C.; et al. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study. Front. Cell. Infect. Microbiol. 2022, 12, 1048633. https://doi.org/10.3389/fcimb.2022.1048633.
  • 47.
    Smoke, S.M.; Brophy, A.; Reveron, S.; et al. Evolution and Transmission of Cefiderocol-Resistant Acinetobacter baumannii During an Outbreak in the Burn Intensive Care Unit. Clin. Infect. Dis. 2023, 76, e1261–e1265. https://doi.org/10.1093/cid/ciac647.
  • 48.
    Pascale, R.; Pasquini, Z.; Bartoletti, M.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC-Antimicrob. Resist. 2021, 3, dlab174. https://doi.org/10.1093/jacamr/dlab174.
  • 49.
    Russo, A.; Bruni, A.; Gullì, S.; et al. Efficacy of cefiderocol- vs. colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825. https://doi.org/10.1016/j.ijantimicag.2023.106825.
  • 50.
    Oliva, A.; Liguori, L.; Covino, S.; et al. Clinical effectiveness of cefiderocol for the treatment of bloodstream infections due to carbapenem-resistant Acinetobacter baumannii during the COVID-19 era: A single center, observational study. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 1149–1160. https://doi.org/10.1007/s10096-024-04833-8.
  • 51.
    Dalfino, L.; Stufano, M.; Bavaro, D.F.; et al. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics 2023, 12, 1048. https://doi.org/10.3390/antibiotics12061048.
  • 52.
    Russo, A.; Gullì, S.P.; D’Avino, A.; et al. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: A multi-centre clinical experience. Int. J. Antimicrob. Agents 2024, 64, 107190. https://doi.org/10.1016/j.ijantimicag.2024.107190.
  • 53.
    De Benedetto, I.; Lupia, T.; Shbaklo, N.; et al. Prognostic evaluation of Acinetobacter baumannii ventilator-associated pneumonia in COVID-19. Infez. Med. 2022, 30, 570–576. https://doi.org/10.53854/liim-3004-12.
  • 54.
    Palermo, G.; Medaglia, A.A.; Pipitò, L.; et al. Cefiderocol Efficacy in a Real-Life Setting: Single-Centre Retrospective Study. Antibiotics 2023, 12, 746. https://doi.org/10.3390/antibiotics12040746.
  • 55.
    Mazzitelli, M.; Gregori, D.; Sasset, L.; et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023, 11, 984. https://doi.org/10.3390/microorganisms11040984.
  • 56.
    Giacobbe, D.R.; Labate, L.; Russo Artimagnella, C.; et al. Use of Cefiderocol in Adult Patients: Descriptive Analysis from a Prospective, Multicenter, Cohort Study. Infect. Dis. Ther. 2024, 13, 1929–1948. https://doi.org/10.1007/s40121-024-01016-y.
  • 57.
    Shields, R.K.; Dorazio, A.J.; Tiseo, G.; et al. Frequency of cefiderocol heteroresistance among patients treated with cefiderocol for carbapenem-resistant Acinetobacter baumannii infections. JAC-Antimicrob. Resist. 2024, 6, dlae146. https://doi.org/10.1093/jacamr/dlae146.
  • 58.
    Falcone, M.; Tiseo, G.; Nicastro, M.; et al. Cefiderocol as Rescue Therapy for Acinetobacter baumannii and Other Carbapenem-resistant Gram-negative Infections in Intensive Care Unit Patients. Clin. Infect. Dis. 2021, 72, 2021–2024. https://doi.org/10.1093/cid/ciaa1410.
  • 59.
    Zingg, S.; Nicoletti, G.J.; Kuster, S.; et al. Cefiderocol for Extensively Drug-Resistant Gram-Negative Bacterial Infections: Real-world Experience from a Case Series and Review of the Literature. Open Forum Infect. Dis. 2020, 7, ofaa185. https://doi.org/10.1093/ofid/ofaa185.
  • 60.
    Kufel, W.D.; Abouelhassan, Y.; Steele, J.M.; et al. Plasma and cerebrospinal fluid concentrations of cefiderocol during successful treatment of carbapenem-resistant Acinetobacter baumannii meningitis. J. Antimicrob. Chemother. 2022, 77, 2737–2741. https://doi.org/10.1093/jac/dkac248.
