2510001669
  • Open Access
  • Article

Secure Edge Data Auditing with Multiple Vendors and Servers

  • Zifeng Qin,   
  • Haojun Miao,   
  • Fei Chen *

Received: 04 Aug 2025 | Revised: 28 Sep 2025 | Accepted: 10 Oct 2025 | Published: 22 Oct 2025

Abstract

Mobile Edge Computing (MEC) has emerged as a pivotal solution to reduce latency for latency-sensitive applications by deploying data closer to end-users. Ensuring data integrity in mobile edge computing environments has become increasingly critical. While existing research primarily focuses on Single-Vendor Multi-Server EDI (SVMS-EDI), practical MEC deployments often involve multiple application vendors (AVs) sharing edge servers. Unlike SVMS-EDI, multiple application vendors bring significant computation cost and communication cost. Moreover, in addition to the security model of SVMS-EDI problem, application vendors are not fully trusted under the Multi-Vendor Multi-Server (MVMS) scenario. Therefore, robust solutions tailored for MVMS-EDI are required. This paper introduces MVMS-HMAC, a novel scheme that combines HMAC-based verification with distributed ledger technology to address the MVMS-EDI problem efficiently and securely. The proposed solution effectively counters key threats such as cheating attacks from malicious AVs and forge, replace, and replay attacks from compromised edge servers. By incorporating selective auditing, MVMS-HMAC minimizes computation and communication overhead while maintaining strong security guarantees. Theoretical analysis and experimental evaluations demonstrate the scheme's correctness, security, and efficiency, outperforming existing approaches. The proposed scheme advances the field by providing a comprehensive problem model and security framework for MVMS-EDI, along with a practical scheme that enhances resistance to adversarial behaviors. The open-source implementation further facilitates community engagement and adoption.

