2509001635
  • Open Access
  • Review

A Brief History of Nitric Oxide in Plants: How We Got Here, Where We Are, and Where We Might Be Going

  • John T. Hancock 1,*,   
  • Francisco J. Corpas 2,   
  • Neidiquele M. Silveira 3,   
  • Zsuzsanna Kolbert 4

Received: 04 Aug 2025 | Revised: 29 Sep 2025 | Accepted: 30 Sep 2025 | Published: 17 Oct 2025

Abstract

There is no doubt that nitric oxide (NO) has a range of instrumental actions in plants, from seed germination, through plant development, to flower senescence and fruit development and ripening. Over more than four decades there have been a number of seminal research papers on the generation and roles of NO in plants cells which have taken the field forward. During that time too, there has been a series of focused conferences, the PNO meetings, which have encouraged and guided the focus of plant NO research. 2025 sees the 10th such meeting. The understanding of how NO works in plants is now wide-ranging. It has often been guided by similar work on animals, although care needs to be taken with such an approach; nitric oxide synthase-dependent generation of NO in plants has not been easy to determine. Despite the difficulties, research so far has shown how NO signalling is entrenched in the rest of the complex signalling network that takes place in plant cells. There are still many future challenges to be faced in this field, including how NO may be used as a systemic signal, or even as a signal between individual organisms. However, partly guided by future PNO meetings, the future of research on NO in plant bright and likely to grow even bigger.

References 

  • 1.
    Hancock, J.T. A brief history of oxygen: 250 years on. Oxygen 2022, 2, 31–39.
  • 2.
    Hancock, J.T.; LeBaron, T.W. The early history of hydrogen and other gases in respiration and biological systems: Revisiting Beddoes, Cavallo, and Davy. Oxygen 2023, 3, 102–119.
  • 3.
    LeBaron, T.W.; Ohno, K.; Hancock, J.T. The on/off history of hydrogen in medicine: Will the interest persist this time around? Oxygen 2023, 3, 143–162.
  • 4.
    Furchgott, R.F. The obligatory role of endothelial cells in the relaxation of artery smooth muscle by acetylcholine. Nature 1980, 288, 373–376.
  • 5.
    Kolbert, Z.S.; Barroso, J.B.; Brouquisse, R.; et al. A forty year journey: The generation and roles of NO in plants. Nitric Oxide 2019, 93, 53–70.
  • 6.
    Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327, 524–526.
  • 7.
    Paul, B.; Sbarra, A.J. The role of the phagocyte in host-parasite interactions: XIII. The direct quantitative estimation of H2O2 in phagocytizing cells. Biochim. Biophys. Acta (BBA) Gen. Subj. 1968, 156, 168–178.
  • 8.
    Miul’Berg, A.A. The effect of hydrogen peroxide formed during enzymatic reactions on the process of synthesis of acetylcholine. Fiziol. Zhurnal SSSR Im. IM Sechenova 1961, 47, 643–649.
  • 9.
    Bagal, D.; Guleria, A.; Chowdhary, A.A.; et al. Unveiling the role and crosstalk of hydrogen sulfide with other signalling molecules enhances plant tolerance to water scarcity. Physiol. Plant. 2025, 177, e70222.
  • 10.
    Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837.
  • 11.

    Global Plant Science Events Calendar: 10th Plant Nitric Oxide International Meeting. Available online: https://eventform.plantae.org/plantae.calendar/detail/1350/1752060600000 (accessed on 29 May 2025).

