- 1.
Hancock, J.T. A brief history of oxygen: 250 years on. Oxygen 2022, 2, 31–39.
- 2.
Hancock, J.T.; LeBaron, T.W. The early history of hydrogen and other gases in respiration and biological systems: Revisiting Beddoes, Cavallo, and Davy. Oxygen 2023, 3, 102–119.
- 3.
LeBaron, T.W.; Ohno, K.; Hancock, J.T. The on/off history of hydrogen in medicine: Will the interest persist this time around? Oxygen 2023, 3, 143–162.
- 4.
Furchgott, R.F. The obligatory role of endothelial cells in the relaxation of artery smooth muscle by acetylcholine. Nature 1980, 288, 373–376.
- 5.
Kolbert, Z.S.; Barroso, J.B.; Brouquisse, R.; et al. A forty year journey: The generation and roles of NO in plants. Nitric Oxide 2019, 93, 53–70.
- 6.
Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327, 524–526.
- 7.
Paul, B.; Sbarra, A.J. The role of the phagocyte in host-parasite interactions: XIII. The direct quantitative estimation of H2O2 in phagocytizing cells. Biochim. Biophys. Acta (BBA) Gen. Subj. 1968, 156, 168–178.
- 8.
Miul’Berg, A.A. The effect of hydrogen peroxide formed during enzymatic reactions on the process of synthesis of acetylcholine. Fiziol. Zhurnal SSSR Im. IM Sechenova 1961, 47, 643–649.
- 9.
Bagal, D.; Guleria, A.; Chowdhary, A.A.; et al. Unveiling the role and crosstalk of hydrogen sulfide with other signalling molecules enhances plant tolerance to water scarcity. Physiol. Plant. 2025, 177, e70222.
- 10.
Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837.
- 11.
Global Plant Science Events Calendar: 10th Plant Nitric Oxide International Meeting. Available online: https://eventform.plantae.org/plantae.calendar/detail/1350/1752060600000 (accessed on 29 May 2025).
- 12.
Bennett, J.H.; Hill, A.C. Inhibition of apparent photosynthesis by air pollutants. J. Environ. Qual. 1973, 2, 526–530.
- 13.
Klepper, L. Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos. Environ. 1979, 13, 537–542.
- 14.
Durner, J.; Wendehenne, D.; Klessig, D.F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 1998, 95, 10328–10333.
- 15.
Delledonne, M.; Zeier, J.; Marocco, A.; et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA 2001, 98, 13454–13459.
- 16.
Igamberdiev, A.U.; Hill, R.D. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative to classic fermentation pathways. J. Exp. Bot. 2004, 55, 2473–2482.
- 17.
Lindermayr, C.; Saalbach, G.; Durner, J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 2005, 137, 921–930.
- 18.
Foresi, N.; Correa-Aragunde, N.; Parisi, G.; et al. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. The Plant Cell 2010, 22, 3816–3830.
- 19.
Mata-Pérez, C.; Sánchez-Calvo, B.; Padilla, M.N.; et al. Nitro-fatty acids in plant signaling: Nitro-linolenic acid induces the molecular chaperone network in Arabidopsis. Plant Physiol. 2016, 170, 686–701.
- 20.
Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J.; Suarez, S.; et al. Discovery of endogenous nitroxyl as a new redox player in Arabidopsis thaliana. Nat. Plants 2023, 9, 36–44.
- 21.
López-Gómez, P.; Buezo, J.; Urra, M.; et al. A new oxidative pathway of nitric oxide production from oximes in plants. Mol. Plant 2024, 17, 178–198.
- 22.
Corpas, F.J.; Taboada, J.; Sánchez-Romera, B.; et al. Peroxisomal Sulfite Oxidase (SOX), an alternative source of NO in higher plants which is upregulated by H2S. Plant Physiol. Biochem. 2025, 225, 110000.
- 23.
Fewson, C.A.; Nicholas, D.J. Utilization of nitric oxide by micro-organisms and higher plants. Nature 1960, 188, 794–796.
- 24.
Delledonne, M.; Xia, Y.; Dixon, R.A.; et al. Nitric oxide functions as a signal in plant disease resistance. Nature 1998, 394, 585–588.
- 25.
Barroso, J.B.; Corpas, F.J.; Carreras, A.; et al. Localization of nitric-oxide synthase in plant peroxisomes. J. Biol. Chem. 1999, 274, 36729–36733.
- 26.
Corpas, F.J.; Barroso, J.B.; Carreras, A.; et al. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol. 2004, 136, 2722–2733.
- 27.
Yamasaki, H.; Sakihama, Y.; Takahashi, S. An alternative pathway for nitric oxide production in plants: New features of an old enzyme. Trends Plant Sci. 1999, 4, 128–129.
- 28.
Desikan, R.; Griffiths, R.; Hancock, J.; et al. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2002, 99, 16314–16318.
- 29.
Wendehenne, D.; Pugin, A.; Klessig, D.F.; et al. Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 2001, 6, 177–183.
