2509001259
  • Open Access
  • Article

Unlocking the Secrets of Han Blue: The Art and Science behind Its Synthesis

  • Giorgio Enrico Gagliardo Briuccia 1,   
  • Alessandro Lo Bianco 2,   
  • Francesco Armetta 1, 3,   
  • Vitalii Boiko 4, 5,   
  • Dariusz Hreniak 4,   
  • Maria Luisa Saladino 1, 3, *

Received: 04 Jan 2025 | Revised: 06 Feb 2025 | Accepted: 08 Aug 2025 | Published: 05 Sep 2025

Abstract

Han Blue (HB, BaCuSi4O10) is a historically significant pigment widely used in ancient Chinese art and artifacts, recently found also to be able to efficiently convert red radiation into infrared radiation. This article focuses on the synthesis of Han Blue, on the one hand using what we know about ancient production techniques from the Han Dynasty, while on the other hand, through the use of modern techniques, allowing us to obtain a high-purity material that can also find use in modern optical applications. The synthesis was carried out using the solid-state synthesis method, particularly focusing on the effect of temperature treatment on the final physicochemical properties of the obtained samples. Results are showing that the temperature affects the composition of the powders. It has also been shown that under certain conditions of Han Blue synthesis, it is also possible to obtain varying amounts of the side phase of the so-called Purple Han, another synthetic pigment also used in ancient China, characterized by different optical properties.