  • 12.
    Bennett, J.H.; Hill, A.C. Inhibition of apparent photosynthesis by air pollutants. J. Environ. Qual. 1973, 2, 526–530.
  • 13.
    Klepper, L. Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos. Environ. 1979, 13, 537–542.
  • 14.
    Durner, J.; Wendehenne, D.; Klessig, D.F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 1998, 95, 10328–10333.
  • 15.
    Delledonne, M.; Zeier, J.; Marocco, A.; et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA 2001, 98, 13454–13459.
  • 16.
    Igamberdiev, A.U.; Hill, R.D. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative to classic fermentation pathways. J. Exp. Bot. 2004, 55, 2473–2482.
  • 17.
    Lindermayr, C.; Saalbach, G.; Durner, J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 2005, 137, 921–930.
  • 18.
    Foresi, N.; Correa-Aragunde, N.; Parisi, G.; et al. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. The Plant Cell 2010, 22, 3816–3830.
  • 19.
    Mata-Pérez, C.; Sánchez-Calvo, B.; Padilla, M.N.; et al. Nitro-fatty acids in plant signaling: Nitro-linolenic acid induces the molecular chaperone network in Arabidopsis. Plant Physiol. 2016, 170, 686–701.
  • 20.
    Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J.; Suarez, S.; et al. Discovery of endogenous nitroxyl as a new redox player in Arabidopsis thaliana. Nat. Plants 2023, 9, 36–44.
  • 21.
    López-Gómez, P.; Buezo, J.; Urra, M.; et al. A new oxidative pathway of nitric oxide production from oximes in plants. Mol. Plant 2024, 17, 178–198.
  • 22.
    Corpas, F.J.; Taboada, J.; Sánchez-Romera, B.; et al. Peroxisomal Sulfite Oxidase (SOX), an alternative source of NO in higher plants which is upregulated by H2S. Plant Physiol. Biochem. 2025, 225, 110000.
  • 23.
    Fewson, C.A.; Nicholas, D.J. Utilization of nitric oxide by micro-organisms and higher plants. Nature 1960, 188, 794–796.
  • 24.
    Delledonne, M.; Xia, Y.; Dixon, R.A.; et al. Nitric oxide functions as a signal in plant disease resistance. Nature 1998, 394, 585–588.
  • 25.
    Barroso, J.B.; Corpas, F.J.; Carreras, A.; et al. Localization of nitric-oxide synthase in plant peroxisomes. J. Biol. Chem. 1999, 274, 36729–36733.
  • 26.
    Corpas, F.J.; Barroso, J.B.; Carreras, A.; et al. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol. 2004, 136, 2722–2733.
  • 27.
    Yamasaki, H.; Sakihama, Y.; Takahashi, S. An alternative pathway for nitric oxide production in plants: New features of an old enzyme. Trends Plant Sci. 1999, 4, 128–129.
  • 28.
    Desikan, R.; Griffiths, R.; Hancock, J.; et al. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2002, 99, 16314–16318.
  • 29.
    Wendehenne, D.; Pugin, A.; Klessig, D.F.; et al. Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 2001, 6, 177–183.
  • 30.
    Planchet, E.; Jagadis Gupta, K.; Sonoda, M.; et al. Nitric oxide emission from tobacco leaves and cell suspensions: Rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J. 2005, 41, 732–743.
  • 31.
    Jasid, S.; Simontacchi, M.; Bartoli, C.G.; et al. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol. 2006, 142, 1246–1255.
  • 32.
    Mónica, F.Z.; Bian, K.; Murad, F. The endothelium-dependent nitric oxide—cGMP pathway. Adv. Pharmacol. 2016, 77, 1–27.
  • 33.
    Isner, J.C.; Maathuis, F.J. cGMP signalling in plants: From enigma to main stream. Funct. Plant Biol. 2016, 45, 93–101.
  • 34.
    Kolbert, Z.; Feigl, G.; Bordé, Á.; et al. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives. Plant Physiol. Biochem. 2017, 113, 56–63.
  • 35.
    Corpas, F.J.; del Río, L.A.; Barroso, J.B. Need of biomarkers of nitrosative stress in plants. Trends Plant Sci. 2007, 12, 436–438.
  • 36.
    Feechan, A.; Kwon, E.; Yun, B.W.; et al. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. USA 2005, 102, 8054–8059.
  • 37.
    Igamberdiev, A.U.; Stoimenova, M.; Seregélyes, C.; et al. Class-1 hemoglobin and antioxidant metabolism in alfalfa roots. Planta 2006, 223, 1041–1046.
  • 38.
    Stoimenova, M.; Igamberdiev, A.U.; Gupta, K.J.; et al. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 2007, 226, 465–474.
  • 39.
    Jeandroz, S.; Wipf, D.; Stuehr, D.J.; et al. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci. Signal. 2016, 9, re2-re2.
  • 40.
    Hancock, J.T.; Neill, S.J. Nitric oxide: Its generation and interactions with other reactive signaling compounds. Plants 2019, 8, 41.
  • 41.
    Gupta, K.J.; Hancock, J.T.; Petrivalsky, M.; et al. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytol. 2020, 225, 1828–1834.
  • 42.
    Kolbert, Z.; Barroso, J.B.; Boscari, A.; et al. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. New Phytol. 2024, 244, 786–797.
  • 43.
    Chamizo-Ampudia, A.; Sanz-Luque, E.; Llamas, Á.; et al. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ. 2016, 39, 2097–2107.
  • 44.
    Hawkins, C.L.; Davies, M.J. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim. Et Biophys. Acta Gen. Subj. 2014, 1840, 708–721.
  • 45.
    Ruemer, S.; Krischke, M.; Fekete, A.; et al. Methods to Detect Nitric Oxide in Plants: Are DAFs Really Measuring NO? In Methods in Molecular Biology; Gupta, K., ed.; Humana Press: New York, NY, USA, 2016; Volume 1424.
  • 46.
    Mohanty, D.; Peláez-Vico, M.A.; Myers, R.J., Jr,; et al. Aboveground whole-plant live imaging method for nitric oxide (NO) reveals an intricate relationship between NO and H2O2. New Phytol. 2025, 247, 2473–2483.
  • 47.
    Hancock, J.T. NO more hiding: Whole-plant live imaging of nitric oxide reveals systemic signalling. New Phytol. 2025, 247, 1974–1976.
  • 48.

