- 1.
McMahan, B.; Moore, E.; Ramage, D.; et al. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282.
- 2.
Chen, J.; Pan, X.; Monga, R.; et al. Revisiting Distributed Synchronous SGD. In Proceedings of International Conference on Learning Representations (ICLR) Workshop Track, San Juan, PR, USA, 2–4 May 2016.
- 3.
Hashimoto, T.; Srivastava, M.; Namkoong, H.; et al. Fairness Without Demographics in Repeated Loss Minimization. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1929–1938.
- 4.
Zhao, Y.; Li, M.; Lai, L.; et al. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582.
- 5.
Liu, W.; Chen, L.; Chen, Y.; et al. Accelerating Federated Learning via Momentum Gradient Descent. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 1754–1766.
- 6.
Li, T.; Sanjabi, M.; Beirami, A.; et al. Fair resource allocation in federated learning. In Proceedings of the International Conference on Learning Representations, 26 April–1 May 2020.
- 7.
Wang, Z.; Fan, X.; Qi, J.; et al. Federated learning with fair averaging.In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 21–26 August 2021; pp. 1615–1623.
- 8.
Mohri, M.; Sivek, G.; Suresh, A.T.; et al. Agnostic Federated Learning. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 4615–4625.
- 9.
Shi, Z.; Zhang, L.; Yao, Z.; et al. FedFAIM: A Model Performance-Based Fair Incentive Mechanism for Federated Learning. IEEE Trans. Big Data 2024, 10, 1038–1050.
- 10.
Hu, Z.; Shaloudegi, K.; Zhang, G.; et al. Federated Learning Meets Multi-Objective Optimization. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2039–2051.
- 11.
Zhang, F.; Shuai, Z.; Kuang, K.; et al. Unified Fair Federated Learning for Digital Healthcare. Patterns 2024, 5, 100907.
- 12.
Liu, H.; Lu, J.; Wang, X.; et al. FedUP: Bridging Fairness and Efficiency in Cross-Silo Federated Learning. IEEE Trans. Serv. Comput. 2024, 17, 3672–3684.
- 13.
Ezzeldin, Y.; Yan, S.; He, C.; et al. Fairfed: Enabling group fairness in federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; pp. 7494–7502.
- 14.
Li, J.; Zhu, T.; Ren, W.; et al. Improve individual fairness in federated learning via adversarial training. Comput. Secur. 2023, 132, 103336.
- 15.
Badar, M.; Nejdl, W.; Fisichella, M. FAC-fed: Federated adaptation for fairness and concept drift aware stream classification. Mach. Learn. 2023, 112, 2761–2786.
- 16.
Xu, H.; Gao, S.; Zhu, J. Harmony in Diversity: Personalized Federated Learning Against Statistical Hetero- geneity via a De-Personalized Feature Process. Expert Syst. Appl. 2025, 290, 128323.
- 17.
Nishio, T.; Shinkuma, R.; Mandayam, N.B.; et al. Estimation of Individual Device Contributions for Incentiviz- ing Federated Learning. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), 7–11 December 2020; pp. 1–6.
- 18.
Jiang, Z.; Xu, J.; Zhang, S.; et al. FedCFA: Alleviating Simpson’s Paradox in Model Aggregation with Counter- factual Federated Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; pp. 17662–17670.
- 19.
Li, H.; Li, X.; Liu, X.; et al. FedSam: Enhancing federated learning accuracy with differential privacy and data heterogeneity mitigation. Comput. Stand. Interfaces 2025, 95,104019.
- 20.
Kuo, T.; Gabriel, R.; Koola, J.; et al. Distributed cross-learning for equitable federated models-privacy- preserving prediction on data from five California hospitals. Nat. Commun. 2025, 16, 1371.
- 21.
Wang, Z.; Peng, Z.; Fan, X.; et al. FedAVE: Adaptive data value evaluation framework for collaborative fairness in federated learning. Neurocomputing 2024, 574, 127227.
- 22.
Hu, J.; Zhang, H. FGS-FL: Enhancing federated learning with differential privacy via flat gradient stream. Expert Syst. Appl. 2025, 288, 128273.
- 23.
Hari, P.; Singh, M. Adaptive knowledge transfer using federated deep learning for plant disease detection. Comput. Electron. Agric. 2025, 229, 109720.
- 24.
Rahmati, M.; Pagano, A. Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy Preserving and Real-Time Threat Detection Capabilities. Informatics 2025, 12, 62.
- 25.
Yu T.; Kumar S.; Gupta A.; et al. Gradient surgery for multi-task learning. In Proceedings of Advances in Neural Information Processing Systems, 6–12 December 2020; pp. 5824–5836.
- 26.
Ning, Q. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151.
- 27.
Fernandes, M.; Silva, C.; Arrais, J.; et al. Decay Momentum for Improving Federated Learning. In Proceedings of the ESANN, 14–16 April 2021.