2509001215
  • Open Access
  • Review

Robotic-Assisted Total Knee Arthroplasty: Innovations, Outcomes, and Challenges—A Comprehensive Review

  • Umile Giuseppe Longo 1, 2, *,   
  • Matteo Di Benedetto 2,   
  • Matteo Lavorato 2,   
  • Alessandro de Sire 3, 4,   
  • Pieter D’Hooghe 5

Received: 06 May 2025 | Revised: 31 Jul 2025 | Accepted: 31 Jul 2025 | Published: 02 Sep 2025

Abstract

Background: Total knee arthroplasty (TKA) reliably relieves pain in end-stage knee osteoarthritis, yet up to 20% of patients report persistent dissatisfaction due to factors like component malalignment or soft-tissue imbalance. Robotic-assisted TKA has emerged to enhance surgical precision and enable patient-specific alignment strategies beyond the traditionally targeted neutral mechanical alignment. Purpose: To synthesize current knowledge on the role of robotic systems in TKA, including technological classifications, clinical outcomes, safety profile, economic considerations, and adoption challenges. Methods: We conducted a narrative review of literature on robotic-assisted total knee arthroplasty (RA-TKA) published from 2010 to 2025. Articles were primarily identified via PubMed searches, supplemented by reference review and expert recommendation. Of the 36 included studies, 8 were systematic reviews or meta-analyses, 2 randomized controlled trials, 6 registry or database studies, 14 cohort studies or case series, 3 narrative reviews or expert opinion papers, and 1 technical or biomechanical study. Results: Semi-active robotic TKA systems consistently improve bone-cutting accuracy and alignment precision, dramatically reducing alignment outliers beyond 3° of neutral compared to conventional techniques. Robotic TKA has been associated with reduced early postoperative pain, faster recovery, and shorter hospital stays. Mid-term outcomes appear equivalent or slightly improved relative to conventional TKA, with similar safety profiles. Conclusion: Robotic-assisted TKA enhances surgical precision and early recovery without increasing complication risk. Long-term benefits, overall cost-effectiveness, and broad applicability of this technology remain under investigation.