    3rd Plant NO Club: International Meeting. Available online: https://www.researchgate.net/publication/47151328_3rd_Plant_NO_Club_International_meeting_July_15-16_2010_Olomouc_Book_of_abstracts_including_programme_list_of_participants (accessed on 29 May 2025).

  • 49.

    8th Plant Nitric Oxide International Available online: https://fibamdp.wordpress.com/2021/06/16/8th-plant-nitric-oxide-international-meeting/#:~:text=The%208th%20Plant%20Nitric%20Oxide,welcome%20you%20in%20Szeged%2C%20Hungary! (accessed on 29 May 2025).

  • 50.
    Seabra, A.B.; Silveira, N.M.; Ribeiro, R.V.; et al. Nitric oxide-releasing nanomaterials: From basic research to potential biotechnological applications in agriculture. New Phytol. 2022, 234, 1119–1125.
  • 51.
    Gupta, K.J.; Kolbert, Z.; Durner, J.; et al. Regulating the regulator: Nitric oxide control of post-translational modifications. New Phytol. 2020, 227, 1319–1325.
  • 52.

    Journal of Experimental Botany: Special Issue: Nitric Oxide in Plant Biology. Available online: https://www.facebook.com/share/p/1VHndfZmKM/ (accessed on 18 June 2025).