References 

  • 1.
    Nicola, M.; Gobetto, R.; Masic, A. Egyptian Blue, Chinese Blue, and Related Two-Dimensional Silicates: From Antiquity to Future Technologies. Part A: General Properties and Historical Uses. Rend. Fis. Acc. Lincei 2023, 34, 369–413. https://doi.org/10.1007/s12210-023-01153-5.
  • 2.
    Zhang, Z.; Ma, Q.; Berke, H. Man-Made Blue and Purple Barium Copper Silicate Pigments and the Pabstite (BaSnSi3O9) Mystery of Ancient Chinese Wall Paintings from Luoyang. Herit. Sci. 2019, 7, 97. https://doi.org/10.1186/s40494-019-0340-4.
  • 3.
    Wiedemann, H.-G.; Berke, H. Chemical and Physical Investigations of Egyptian and Chinese Blue and Purple. 2015. Available online: http://nbn-resolving.de/urn:nbn:de:bsz:16-monstites-223513 (accessed on 11 April 2025).
  • 4.
    Qin, Y.; Wang, Y.-H.; Chen, X.; et al. A Discussion on the Emergence and Development of Ancient Chinese Artificial Barium Copper Silicate Pigments from Simulation Experiments. Archaeometry 2016, 58, 796–806. https://doi.org/10.1111/arcm.12205.
  • 5.
    Berke, H. The Invention of Blue and Purple Pigments in Ancient Times. Chem. Soc. Rev. 2007, 36, 15–30. https://doi.org/10.1039/B606268G.
  • 6.
    Giester, G.; Rieck, B. Effenbergerite, BaCu[Si4O10], a New Mineral from the Kalahari Manganese Field, South Africa: Description and Crystal Structure. Mineral. Mag. 1994, 58, 663–670. https://doi.org/10.1180/minmag.1994.058.393.17.
  • 7.
    FitzHugh, E.W.; Zycherman, L.A. A Purple Barium Copper Silicate Pigment from Early China. Stud. Conserv. 1992, 37, 145–154. https://doi.org/10.1179/sic.1992.37.3.145.
  • 8.
    Ma, Q.; Portmann, A.; Wild, F.; et al. Raman and SEM Studies of Man-Made Barium Copper Silicate Pigments in Ancient Chinese Artifacts. Stud. Conserv. 2006, 51, 81–98. https://doi.org/10.1179/sic.2006.51.2.81.
  • 9.
    Li, Y.-J.; Ye, S.; Wang, C.-H.; et al. Temperature-Dependent near-Infrared Emission of Highly Concentrated Cu2+ in CaCuSi4O10 Phosphor. J. Mater. Chem. C 2014, 2, 10395–10402. https://doi.org/10.1039/C4TC01966K.
  • 10.
    King, R.S.P.; Hallett, P.M.; Foster, D. NIR−NIR Fluorescence: A New Genre of Fingermark Visualisation Techniques. Forensic Sci. Int. 2016, 262, e28–e33. https://doi.org/10.1016/j.forsciint.2016.03.037.
  • 11.
    Binet, L.; Lizion, J.; Bertaina, S.; et al. Magnetic and New Optical Properties in the UV–Visible Range of the Egyptian Blue Pigment Cuprorivaite CaCuSi4O10. J. Phys. Chem. C 2021, 125, 25189–25196. https://doi.org/10.1021/acs.jpcc.1c06060.
  • 12.
    Pozza, G.; Ajò, D.; Chiari, G.; et al. Photoluminescence of the Inorganic Pigments Egyptian Blue, Han Blue and Han Purple. J. Cult. Herit. 2000, 1, 393–398. https://doi.org/10.1016/S1296-2074(00)01095-5.
  • 13.
    Verri, G. The Spatially Resolved Characterisation of Egyptian Blue, Han Blue and Han Purple by Photo-Induced Luminescence Digital Imaging. Anal. Bioanal. Chem. 2009, 394, 1011–1021. https://doi.org/10.1007/s00216-009-2693-0.
  • 14.
    Dyer, J.; Verri, G.; Cupitt, J. Multispectral Imaging in Reflectance and Photo-Induced Luminscence Modes: A User Manual. Available online: https://www.researchgate.net/profile/Giovanni-Verri-2/publication/267266175_Multispectral_Imaging_in_Reflectance_and_Photo-induced_Luminescence_modes_A_User_Manual/links/5448e7560cf2d62c3052d2b7/Multispectral-Imaging-in-Reflectance-and-Photo-induced-Luminescence-modes-A-User-Manual.pdf (accessed on 11 April 2025).
  • 15.
    Chen, Y.; Shang, M.; Wu, X.; et al. Hydrothermal synthesis, hierarchical structures and properties of blue pigments SrCuSi4O10 and BaCuSi4O10. CrystEngComm 2014, 16, 5418–5423. https://doi.org/10.1039/C3CE42394H.
  • 16.
    Zhang, C.; Zhang, N.; Wang, X.; et al. Novel preparation of an ancient ceramic pigment BaCuSi4O10 and its performance investigation. Mater. Res. Bull. 2018, 101, 334–339. https://doi.org/10.1016/j.materresbull.2018.02.002.
  • 17.
    Berdahl, P.; Boocock, S.K.; Chan, G.C.Y.; et al. High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba). J. Appl. Phys. 2018, 123, 193103. https://doi.org/10.1063/1.5019808.
  • 18.
    Chen, W.; Shi, Y.; Chen, Z.; et al. Near-Infrared Emission and Photon Energy Upconversion of Two-Dimensional Copper Silicates. J. Phys. Chem. C 2015, 119, 20571−20577. https://doi.org/10.1021/acs.jpcc.5b04819.
  • 19.
    La Rocca, R.; Pitman, R.; Shahbazi, S.; et al. Preliminary investigations into the use of the ancient pigments Han blue and Han purple as luminescent dusting powders for the detection of latent fingermarks Forensic Science International 2024, 362, 112172. doi.org/10.1016/j.forsciint.2024.112172.
  • 20.
    Borisov, S.M.; Würth, C.; Resch-Genger, U.; et al. New Life of Ancient Pigments: Application in High Performance Optical Sensing Materials. Anal. Chem. 2013, 85, 19, 9371–9377. https://doi.org/10.1021/ac402275g.
  • 21.
    Selvaggio, G.; Kruss, S. Preparation, properties and applications of near-infrared fluorescent silicate nanosheets. Nanoscale 2022, 14, 9553–9575. https://doi.org/10.1039/D2NR02967G.
  • 22.
    Selvaggio, G.; Weitzel, M.; Oleksiievets, N.; et al. Photophysical properties and fluorescence lifetime imaging of exfoliated near-infrared fluorescent silicate nanosheets. Nanoscale Adv. 2021, 3, 4541–4553. https://doi.org/10.1039/D1NA00238D.
  • 23.
    Armetta, F.; Lo Bianco, A.; Boiko, V.; et al. Multimodal anti-counterfeiting inks: Modern use of an ancient pigment in synergy with a persistent phosphor. J. Mater. Chem. C 2024, 13, 1188–1197. https://doi.org/10.1039/D4TC04228J.
  • 24.
    McDaniel, J.; Salguero, D. Exfoliation of Egyptian Blue and Han Blue, Two Alkali Earth Copper Silicate-based Pigments. J. Vis. Exp. 2014, e51686. https://doi.org/10.3791/51686.
  • 25.
    Yang, H.; Downs, R.T.; Evans, S.H.; et al. Scottyite, the natural analog of synthetic BaCu2Si2O7, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa. Am. Mineral. 2013, 98, 478–484. https://doi.org/10.2138/am.2013.4326.
  • 26.
    Rieck, B.; Pristacz, H.; Giester, G. Colinowensite, BaCuSi2O6, a new mineral from the Kalahari Manganese Field, South Africa and new data on wesselsite, SrCuSi4O10. Mineral. Mag. 2015, 79, 1769–1778. https://doi.org/10.1180/minmag.2015.079.7.04.
  • 27.
    Skinner, B.J. Dana’s System: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. Yale University, 1837-1892. Vol. 3, Silica Materials. Revised and Enlarged by Clifford Frondel. Wiley, New York, Ed. 7, 1962. Xii + 334 Pp. Illus. $7.95. Science 1963, 139, 821. https://doi.org/10.1126/science.139.3557.821.a.
  • 28.
    Kendrick, E.; Kirk, C.J.; Dann, S.E. Structure and Colour Properties in the Egyptian Blue Family, M1−xM′xCuSi4O10, as a Function of M, M′ Where M, M′=Ca, Sr and Ba. Dye. Pigment. 2007, 73, 13–18. https://doi.org/10.1016/j.dyepig.2005.10.006.
Share this article:
How to Cite
Briuccia, G. E. G.; Bianco, A. L.; Armetta, F.; Boiko, V.; Hreniak, D.; Saladino, M. L. Unlocking the Secrets of Han Blue: The Art and Science behind Its Synthesis. Journal of Photonic Materials 2025, 1 (1), 100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.