  • 61.
    Marino, A.; Stracquadanio, S.; Campanella, E.; et al. Intravenous Fosfomycin: A Potential Good Partner for Cefiderocol. Clinical Experience and Considerations. Antibiotics 2022, 12, 49. https://doi.org/10.3390/antibiotics12010049.
  • 62.
    Bavaro, D.F.; Belati, A.; Diella, L.; et al. Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives. Antibiotics 2021, 10, 652. https://doi.org/10.3390/antibiotics10060652.
  • 63.
    Monari, C.; Spagnuolo, F.; Pisaturo, M.; et al. Bloodstream Infection Due to a VIM-Metallo-β-Lactamase-Producing Klebsiella pneumoniae Treated with Cefiderocol in a Preterm Newborn. Infect. Dis. Ther. 2023, 12, 727–734. https://doi.org/10.1007/s40121-022-00735-4.
  • 64.
    Melo ESilva, J.; Oliveira, D.; Louro, J.A.; et al. Cefiderocol and Intraventricular Colistin for Ventriculitis due to an Extensively Drug-Resistant Pseudomonas Aeruginosa. J. Crit. Care Med. 2024, 10, 183–187. https://doi.org/10.2478/jccm-2024-0020.
  • 65.
    Bleibtreu, A.; Dortet, L.; Bonnin, R.A.; et al. Susceptibility Testing Is Key for the Success of Cefiderocol Treatment: A Retrospective Cohort Study. Microorganisms 2021, 9, 282. https://doi.org/10.3390/microorganisms9020282.
  • 66.
    Vega, A.D.; DeRonde, K.; Jimenez, A.; et al. Difficult-to-treat (DTR) Pseudomonas aeruginosa harboring Verona-Integron metallo-β-lactamase (blaVIM): Infection management and molecular analysis. Antimicrob. Agents Chemother. 2024, 68, e01474-23. https://doi.org/10.1128/aac.01474-23.
  • 67.
    Rodríguez-Aguirregabiria, M.; Lázaro-Perona, F.; Cacho-Calvo, J.B.; et al. Challenges Facing Two Outbreaks of Carbapenem-Resistant Acinetobacter baumannii: From Cefiderocol Susceptibility Testing to the Emergence of Cefiderocol-Resistant Mutants. Antibiotics 2024, 13, 784. https://doi.org/10.3390/antibiotics13080784.
  • 68.
    Kufel, W.D.; Steele, J.M.; Riddell, S.W.; et al. Cefiderocol for treatment of an empyema due to extensively drug-resistant Pseudomonas aeruginosa: Clinical observations and susceptibility testing considerations. IDCases 2020, 21, e00863. https://doi.org/10.1016/j.idcr.2020.e00863.
  • 69.
    Gainey, A.B.; Burch, A.K.; Brownstein, M.J.; et al. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr. Pulmonol. 2020, 55, 2990–2994. https://doi.org/10.1002/ppul.24945.
  • 70.
    Tamma, P.D.; Immel, S.; Karaba, S.M.; et al. Successful Treatment of Carbapenem-Resistant Acinetobacter baumannii Meningitis with Sulbactam-Durlobactam. Clin. Infect. Dis. 2024, 79, 819–825. https://doi.org/10.1093/cid/ciae210.
  • 71.
    Klein, S.; Boutin, S.; Kocer, K.; et al. Rapid Development of Cefiderocol Resistance in Carbapenem-resistant Enterobacter cloacae During Therapy Is Associated with Heterogeneous Mutations in the Catecholate Siderophore Receptor, cirA. Clin. Infect. Dis. 2022, 74, 905–908. https://doi.org/10.1093/cid/ciab511.
  • 72.
    Mullié, C.; Lemonnier, D.; Adjidé, C.C.; et al. Nosocomial outbreak of monoclonal VIM carbapenemase-producing Enterobacter cloacae complex in an intensive care unit during the COVID-19 pandemic: An integrated approach. J. Hosp. Infect. 2022, 120, 48–56. https://doi.org/10.1016/j.jhin.2021.11.017.
  • 73.
    Corcione, S.; De Benedetto, I.; Pinna, S.M.; et al. Cefiderocol use in Gram negative infections with limited therapeutic options: Is combination therapy the key? J. Infect. Public Health 2022, 15, 975–979. https://doi.org/10.1016/j.jiph.2022.07.006.