  • 53.
    Kolbert, Z.; Lindermayr, C.; Loake, G.J. The role of nitric oxide in plant biology: Current insights and future perspectives. J. Exp. Bot. 2021, 72, 777–780.
  • 54.
    Plant Science: Current Directions in Plant Nitric Oxide Research. Available online: https://www.sciencedirect.com/spec ial-issue/302351/current-directions-in-plant-nitric-oxide-research (accessed on 18 June 2025).
  • 55.
    Ciacka, K.; Staszek, P.; Sobczynska, K.; et al. Nitric oxide in seed biology. Int. J. Mol. Sci. 2022, 23, 14951.
  • 56.
    Haq, A.U.; Lone, M.L.; Farooq, S.; et al. Nitric oxide effectively orchestrates postharvest flower senescence: A case study of Consolida ajacis. Funct. Plant Biol. 2021, 50, 97–107.
  • 57.
    Arc, E.; Galland, M.; Godin, B.; et al. Nitric oxide implication in the control of seed dormancy and germination. Front. Plant Sci. 2013, 4, 346.
  • 58.
    Prado, A.M.; Colaço, R.; Moreno, N.; et al. Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. Mol. Plant 2008, 1, 703–714.
  • 59.
    Bright, J.; Hiscock, S.J.; James, P.E.; et al. Pollen generates nitric oxide and nitrite: A possible link to pollen-induced allergic responses. Plant Physiol. Biochem. 2009, 47, 49–55.
  • 60.
    Šírová; J; Sedlářová; M; Piterková; J; et al. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 2011, 181, 560–572.
  • 61.
    Sanz, L.; Albertos, P.; Mateos, I.; et al. Nitric oxide (NO) and phytohormones crosstalk during early plant development. J. Exp. Bot. 2015, 66, 2857–2868.
  • 62.
    Khan, M.; Ali, S.; Al Azzawi, T.N.I.; et al. Nitric oxide acts as a key signaling molecule in plant development under stressful conditions. Int. J. Mol. Sci. 2023, 24, 4782.
  • 63.
    Palma, J.M.; Freschi, L.; Rodríguez-Ruiz, M.; et al. Nitric oxide in the physiology and quality of fleshy fruits. J. Exp. Bot. 2019, 70, 4405–4417.
  • 64.
    Wang, Y.; Loake, G.J.; Chu, C. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front. Plant Sci. 2013, 4, 314.
  • 65.
    Serrano, I.; Romero-Puertas, M.C.; Sandalio, L.M.; et al. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 2015, 66, 2869–2876.
  • 66.
    Clarke, A.; Desikan, R.; Hurst, R.D.; et al. NO way back: Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 2000, 24, 667–677.
  • 67.
    Fancy, N.N.; Bahlmann, A.K.; Loake, G.J. Nitric oxide function in plant abiotic stress. Plant Cell Environ. 2017, 40, 462–472.
  • 68.
    Zhou, X.; Joshi, S.; Khare, T.; et al. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. Plant Cell Rep. 2021, 40, 1395–1414.
  • 69.
    Praveen, A. Nitric oxide mediated alleviation of abiotic challenges in plants. Nitric Oxide 2022, 128, 37–49.
  • 70.
    Meng, Y.; Jing, H.; Huang, J.; et al. The role of nitric oxide signaling in plant responses to cadmium stress. Int. J. Mol. Sci. 2022, 23, 6901.
  • 71.
    Ahmad, P.; Alyemeni, M.N.; Wijaya, L.; et al. Nitric oxide donor, sodium nitroprusside, mitigates mercury toxicity in different cultivars of soybean. J. Hazard. Mater. 2021, 408, 124852.
  • 72.
    He, H.; Zhan, J.; He, L.; et al. Nitric oxide signaling in aluminum stress in plants. Protoplasma 2012, 249, 483–492.
  • 73.
    Wei, L.; Zhang, J.; Wang, C.; et al. Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants. Plant Physiol. Biochem. 2020, 147, 161–171.
  • 74.
    Rather, B.A.; Masood, A.; Sehar, Z.; et al. Mechanisms and role of nitric oxide in phytotoxicity-mitigation of copper. Front. Plant Sci. 2020, 11, 675.
  • 75.
    Emamverdian, A.; Ding, Y.; Barker, J.; et al. Nitric oxide ameliorates plant metal toxicity by increasing antioxidant capacity and reducing Pb and Cd translocation. Antioxidants 2021, 10, 1981.
  • 76.
    Shang, J.X.; Li, X.; Li, C.; et al. The role of nitric oxide in plant responses to salt stress. Int. J. Mol. Sci. 2022, 23, 6167.
  • 77.
    Bhardwaj, S.; Kapoor, D.; Singh, S.; et al. Nitric oxide: A ubiquitous signal molecule for enhancing plant tolerance to salinity stress and their molecular mechanisms. J. Plant Growth Regul. 2021, 40, 2329–2341.