References 

  • 1.
    Bellemans, J.; Colyn, W.; Vandenneucker, H.; et al. The Chitranjan Ranawat award: Is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin. Orthop. Relat. Res. 2012, 470, 45–53. https://doi.org/10.1007/s11999-011-1936-5.
  • 2.
    SMacDessi, J.; Griffiths-Jones, W.; Harris, I.A.; et al. Coronal Plane Alignment of the Knee (CPAK) classification. Bone Joint J. 2021, 103, 329–337. https://doi.org/10.1302/0301-620X.103B2.BJJ-2020-1050.R1.
  • 3.
    Schmerler, J.; Bergstein, V.E.; Kagabo, W.; et al. Access to robot-assisted total knee arthroplasty varies significantly by race/ethnicity. Knee Surg. Relat. Res. 2025, 37, 1. https://doi.org/10.1186/s43019-024-00255-0.
  • 4.
    Mart, J.P.S.; Goh, E.L. The current state of robotics in total knee arthroplasty. EFORT Open Rev. 2021, 6, 270–279. https://doi.org/10.1302/2058-5241.6.200052.
  • 5.
    He, R.; Sun, M.L.; Xiong, R.; et al. A Newly Designed “SkyWalker” Robot Applied in Total Knee Arthroplasty: A Retrospective Cohort Study for Femoral Rotational Alignment Restoration. Orthop. Surg. 2022, 14, 1681–1694. https://doi.org/10.1111/os.13365.
  • 6.
    Daxini, A.; Mahajan, U. Initial Experience with VELYS Robot-Assisted Total Knee Replacement: Coronal Plane Accuracy and Effect of Robotic Training on Outcomes. Cureus 2024, 16, e76323. https://doi.org/10.7759/cureus.76323.
  • 7.
    Maciąg, B.M.; Kordyaczny, T.; Maciąg, G.J.; et al. Comparison of Femoral Component Rotation between Robotic-Assisted vs. Soft-Tissue Tensor Total Knee Arthroplasty with Anatomic Implants. Medicina 2023, 59, 880. https://doi.org/10.3390/medicina
  • 8.
    Baek, J.H.; Lee, S.C.; Ryu, S.; et al. Coronal Correction for Post-Traumatic Malalignment Using Robot-Assisted Total Knee Arthroplasty: A Case Series. Orthop. Res. Rev. 2022, 14, 445–451. https://doi.org/10.2147/ORR.S387957.
  • 9.
    Selvanathan, N.; Ayeni, F.E.; Sorial, R. Incidence of soft tissue releases in robotic assisted cementless TKA with mechanical alignment and flexion gap balancing. Arthroplasty 2023, 5, 28. https://doi.org/10.1186/s42836-023-00188-1.
  • 10.
    Kayani, B.; Konan, S.; Tahmassebi, J.; et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: A prospective cohort study. Bone Joint. J. 2018, 100, 930–937. https://doi.org/10.1302/0301-620X.100B7.BJJ-2017-1449.R1.
  • 11.
    Stoltz, M.J.; Smith, N.S.; Abhari, S.; et al. Patient-Reported Outcomes in Robotic-Assisted vs. Manual Cementless Total Knee Arthroplasty. Arthroplast. Today 2024, 30, 101488. https://doi.org/10.1016/j.artd.2024.101488.
  • 12.
    Xu, J.Z.; Li, L.L.; Fu, J.; et al. Comparison of serum inflammatory indicators and radiographic results in MAKO robotic-assisted versus conventional total knee arthroplasty for knee osteoarthritis: A retrospective study of Chinese patients. BMC Musculoskelet. Disord. 2022, 23, 418. https://doi.org/10.1186/s12891-022-05373-y.
  • 13.
    Joo, P.Y.; Chen, A.F.; Richards, J.; et al. Clinical results and patient-reported outcomes following robotic-assisted primary total knee arthroplasty: A multicentre study. Bone Jt. Open 2022, 3, 589–595. https://doi.org/10.1302/2633-1462.37.bjo-2022-0076.r1.
  • 14.
    Jung, H.J.; Kang, M.W.; Lee, J.H.; et al. Learning curve of robot-assisted total knee arthroplasty and its effects on implant position in asian patients: A prospective study. BMC Musculoskelet. Disord. 2023, 24, 332. https://doi.org/10.1186/s12891-023-06422-w.
  • 15.
    Dragosloveanu, S.; Petre, M.A.; Capitanu, B.S.; et al. Initial Learning Curve for Robot-Assisted Total Knee Arthroplasty in a Dedicated Orthopedics Center. J. Clin. Med. 2023, 12, 6950. https://doi.org/10.3390/jcm12216950.
  • 16.
    Zhang, H.; Bai, X.; Wang, H.; et al. Learning curve analysis of robotic-assisted total knee arthroplasty with a Chinese surgical system. J. Orthop. Surg. Res. 2023, 18, 900. https://doi.org/10.1186/s13018-023-04382-4.
  • 17.
    Longo, U.G.; De Salvatore, S.; Candela, V.; et al. Unicompartmental Knee Arthroplasty: Minimal Important Difference and Patient Acceptable Symptom State for the Forgotten Joint Score. Medicina 2021, 57, 324. https://doi.org/10.3390/medicina570
  • 18.
    Aneja, K.; Rudraraju, R.T.; Shyam, A. Robotic-Assisted Total Knee Arthroplasty: Innovations, Precision, and the Future of Joint Reconstruction. J. Orthop. Case Rep. 2024, 14, 4–7.
  • 19.
    McGraw, P.; Kumar, A. Periprosthetic fractures of the femur after total knee arthroplasty. J. Orthop. Traumatol. 2010, 11, 135–141. https://doi.org/10.1007/s10195-010-0099-6.