References 

  • 1.
    Li, H.; Duan, L. Theory of mixture-of-experts for mobile edge computing. In Proceedings of the IEEE INFOCOM 2025—IEEE Conference on Computer Communications, London, UK, 19–22 May 2025; pp. 1–10.
  • 2.
    Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39.
  • 3.
    Mao, Y.; You, C.; Zhang, J.; et al. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Commun. Surv. Tutorials 2017, 19, 2322–2358.
  • 4.
    Liu, F.; Tang, G.; Li, Y.; et al. A Survey on Edge Computing Systems and Tools. Proc. IEEE 2019, 107, 1537–1562.
  • 5.
    EdgeOne. Game Release. Tencent. Available online: https://edgeone.ai/solutions/gaming?source=666 (accessed on 27 July 2025).
  • 6.
    Xiao, Y.; Jia, Y.; Liu, C.; et al. Edge computing security: State of the art and challenges. Proc. IEEE 2019, 107, 1608–1631.
  • 7.
    Zhao, Y.; Qu, Y.; Xiang, Y.; et al. A Comprehensive Survey on Edge Data Integrity Verification: Fundamentals and Future Trends. Acm Comput. Surv. 2024, 57, 1–34.
  • 8.
    Zhao, Y.; Qu, Y.; Chen, F.; et al. Data Integrity Verification in Mobile Edge Computing with Multi-Vendor and Multi-Server. IEEE Trans. Mob. Comput. 2024, 23, 5418–5432.
  • 9.
    Yao, Y.; Chang, J.; Zhang, A. Efficient data sharing scheme with fine-grained access control and integrity auditing in terminal–edge–cloud network. IEEE Internet Things J. 2024, 11, 26944–26954.
  • 10.
    Li, Y.; Shen, J.; Ji, S.; et al. Blockchain-based data integrity verification scheme in AIoT cloud–edge computing environment. IEEE Trans. Eng. Manag. 2023, 71, 12556–12565.
  • 11.
    Li, B.; He, Q.; Chen, F.; et al. Cooperative Assurance of Cache Data Integrity for Mobile Edge Computing. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4648–4662.
  • 12.
    Li, B.; He, Q.; Chen, F.; et al. Inspecting Edge Data Integrity with Aggregate Signature in Distributed Edge Computing Environment. IEEE Trans. Cloud Comput. 2021, 10, 2691–2703.
  • 13.
    Li, B.; He, Q.; Chen, F.; et al. Auditing Cache Data Integrity in The Edge Computing Environment. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1210–1223.
  • 14.
    Qin, Z. Souce Code. GitHub, 2025. Available online: https://github.com/szu-security-group/MVMS-HMAC (accessed on 27 July 2025).
  • 15.
    Ateniese, G.; Burns, R.; Curtmola, R.; et al. Provable Data Possession at Untrusted Stores. In Proceedings of the 14th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 29 October–2 November 2007; pp. 598–609.
  • 16.
    Juels, A.; Kaliski Jr., B.S. PORs: Proofs of Retrievability for Large Files. In Proceedings of the 14th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 29 October–2 November 2007; pp. 584–597.
  • 17.
    Chen, F.; Cai, J.; Xiang, T.; et al. Practical Cloud Storage Auditing Using Serverless Computing. Sci. China Inf. Sci. 2024, 67, 132102.
  • 18.
    Chen, F.; Meng, F.; Li, Z.; et al. Public Cloud Object Storage Auditing: Design, Implementation, and Analysis. J. Parallel Distrib. Comput. 2024, 189, 104870.
  • 19.
    Wang, Q.; Wang, C.; Li, J.; et al. Enabling Public Verifiability and Data Dynamics for Storage Security in Cloud Computing. In European Symposium on Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2009, pp. 355–370.
  • 20.
    Li, T.; Chu, J.; Hu, L. CIA: A Collaborative Integrity Auditing Scheme for Cloud Data with Multi-Replica on Multi-Cloud Storage Providers. IEEE Trans. Parallel Distrib. Syst. 2022, 34, 154–162.
  • 21.
    Li, J.; Yan, H.; Zhang, Y. Efficient Identity-Based Provable Multi-Copy Data Possession in Multi-Cloud Storage. IEEE Trans. Cloud Comput. 2019, 10, 356–365.
  • 22.
    Tong, W.; Jiang, B.; Xu, F.; et al. Privacy-Preserving Data Integrity Verification in Mobile Edge Computing. In Proceedings of the IEEE 39th International Conference on Distributed Computing Systems. IEEE, Dallas, TX, USA, 7–10 July 2019; pp. 1007–1018.
  • 23.
    Cui, G.; He, Q.; Li, B.; et al. Efficient Verification of Edge Data Integrity in Edge Computing Environment. IEEE Trans. Serv. Comput. 2021, 15, 3233–3244.
  • 24.
    Ding, Y.; Li, Y.; Yang, W.; et al. Edge Data Integrity Verification Scheme Supporting Data Dynamics and Batch Auditing. J. Syst. Archit. 2022, 128, 102560.
  • 25.
    Li, B.; He, Q.; Yuan, L.; et al. EdgeWatch: Collaborative Investigation of Data Integrity at The Edge Based on Blockchain. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 3208–3218.
  • 26.
    Tong, W.; Chen, W.; Jiang, B.; et al. Privacy-Preserving Data Integrity Verification for Secure Mobile Edge Storage. IEEE Trans. Mob. Comput. 2022, 22, 5463–5478.
  • 27.
    Wang, L.; Hu, M.; Jia, Z.; et al. SStore: an efficient and secure provable data auditing platform for cloud. IEEE Trans. Inf. Forensics Secur. 2024, 19, 4572–4584.
  • 28.
    Zhou, H.; Shen, W.; Liu, J. Certificate-based multi-copy cloud storage auditing supporting data dynamics. Comput. Secur. 2025, 148, 104096.
  • 29.
    Yang, Y.; Chen, Y.; Xiong, P.; Chen, F.; Chen, J. Decentralized Self-Auditing Multiple Cloud Storage in Compressed Provable Data Possession. IEEE Trans. Dependable Secur. Comput. 2025, 22, 3901–3915.
  • 30.
    Islam, M.R.; Xiang, Y.; Uddin, M.P.; Zhao, Y.; Kua, J.; Gao, L. Multiple Edge Data Integrity Verification With Multi-Vendors and Multi-Servers in Mobile Edge Computing. IEEE Trans. Mob. Comput. 2025, 24, 4668–4683.
  • 31.
    Xia, X.; Chen, F.; He, Q.; Grundy, J.; Abdelrazek, M.; Jin, H. Online Collaborative Data Caching in Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 281–294.
  • 32.
    Xia, X.; Chen, F.; He, Q.; Grundy, J.C.; Abdelrazek, M.; Jin, H. Cost-Effective App Data Distribution in Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 31–44.
Share this article:
How to Cite
Qin, Z.; Miao, H.; Chen, F. Secure Edge Data Auditing with Multiple Vendors and Servers. Journal of Machine Learning and Information Security 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.