  • 78.
    Cui, J.; Huang, M.; Qi, J.; et al. Nitric Oxide in Plant Cold Stress: Functions, Mechanisms and Challenges. Agronomy 2025, 15, 1072.
  • 79.
    Naaz, S.; Pande, A.; Laxmi, A. Nitric oxide-mediated thermomemory: A new perspective on plant heat stress resilience. Front. Plant Sci. 2025, 16, 1525336.
  • 80.
    Rai, K.K. The Role of Salicylic Acid and Nitric Oxide in Plant Heat Response; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2023.
  • 81.
    Lau, S.E.; Hamdan, M.F.; Pua, T.L.; et al. Plant nitric oxide signaling under drought stress. Plants 2021, 10, 360.
  • 82.
    Lei, Y.; Chen, S.; Xu, L.; et al. Enhancing plant drought tolerance through exogenous nitric oxide: A comprehensive meta-analysis. BMC Plant Biol. 2025, 25, 447.
  • 83.
    Saini, S.; Sharma, P.; Pooja, P.; et al. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024, 153, 82–97.
  • 84.
    Timilsina, A.; Dong, W.; Hasanuzzaman, M.; et al. Nitrate–nitrite–nitric oxide pathway: A mechanism of hypoxia and anoxia tolerance in plants. Int. J. Mol. Sci. 2022, 23, 11522.
  • 85.
    Da-Silva, C.J.; do Amarante, L. Nitric oxide signaling in plants during flooding stress. In Nitric Oxide in Plant Biology; Academic Press: San Diego, CA, USA, 2022; pp. 241–260.
  • 86.
    Mur, L.A.; Carver, T.L.; Prats, E. NO way to live; the various roles of nitric oxide in plant–pathogen interactions. J. Exp. Bot. 2006, 57, 489–505.
  • 87.
    Groß; F; Durner, J.; Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 2013, 4, 419.
  • 88.
    Beligni, M.V.; Lamattina, L. Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant Cell Environ. 2002, 25, 737–748.
  • 89.
    Grün, S.; Lindermayr, C.; Sell, S.; et al. Nitric oxide and gene regulation in plants. J. Exp. Bot. 2006, 57, 507–516.
  • 90.
    Zhong, Y.; Wu, X.; Zhang, L.; et al. The roles of nitric oxide in improving postharvest fruits quality: Crosstalk with phytohormones. Food Chem. 2014, 155, 139977.
  • 91.
    Ahmad, B.; Mukarram, M.; Choudhary, S.; et al. Adaptive responses of nitric oxide (NO) and its intricate dialogue with phytohormones during salinity stress. Plant Physiol. Biochem. 2024, 208, 108504.
  • 92.
    Rai, K.K.; Pandey, N.; Rai, S.P. Salicylic acid and nitric oxide signaling in plant heat stress. Physiol. Plant. 2020, 168, 241–255.
  • 93.
    Prakash, V.; Singh, V.P.; Tripathi, D.K.; et al. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress. Plant Biol. 2021, 23, 39–49.
  • 94.
    Hancock, J.T.; Neill, S.J.; Wilson, I.D. Nitric oxide and ABA in the control of plant function. Plant Sci. 2011, 181, 555–559.
  • 95.
    Prakash, V.; Singh, V.P.; Tripathi, D.K.; et al. Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ. Exp. Bot. 2019, 161, 41–49.
  • 96.
    Kolbert, Z.; Feigl, G.; Freschi, L.; et al. Gasotransmitters in action: Nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. Antioxidants 2019, 8, 167.
  • 97.
    García, M.J.; Lucena, C.; Romera, F.J. Ethylene and nitric oxide involvement in the regulation of Fe and P deficiency responses in dicotyledonous plants. Int. J. Mol. Sci. 2021, 22, 4904.
  • 98.
    Lutter, F.; Brenner, W.; Krajinski-Barth, F.; et al. Nitric oxide and cytokinin cross-talk and their role in plant hypoxia response. Plant Signal. Behav. 2024, 19, 2329841.
  • 99.
    Mur, L.A.; Prats, E.; Pierre, S.; et al. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front. Plant Sci. 2013, 4, 215.
  • 100.
    Lindermayr, C. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free. Radic. Biol. Med. 2018, 122, 110–115.
  • 101.
    Kolbert, Z.; Feigl, G. Cross-talk of reactive oxygen species and nitric oxide in various processes of plant development: Past and present. In Reactive Oxygen Species in Plants: Boon or Bane—Revisiting the Role of ROS; Academic Press: Cambridge, MA, USA, 2017; pp. 261–289.
  • 102.
    Liu, L.; Huang, L.; Sun, C.; et al. Cross-talk between hydrogen peroxide and nitric oxide during plant development and responses to stress. J. Agric. Food Chem. 2021, 69, 9485–9497.