  • 74.
    Borghesi, L.; Viaggi, V.; Franzetti, M.; et al. Successful prolonged cefiderocol treatment of a chronic left pleural empyema caused by Pseudomonas aeruginosa in a patient affected by COVID-19: A case report. J. Glob. Antimicrob. Resist. 2021, 27, 157–159. https://doi.org/10.1016/j.jgar.2021.09.005.
  • 75.
    Cipko, K.; Kizny Gordon, A.; Adhikari, S.; et al. Cefiderocol treatment of Pseudomonas aeruginosa and extensively drug-resistant Acinetobacter baumannii retained spinal hardware infection causing reversible acute interstitial nephritis. Int. J. Infect. Dis. 2021, 109, 108–111. https://doi.org/10.1016/j.ijid.2021.06.035.
  • 76.
    Hernández-García, M.; Cabello, M.; Ponce-Alonso, M.; et al. First detection in Spain of NDM-1-producing Pseudomonas aeruginosa in two patients transferred from Ukraine to a university hospital. J. Glob. Antimicrob. Resist. 2024, 36, 105–111. https://doi.org/10.1016/j.jgar.2023.12.022.
  • 77.
    Shionogi. A Multicenter, Randomized, Double-Blind, Parallel-Group, Clinical Study of S-649266 Compared with Meropenem for the Treatment of Hospital-acquired Bacterial Pneumonia, Ventilator-Associated Bacterial Pneumonia, or Healthcare-Associated Bacterial Pneumonia Caused by Gram-negative Pathogens. Report No.: NCT03032380. Available online: https://clinicaltrials.gov/study/NCT03032380 (accessed on 9 October 2024).
  • 78.
    Shionogi. A Multicenter, Randomized, Open-Label Clinical Study of S-649266 or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-Resistant Gram-Negative Pathogens. Report No.: NCT02714595. Available online: https://clinicaltrials.gov/study/NCT02714595 (accessed on 9 October 2024).
  • 79.
    Shionogi. An Open-Label, Multicenter, Single-Arm, Phase 1 Study to Assess the Intrapulmonary Concentrations of Cefiderocol at Steady State in Hospitalized Subjects with Known or Suspected Bacterial Pneumonia on Treatment with Standard of Care Antibiotics and Requiring Mechanical Ventilation. Report No.: NCT03862040. Available online: https://clinicaltrials.gov/study/NCT03862040 (accessed on 9 October 2024).
  • 80.
    Tamma, P.D.; Hsu, A.J. Defining the Role of Novel β-Lactam Agents That Target Carbapenem-Resistant Gram-Negative Organisms. J. Pediatr. Infect. Dis. Soc. 2019, 8, 251–260. https://doi.org/10.1093/jpids/piz002.
  • 81.
    Naseer, S.; Weinstein, E.A.; Rubin, D.B.; et al. US Food and Drug Administration (FDA): Benefit-Risk Considerations for Cefiderocol (Fetroja®). Clin. Infect. Dis. 2021, 72, e1103–e1111. https://doi.org/10.1093/cid/ciaa1799.
  • 82.
    Gill, K.; Takamichi, B.; Cooper, A. Clinical efficacy of cefiderocol-based regimens in patients with carbapenem-resistant Acinetobacter baumannii infections: New data from CREDIBLE-CR with an updated meta-analysis. Int. J. Antimicrob. Agents 2024, 63, 107167. https://doi.org/10.1016/j.ijantimicag.2024.107167.
  • 83.
    Longshaw, C.; Santerre Henriksen, A.; Dressel, D.; et al. Heteroresistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii in the CREDIBLE-CR study was not linked to clinical outcomes: A post hoc analysis. Microbiol. Spectr. 2023, 11, e02371-23. https://doi.org/10.1128/spectrum.02371-23.
  • 84.
    Nordmann, P.; Shields, R.K.; Doi, Y.; et al. Mechanisms of Reduced Susceptibility to Cefiderocol Among Isolates from the CREDIBLE-CR and APEKS-NP Clinical Trials. Microb. Drug Resist. 2022, 28, 398–407. https://doi.org/10.1089/mdr.2021.0180.