  • 20.
    Simcox, T.; Singh, V.; Oakley, C.T.; et al. A comparison of utilization and short-term complications of technology-assisted versus conventional total knee arthroplasty. Knee Surg. Relat. Res. 2022, 34, 14. https://doi.org/10.1186/s43019-022-00143-5.
  • 21.
    Longo, U.G.; Silva, S.; Perdisa, F.; et al. Gender related results in total knee arthroplasty: A 15-year evaluation of the Italian population. Arch. Orthop. Trauma. Surg. 2023, 143, 1185–1192. https://doi.org/10.1007/s00402-021-04222-2.
  • 22.
    Maman, D.; Laver, L.; Becker, R.; et al. Trends and epidemiology in robotic-assisted total knee arthroplasty: Reduced complications and shorter hospital stays. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 3281–3288. https://doi.org/10.1002/ksa.12353.
  • 23.
    Ofa, S.A.; Ross, B.J.; Flick, T.R.; et al. Robotic Total Knee Arthroplasty vs Conventional Total Knee Arthroplasty: A Nationwide Database Study. Arthroplast. Today 2020, 6, 1001–1008.e3. https://doi.org/10.1016/j.artd.2020.09.014.
  • 24.
    Hua, Y.; Salcedo, J. Cost-effectiveness analysis of robotic-arm assisted total knee arthroplasty. PLoS ONE 2022, 17, e0277980. https://doi.org/10.1371/journal.pone.0277980.
  • 25.
    Song, E.K.; Seon, J.K.; Yim, J.H.; et al. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin. Orthop. Relat. Res. 2013, 471, 118–126. https://doi.org/10.1007/s11999-012-2407-3.
  • 26.
    Kim, Y.H.; Yoon, S.H.; Park, J.W. Does Robotic-assisted TKA Result in Better Outcome Scores or Long-Term Survivorship Than Conventional TKA? A Randomized, Controlled Trial. Clin. Orthop. Relat. Res. 2020, 478, 266–275. https://doi.org/10.1097/corr.0000000000000916.
  • 27.
    Fu, X.; She, Y.; Jin, G.; et al. Comparison of robotic-assisted total knee arthroplasty: An updated systematic review and meta-analysis. J. Robot. Surg. 2024, 18, 292. https://doi.org/10.1007/s11701-024-02045-y.
  • 28.
    Chen, J.; Loke, R.W.K.; Lim, K.K.; et al. Survivorship in robotic total knee arthroplasty compared with conventional total knee arthroplasty: A systematic review and meta-analysis. Arthroplasty 2025, 7, 21. https://doi.org/10.1186/s42836-025-00304-3.
  • 29.
    Longo, U.G.; Ciuffreda, M.; D’Andrea, V.; et al. All-polyethylene versus metal-backed tibial component in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3620–3636. https://doi.org/10.1007/s00167-016-4168-0.
  • 30.
    Longo, U.G.; Ciuffreda, M.; Mannering, N.; et al. Outcomes of Posterior-Stabilized Compared with Cruciate-Retaining Total Knee Arthroplasty. J. Knee Surg. 2018, 31, 321–340. https://doi.org/10.1055/s-0037-1603902.
  • 31.
    Zhang, J.; Ndou, W.S.; Ng, N.; et al. Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2677–2695. https://doi.org/10.1007/s00167-021-06464-4.
  • 32.
    Hoeffel, D.; Goldstein, L.; Intwala, D.; et al. Systematic review and meta-analysis of economic and healthcare resource utilization outcomes for robotic versus manual total knee arthroplasty. J. Robot. Surg. 2023, 17, 2899–2910. https://doi.org/10.1007/s11701-023-01703-x.
  • 33.
    Longo, U.G.; De Salvatore, S.; Intermesoli, G.; et al. Metaphyseal cones and sleeves are similar in improving short- and mid-term outcomes in Total Knee Arthroplasty revisions. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 861–882. https://doi.org/10.1007/s00167-022-06914-7.
  • 34.
    Longo, U.G.; Ciuffreda, M.; Mannering, N.; et al. Patellar Resurfacing in Total Knee Arthroplasty: Systematic Review and Meta-Analysis. J. Arthroplasty 2018, 33, 620–632. https://doi.org/10.1016/j.arth.2017.08.041.
  • 35.
    Longo, U.G.; De Salvatore, S.; Valente, F.; et al. Artificial intelligence in total and unicompartmental knee arthroplasty. BMC Musculoskelet. Disord. 2024, 25, 571. https://doi.org/10.1186/s12891-024-07516-9.
  • 36.
    Kim, K.; Kim, Y.H.; Park, W.M.; et al. Stress concentration near pin holes associated with fracture risk after computer navigated total knee arthroplasty. Comput. Aided Surg. 2010, 15, 98–103. https://doi.org/10.3109/10929088.2010.515419.
Share this article:
How to Cite
Longo, U. G.; Benedetto, M. D.; Lavorato, M.; Sire, A. d.; D’Hooghe, P. Robotic-Assisted Total Knee Arthroplasty: Innovations, Outcomes, and Challenges—A Comprehensive Review. Journal of Orthopaedics, Rehabilitation and Sports Medicine 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.