  • 103.
    Mishra, V.; Singh, P.; Tripathi, D.K.; et al. Nitric oxide and hydrogen sulfide: An indispensable combination for plant functioning. Trends Plant Sci. 2021, 26, 1270–1285.
  • 104.
    Corpas, F.J.; González-Gordo, S.; Cañas, A.; et al. Nitric oxide and hydrogen sulfide in plants: Which comes first? J. Exp. Bot. 2019, 70, 4391–4404.
  • 105.
    Zhu, Y.; Liao, W.; Wang, M.; et al. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber. J. Plant Physiol. 2016, 195, 50–58.
  • 106.
    Lindermayr, C.; Durner, J. S-Nitrosylation in plants: Pattern and function. J. Proteom. 2009, 73, 1–9.
  • 107.
    Innocenti, G.; Pucciariello, C.; Le Gleuher, M.; et al. Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 2007, 225, 1597–1602.
  • 108.
    Corpas, F.J.; Alché; JD; Barroso, J.B. Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front. Plant Sci. 2013, 4, 126.
  • 109.
    Mata-Pérez, C.; Sánchez-Calvo, B.; Padilla, M.N.; et al. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism. Redox Biol. 2017, 11, 554–561.
  • 110.
    Corpas, F.J.; Rodríguez-Ruiz, M.; Muñoz-Vargas, M.A.; et al. Interactions of melatonin, reactive oxygen species, and nitric oxide during fruit ripening: An update and prospective view. J. Exp. Bot. 2022, 73, 5947–5960.
  • 111.
    Vandelle, E.; Delledonne, M. Peroxynitrite formation and function in plants. Plant Sci. 2011, 181, 534–539.
  • 112.
    Speckmann, B.; Steinbrenner, H.; Grune, T.; et al. Peroxynitrite: From interception to signaling. Arch. Biochem. Biophys. 2016, 595, 153–160.
  • 113.
    Whiteman, M.; Li, L.; Kostetski, I.; et al. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem. Biophys. Res. Commun. 2006, 343, 303–310.
  • 114.
    Marozkina, N.; Gaston, B. An update on thiol signaling: S-nitrosothiols, hydrogen sulfide and a putative role for thionitrous acid. Antioxidants 2020, 9, 225.
  • 115.
    Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878.
  • 116.
    Igamberdiev, A.U.; Ratcliffe, R.G.; Gupta, K.J. Plant mitochondria: Source and target for nitric oxide. Mitochondrion 2014, 19, 329–333.
  • 117.
    Silveira, N.M.; Hancock, J.T.; Frungillo, L.; et al. Evidence towards the involvement of nitric oxide in drought tolerance of sugarcane. Plant Physiol. Biochem. 2017, 115, 354–359.
  • 118.
    Izbiańska, K.; Floryszak-Wieczorek, J.; Gajewska, J.; et al. RNA and mRNA nitration as a novel metabolic link in potato immune response to Phytophthora infestans. Front. Plant Sci. 2018, 9, 672.
  • 119.
    Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J. A physiological perspective on targets of nitration in NO-based signaling networks in plants. J. Exp. Bot. 2019, 70, 4379–4389.
  • 120.
    Yu, N.N.; Park, G. Nitric oxide in fungi: Production and function. J. Fungi 2024, 10, 155.
  • 121.
    Martínez-Medina, A.; Pescador, L.; Terrón-Camero, L.C.; et al. Nitric oxide in plant–fungal interactions. J. Exp. Bot. 2019, 70, 4489–4503.
  • 122.
    Jedelská, T.; Luhová, L.; Petřivalský, M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. J. Exp. Bot. 2021, 72, 848–863.
  • 123.
    Borland, C.; Cox, Y.; Higenbottam, T. Measurement of exhaled nitric oxide in man. Thorax 1993, 48, 1160–1162.
  • 124.
    Lim, G.H.; Kachroo, A.; Kachroo, P. Role of plasmodesmata and plasmodesmata localizing proteins in systemic immunity. Plant Signal. Behav. 2016, 11, e1219829.
  • 125.
    Pieretti, J.C.; Pelegrino, M.T.; Silveira, N.M.; et al. State-of-the-Art and Perspectives for Nanomaterials Combined with Nitric Oxide Donors: From Biomedical to Agricultural Applications. ACS Appl. Nano Mater. 2023, 7, 18590–18609.
Share this article:
How to Cite
Hancock, J. T.; Corpas, F. J.; Silveira, N. M.; Kolbert, Z. A Brief History of Nitric Oxide in Plants: How We Got Here, Where We Are, and Where We Might Be Going. Journal of Plant Physiology and Metabolism 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.