  • 85.
    eucast: EUCAST. Available online: https://www.eucast.org/ (accessed on 30 November 2024).
  • 86.
    Clinical & Laboratory Standards Institute: CLSI Guidelines. Clinical & Laboratory Standards Institute. Available online: https://clsi.org/ (accessed on 30 November 2024).
  • 87.
    SFM Société Française de Microbiologie. Available online: https://www.sfm-microbiologie.org/ (accessed on 30 November 2024).
  • 88.
    Isler, B.; Vatansever, C.; Özer, B.; et al. Higher rates of cefiderocol resistance among NDM producing Klebsiella bloodstream isolates applying EUCAST over CLSI breakpoints. Infect. Dis. 2023, 55, 607–613. https://doi.org/10.1080/23744235.2023.2226709.
  • 89.
    Simner, P.J.; Palavecino, E.L.; Satlin, M.J.; et al. Potential of Inaccurate Cefiderocol Susceptibility Results: A CLSI AST Subcommittee Advisory. J. Clin. Microbiol. 2023, 61, e01600-22. https://doi.org/10.1128/jcm.01600-22.
  • 90.
    eucast: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 30 November 2024).
  • 91.
    Breakpoints in Use Toolkit. Clinical & Laboratory Standards Institute. Available online: https://clsi.org/meetings/ast/breakpoints-in-use-toolkit/ (accessed on 30 November 2024).
  • 92.
    Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. https://doi.org/10.3390/antibiotics11060723.
  • 93.
    Fröhlich, C.; Sørum, V.; Tokuriki, N.; et al. Evolution of β-lactamase-mediated cefiderocol resistance. J. Antimicrob. Chemother. 2022, 77, 2429–2436. https://doi.org/10.1093/jac/dkac221.
  • 94.
    Poirel, L.; Sadek, M.; Kusaksizoglu, A.; et al. Co-resistance to ceftazidime-avibactam and cefiderocol in clinical isolates producing KPC variants. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 677–680. https://doi.org/10.1007/s10096-021-04397-x.
  • 95.
    Poirel, L.; Sadek, M.; Nordmann, P. Contribution of PER-Type and NDM-Type β-Lactamases to Cefiderocol Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2021, 65. https://doi.org/10.1128/aac.00877-21.
  • 96.
    Miltgen, G.; Bour, M.; Allyn, J.; et al. Molecular and epidemiological investigation of a colistin-resistant OXA-23-/NDM-1-producing Acinetobacter baumannii outbreak in the Southwest Indian Ocean Area. Int. J. Antimicrob. Agents 2021, 58, 106402. https://doi.org/10.1016/j.ijantimicag.2021.106402.
  • 97.
    Mc Gann, P.; Geringer, M.R.; Hall, L.R.; et al. Pan-drug resistant Providencia rettgeri contributing to a fatal case of COVID-19. J. Med. Microbiol. 2021, 70, 001406. https://doi.org/10.1099/jmm.0.001406.
  • 98.
    Poirel, L.; Ortiz de la Rosa, J.M.; Sadek, M.; et al. Impact of Acquired Broad-Spectrum β-Lactamases on Susceptibility to Cefiderocol and Newly Developed β-Lactam/β-Lactamase Inhibitor Combinations in Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2022, 66, e00039-22. https://doi.org/10.1128/aac.00039-22.
  • 99.
    Tiseo, G.; Falcone, M.; Leonildi, A.; et al. Meropenem-Vaborbactam as Salvage Therapy for Ceftazidime-Avibactam-, Cefiderocol-Resistant ST-512 Klebsiella pneumoniae-Producing KPC-31, a D179Y Variant of KPC-3. Open Forum Infect. Dis. 2021, 8, ofab141. https://doi.org/10.1093/ofid/ofab141.
  • 100.
    Lan, P.; Lu, Y.; Chen, Z.; et al. Emergence of High-Level Cefiderocol Resistance in Carbapenem-Resistant Klebsiella pneumoniae from Bloodstream Infections in Patients with Hematologic Malignancies in China. Microbiol. Spectr. 2022, 10, e00084-22. https://doi.org/10.1128/spectrum.00084-22.
  • 101.
