- 1.
Amutha, J.; Sharma, S.; Sharma, S. Strategies based on various aspects of clustering in wireless sensor networks using classical, optimization and machine learning techniques: Review, taxonomy, research findings, challenges and future directions. Comput. Sci. Rev. 2021, 40, 100376. https://doi.org/10.1016/j.cosrev.2021.100376.
- 2.
Qamar, T. The measurement and monitoring of Quality of service based on security analysis in wireless sensor network using deep learning architecture. Measurement 2023, 220, 113434.
- 3.
Shanmathi, M.; Sonker, A.; Hussain, Z.; et al. Enhancing wireless sensor network security and efficiency with CNN-FL and NGO optimization. Meas. Sens. 2024, 32, 101057.
- 4.
Zhang, H.; Madhusudanan, V.; Geetha, R.; et al. Dynamic analysis of the e-SITR model for remote wireless sensor network with noise and Sokol-Howell functional response. Results Phys. 2022, 38, 105643.
- 5.
Wu, Y.; Pu, C.; Zhang, G.; et al. Epidemic spreading in wireless sensor networks with node sleep scheduling. Phys. A Stat. Mech. Its Appl. 2023, 629, 12904.
- 6.
Dong, C.; Zhao, L. Sensor network security defense strategy based on attack graph and improved binary PSO. Saf. Sci. 2019, 117, 81–87.
- 7.
Zhang, Z.; Zou, J.; Upadhyay, R. An epidemic model with multiple delays for the propagation of worms in wireless sensor networks. Results Phys. 2020, 19, 103424. https://doi.org/10.1016/j.rinp.2020.103424.
- 8.
Dutta, K. Dynamic optimization of multi-layered defenses inspired by Chakravyuh. Int. J. Crit. Infrastruct. Prot. 2025, 51, 100794.
- 9.
Kephart, J.O.; White, S.R. Measuring and modeling computer virus prevalence. In Proceedings 1993 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 24–26 May 1993, pp. 2–15.
- 10.
Dong, N.P.; Long, H.V.; Son, N.T.K. The dynamical behaviors of fractional-order SE1E2IQR epidemic model for malware propagation on Wireless Sensor Network. Commun. Nonlinear Sci. Numer. Simul. 2022, 111, 106428.
- 11.
Kumar, P.M.; Shahwar, T.; Gokulnath, G. Improved sensor localization with intelligent trust model in heterogeneous wireless sensor network in Internet of Things (IoT) environment. Sustain. Comput. Inform. Syst. 2025, 46, 101122.
- 12.
Tang, W.; Yang, H.; Pi, J.X.; et al. Network virus propagation and security situation awareness based on Hidden Markov Model. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 101840.
- 13.
Yang, L.; Li, P.; Yang, X.; et al. Simultaneous Benefit Maximization of Conflicting Opinions: Modeling and Analysis. IEEE Syst. J. 2020, 14, 1623–1634. https://doi.org/10.1109/JSYST.2020.2964004.
- 14.
Jafar, M.T.; Yang, L.X.; Li, G.; et al. Malware containment with immediate response in IoT network: An optimal control approach. Comput. Commun. 2024, 228, 107951.
- 15.
Dong, N.P.; Long, H.V.; Giang, N.L. The fuzzy fractional SIQR model of computer virus propagation in wireless sensor network using Caputo Atangana-Baleanu derivatives. Fuzzy Sets Syst. 2022, 429, 28–59.
- 16.
Liu, G.; Peng, Z.L.; Tian, T.T.; et al. Malware attack and defense game in fractional-order Internet of underwater Things: Model-based and model-free approaches. Eng. Appl. Artif. Intell. 2025, 161, 111970.
- 17.
Wei, L.V.; Ke, Q.; Li, K. Dynamic stability of an SIVS epidemic model with imperfect vaccination on scale-free networks and its control strategy. J. Frankl. Inst. 2020, 357, 7092–7121.
- 18.
Ahmad, I.; Bakar, A.A.; Jan, R.; et al. Dynamic behaviors of a modified computer virus model: Insights into parameters and network attributes. Alex. Eng. J. 2024, 103, 266–277.
- 19.
Angurala, M.; Bala, M. Bamber. Implementing MRCRLB technique on modulation schemes in wireless rechargeable sensor networks. Egypt. Inform. J. 2021, 22, 473–478. https://doi.org/10.1016/j.eij.2021.03.002.
- 20.
Premkumar, M.; Sundararajan, T. DLDM: Deep learning-based defense mechanism for denial f service attacks in wireless sensor networks. Microprocess. Microsyst. 2020, 79, 103278. https://doi.org/10.1016/j.micpro.2020.103278.
- 21.
Moslehi, M.M. Exploring coverage and security challenges in wireless sensor networks: A survey. Comput. Netw. 2025, 260, 111096.
- 22.
Acarali, D.; Rajarajan, M.; Komninos, N.; et al. Modelling the spread of botnet worm in IoT-based wireless sensor networks. Secur. Commun. Netw. 2019, 2019, 3745619.
- 23.
Yuan, Y.; Shen, X.; Sun, L.; et al. Modeling Cascading Failures and Invulnerability Analysis of Underwater Acoustic Sensor Networks Based on Complex Network. Comput. Netw. 2024, 5, 6942–6952.
- 24.
Bailey, N. The Mathematical Theory of Infectious Diseases and Its Applications, 2nd ed.; Oxford University Press: New York, NY, USA, 1975.
- 25.
Yuan, H.; Chen, G.; Wu, J.; et al. Towards controlling virus propagation in information systems with point-to-group information sharing. Decis. Support Syst. 2009, 48, 57–68.
- 26.
Yuan, H.; Chen, G. Network virus-epidemic model with the point-to-group information propagation. Appl. Math. Comput. 2008, 206, 357–367.
- 27.
Zou, C.C.; Gong, W.B.; Towsley, D.; et al. Code red worm propagation modeling and analysis. In Proceedings of the CCS02: ACM Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November 2022.