    Kohira, N.; Hackel, M.A.; Ishioka, Y.; et al. Reduced susceptibility mechanism to cefiderocol, a siderophore cephalosporin, among clinical isolates from a global surveillance programme (SIDERO-WT-2014). J. Glob. Antimicrob. Resist. 2020, 22, 738–741. https://doi.org/10.1016/j.jgar.2020.07.009.
  • 102.
    Ruggiero, M.; Briceño Muñoz, I.; Gutkind, G.; et al. Insights into the activity of cefiderocol against PER-2 producing Enterobacterales. Antimicrob. Agents Chemother. 2024, 68, e0172023. https://doi.org/10.1128/aac.01720-23.
  • 103.
    Bogaerts, P.; Naas, T.; Saegeman, V.; et al. OXA-427, a new plasmid-borne carbapenem-hydrolysing class D β-lactamase in Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 72, 2469–2477. https://doi.org/10.1093/jac/dkx184.
  • 104.
    Naas, T.; Oueslati, S.; Bonnin, R.A.; et al. Beta-lactamase database (BLDB)—Structure and function. J. Enzym. Inhib. Med. Chem. 2017, 32, 917–919. https://doi.org/10.1080/14756366.2017.1344235.
  • 105.
    Jacob, A.S.; Chong, G.L.; Lagrou, K.; et al. No in vitro activity of cefiderocol against OXA-427-producing Enterobacterales. J. Antimicrob. Chemother. 2021, 76, 3317–3318. https://doi.org/10.1093/jac/dkab304.
  • 106.
    cirA—CirA protein—Escherichia coli (strain 55989/EAEC)|UniProtKB|UniProt. Available online: https://www.uniprot.org/uniprotkb/B7LAH7/entry (accessed on 30 November 2024).
  • 107.
    Moon, S.H.; Udaondo, Z.; Jun, S.R.; et al. Cefiderocol heteroresistance in Klebsiella pneumoniae is linked to mutations in the siderophore receptor cirA and β-lactamase activities. Int. J. Antimicrob. Agents 2022, 60, 106635. https://doi.org/10.1016/j.ijantimicag.2022.106635.
  • 108.
    Werth, B.J.; Ashford, N.K.; Penewit, K.; et al. Evolution of cefiderocol resistance in Stenotrophomonas maltophilia using in vitro serial passage techniques. JAC-Antimicrob. Resist. 2022, 4, dlac011. https://doi.org/10.1093/jacamr/dlac011.
  • 109.
    Price, T.K.; Davar, K.; Contreras, D.; et al. Case Report and Genomic Analysis of Cefiderocol-Resistant Escherichia coli Clinical Isolates. Am. J. Clin. Pathol. 2022, 157, 257–265. https://doi.org/10.1093/ajcp/aqab115.
  • 110.
    Wang, Q.; Jin, L.; Sun, S.; et al. Occurrence of High Levels of Cefiderocol Resistance in Carbapenem-Resistant Escherichia coli before Its Approval in China: A Report from China CRE-Network. Microbiol. Spectr. 2022, 10, e0267021. https://doi.org/10.1128/spectrum.02670-21.
  • 111.
    Lan, P.; Lu, Y.; Jiang, Y.; et al. Catecholate siderophore receptor CirA impacts cefiderocol susceptibility in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2022, 60, 106646. https://doi.org/10.1016/j.ijantimicag.2022.106646.
  • 112.
    McElheny, C.L.; Fowler, E.L.; Iovleva, A.; et al. In Vitro Evolution of Cefiderocol Resistance in an NDM-Producing Klebsiella pneumoniae Due to Functional Loss of CirA. Microbiol. Spectr. 2021, 9, e01779-21. https://doi.org/10.1128/Spectrum.01779-21.
  • 113.
    Moynié, L.; Luscher, A.; Rolo, D.; et al. Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob. Agents Chemother. 2017, 61. https://doi.org/10.1128/aac.02531-16.
  • 114.
    Ito, A.; Sato, T.; Ota, M.; et al. In Vitro Antibacterial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2017, 62. https://doi.org/10.1128/aac.01454-17.
  • 115.
    Luscher, A.; Moynié, L.; Auguste, P.S.; et al. TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates. Antimicrob. Agents Chemother. 2018, 62. https://doi.org/10.1128/aac.00097-18.
  • 116.
    piuA—Probable TonB-Dependent Siderophore Receptor PiuA—Pseudomonas Aeruginosa (Strain ATCC 15692/DSM 22644/CIP 104116/JCM 14847/LMG 12228/1C/PRS 101/PAO1)|UniProtKB|UniProt. Available online: https://www.uniprot.org/uniprotkb/G3XCY8/entry (accessed on 30 November 2024).
  • 117.
    piuA—Probable TonB-Dependent Siderophore Receptor PiuA—Acinetobacter baumannii (Strain ATCC 19606/DSM 30007/JCM 6841/CCUG 19606/CIP 70.34/NBRC 109757/NCIMB 12457/NCTC 12156/81)|UniProtKB|UniProt. Available online: https://www.uniprot.org/uniprotkb/D0CAH3/entry (accessed on 30 November 2024).
  • 118.
    piuD—TonB-Dependent Siderophore Receptor PiuD—Pseudomonas Aeruginosa|UniProtKB|UniProt. Available online: https://www.uniprot.org/uniprotkb/A0AAQ3QYH1/entry (accessed on 30 November 2024).
  • 119.
    pirA—Ferric Enterobactin Receptor PirA—Pseudomonas Aeruginosa (Strain ATCC 15692/DSM 22644/CIP 104116/JCM 14847/LMG 12228/1C/PRS 101/PAO1)|UniProtKB|UniProt. Available online: https://www.uniprot.org/uniprotkb/Q9I527/entry (accessed on 30 November 2024).
  • 120.
    pirA—Probable TonB-Dependent Siderophore Receptor PirA—Acinetobacter baumannii (Strain ATCC 19606/DSM 30007/JCM 6841/CCUG 19606/CIP 70.34/NBRC 109757/NCIMB 12457/NCTC 12156/81)|UniProtKB|UniProt. Available online: https://www.uniprot.org/uniprotkb/D0C8V9/entry (accessed on 30 November 2024).
  • 121.
    Rolston, K.V.I.; Gerges, B.; Shelburne, S.; et al. Activity of Cefiderocol and Comparators against Isolates from Cancer Patients. Antimicrob. Agents Chemother. 2020, 64. https://doi.org/10.1128/aac.01955-19.
  • 122.
    Simner, P.J.; Beisken, S.; Bergman, Y.; et al. Defining Baseline Mechanisms of Cefiderocol Resistance in the Enterobacterales. Microb. Drug Resist. 2022, 28, 161–170. https://doi.org/10.1089/mdr.2021.0095.
  • 123.
    Takemura, M.; Yamano, Y.; Matsunaga, Y.; et al. 1266. Characterization of Shifts in Minimum Inhibitory Concentrations During Treatment with Cefiderocol or Comparators in the Phase 3 CREDIBLE-CR and APEKS-NP Studies. Open Forum Infect. Dis. 2020, 7 (Suppl. 1), S649–S650. https://doi.org/10.1093/ofid/ofaa439.1450.
  • 124.
    Malik, S.; Kaminski, M.; Landman, D.; et al. Cefiderocol Resistance in Acinetobacter baumannii: Roles of β-Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3. Antimicrob Agents Chemother 2020, 64. https://doi.org/10.1128/aac.01221-20.
  • 125.
    Yamano, Y.; Ishibashi, N.; Kuroiwa, M.; et al. Characterisation of cefiderocol-non-susceptible Acinetobacter baumannii isolates from Taiwan. J. Glob. Antimicrob. Resist. 2022, 28, 120–124. https://doi.org/10.1016/j.jgar.2021.12.017.
  • 126.
    Sato, T.; Ito, A.; Ishioka, Y.; et al. Escherichia coli strains possessing a four amino acid YRIN insertion in PBP3 identified as part of the SIDERO-WT-2014 surveillance study. JAC-Antimicrob. Resist. 2020, 2, dlaa081. https://doi.org/10.1093/jacamr/dlaa081.
  • 127.
    Xu, C.; Wei, X.; Jin, Y.; et al. Development of Resistance to Eravacycline by Klebsiella pneumoniae and Collateral Sensitivity-Guided Design of Combination Therapies. Microbiol. Spectr. 2022, 10, e0139022. https://doi.org/10.1128/spectrum.01390-22.
  • 128.
    Arends, J.; Griego, M.; Thomanek, N.; et al. An Integrated Proteomic Approach Uncovers Novel Substrates and Functions of the Lon Protease in Escherichia coli. Proteomics 2018, 18, e1800080. https://doi.org/10.1002/pmic.201800080.
  • 129.
    Zhang, Y.; Liu, D.; Liu, Y.; et al. Detection and characterization of eravacycline heteroresistance in clinical bacterial isolates. Front. Microbiol. 2024, 15, 1332458. https://doi.org/10.3389/fmicb.2024.1332458.
  • 130.
    Goodarzi, R.; Arabestani, M.; Alikhani, M.Y.; et al. Emergence of tigecycline-resistant Klebsiella pneumoniae ST11 clone in patients without exposure to tigecycline. J. Infect. Dev. Ctries. 2021, 15, 1677–1684. https://doi.org/10.3855/jidc.15157.
  • 131.
    Zhong, X.; Xu, H.; Chen, D.; et al. First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital. PLoS ONE 2014, 9, e115185. https://doi.org/10.1371/journal.pone.0115185.
  • 132.
    Sun, N.; Yang, Y.; Wang, G.; et al. Whole-genome sequencing of multidrug-resistant Klebsiella pneumoniae with capsular serotype K2 isolates from mink in China. BMC Vet. Res. 2024, 20, 356. https://doi.org/10.1186/s12917-024-04222-5.
  • 133.
    Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 2019, 17, 479–496. https://doi.org/10.1038/s41579-019-0218-1.
  • 134.
    El-Halfawy, O.M.; Valvano, M.A. Antimicrobial heteroresistance: An emerging field in need of clarity. Clin. Microbiol. Rev. 2015, 28, 191–207. https://doi.org/10.1128/CMR.00058-14.
  • 135.
    Ikonomidis, A.; Neou, E.; Gogou, V.; et al. Heteroresistance to meropenem in carbapenem-susceptible Acinetobacter baumannii. J. Clin. Microbiol. 2009, 47, 4055–4059. https://doi.org/10.1128/JCM.00959-09.
  • 136.
    Al-Shebiny, A.G.; Shawky, R.M.; Emara, M. Emergence of heteroresistance to carbapenems in Gram-negative clinical isolates from two Egyptian hospitals. BMC Microbiol. 2024, 24, 278. https://doi.org/10.1186/s12866-024-03417-y.
  • 137.
    Yu, W.; Luo, Q.; Shen, P.; et al. New options for bloodstream infections caused by colistin- or ceftazidime/avibactam-resistant Klebsiella pneumoniae. Int. J. Antimicrob. Agents. 2021, 58, 106458. https://doi.org/10.1016/j.ijantimicag.2021.106458.
  • 138.
    Hong, Y.K.; Kim, H.; Ko, K.S. Two types of colistin heteroresistance in Acinetobacter baumannii isolates. Emerg. Microbes Infect. 2020, 9, 2114–2123. https://doi.org/10.1080/22221751.2020.1821584.
  • 139.
    Franklin, T.J.; Rownd, R. R-factor-mediated resistance to tetracycline in Proteus mirabilis. J. Bacteriol. 1973, 115, 235–242. https://doi.org/10.1128/jb.115.1.235-242.1973.
  • 140.
    Chen, J.; Liu, Y.; Jia, W.; et al. In Vitro Activities of Aztreonam-Avibactam, Eravacycline, Cefoselis, and Other Comparators against Clinical Enterobacterales Isolates: A Multicenter Study in China, 2019. Microbiol. Spectr. 2023, 11, e0487322. https://doi.org/10.1128/spectrum.04873-22.
  • 141.
    Scott, L.J. Eravacycline: A Review in Complicated Intra-Abdominal Infections. Drugs 2019, 79, 315–324. https://doi.org/10.1007/s40265-019-01067-3.
Share this article:
How to Cite
Hogea, M.-O.; Ciomaga, B.-F.; Muntean, A.-A.; Chelaru, E.-C.; Dinuță, C.; Preoteasa, D.-M.; Popa, M.-I. Novel Antibiotic Molecules in Clinical Settings, a Systematic Review. Journal of Microbes in Health and Disease 2025, 1 (1), 100003. https://doi.org/10.53941/jmhd.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.