- 30.
Planchet, E.; Jagadis Gupta, K.; Sonoda, M.; et al. Nitric oxide emission from tobacco leaves and cell suspensions: Rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J. 2005, 41, 732–743.
- 31.
Jasid, S.; Simontacchi, M.; Bartoli, C.G.; et al. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol. 2006, 142, 1246–1255.
- 32.
Mónica, F.Z.; Bian, K.; Murad, F. The endothelium-dependent nitric oxide—cGMP pathway. Adv. Pharmacol. 2016, 77, 1–27.
- 33.
Isner, J.C.; Maathuis, F.J. cGMP signalling in plants: From enigma to main stream. Funct. Plant Biol. 2016, 45, 93–101.
- 34.
Kolbert, Z.; Feigl, G.; Bordé, Á.; et al. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives. Plant Physiol. Biochem. 2017, 113, 56–63.
- 35.
Corpas, F.J.; del Río, L.A.; Barroso, J.B. Need of biomarkers of nitrosative stress in plants. Trends Plant Sci. 2007, 12, 436–438.
- 36.
Feechan, A.; Kwon, E.; Yun, B.W.; et al. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. USA 2005, 102, 8054–8059.
- 37.
Igamberdiev, A.U.; Stoimenova, M.; Seregélyes, C.; et al. Class-1 hemoglobin and antioxidant metabolism in alfalfa roots. Planta 2006, 223, 1041–1046.
- 38.
Stoimenova, M.; Igamberdiev, A.U.; Gupta, K.J.; et al. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 2007, 226, 465–474.
- 39.
Jeandroz, S.; Wipf, D.; Stuehr, D.J.; et al. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci. Signal. 2016, 9, re2-re2.
- 40.
Hancock, J.T.; Neill, S.J. Nitric oxide: Its generation and interactions with other reactive signaling compounds. Plants 2019, 8, 41.
- 41.
Gupta, K.J.; Hancock, J.T.; Petrivalsky, M.; et al. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytol. 2020, 225, 1828–1834.
- 42.
Kolbert, Z.; Barroso, J.B.; Boscari, A.; et al. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. New Phytol. 2024, 244, 786–797.
- 43.
Chamizo-Ampudia, A.; Sanz-Luque, E.; Llamas, Á.; et al. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ. 2016, 39, 2097–2107.
- 44.
Hawkins, C.L.; Davies, M.J. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim. Et Biophys. Acta Gen. Subj. 2014, 1840, 708–721.
- 45.
Ruemer, S.; Krischke, M.; Fekete, A.; et al. Methods to Detect Nitric Oxide in Plants: Are DAFs Really Measuring NO? In Methods in Molecular Biology; Gupta, K., ed.; Humana Press: New York, NY, USA, 2016; Volume 1424.
- 46.
Mohanty, D.; Peláez-Vico, M.A.; Myers, R.J., Jr,; et al. Aboveground whole-plant live imaging method for nitric oxide (NO) reveals an intricate relationship between NO and H2O2. New Phytol. 2025, 247, 2473–2483.
- 47.
Hancock, J.T. NO more hiding: Whole-plant live imaging of nitric oxide reveals systemic signalling. New Phytol. 2025, 247, 1974–1976.
- 48.
3rd Plant NO Club: International Meeting. Available online: https://www.researchgate.net/publication/47151328_3rd_Plant_NO_Club_International_meeting_July_15-16_2010_Olomouc_Book_of_abstracts_including_programme_list_of_participants (accessed on 29 May 2025).
- 49.
8th Plant Nitric Oxide International Available online: https://fibamdp.wordpress.com/2021/06/16/8th-plant-nitric-oxide-international-meeting/#:~:text=The%208th%20Plant%20Nitric%20Oxide,welcome%20you%20in%20Szeged%2C%20Hungary! (accessed on 29 May 2025).
- 50.
Seabra, A.B.; Silveira, N.M.; Ribeiro, R.V.; et al. Nitric oxide-releasing nanomaterials: From basic research to potential biotechnological applications in agriculture. New Phytol. 2022, 234, 1119–1125.
- 51.
Gupta, K.J.; Kolbert, Z.; Durner, J.; et al. Regulating the regulator: Nitric oxide control of post-translational modifications. New Phytol. 2020, 227, 1319–1325.
- 52.
Journal of Experimental Botany: Special Issue: Nitric Oxide in Plant Biology. Available online: https://www.facebook.com/share/p/1VHndfZmKM/ (accessed on 18 June 2025).
- 53.
Kolbert, Z.; Lindermayr, C.; Loake, G.J. The role of nitric oxide in plant biology: Current insights and future perspectives. J. Exp. Bot. 2021, 72, 777–780.
- 54.
Plant Science: Current Directions in Plant Nitric Oxide Research. Available online: https://www.sciencedirect.com/spec ial-issue/302351/current-directions-in-plant-nitric-oxide-research (accessed on 18 June 2025).
- 55.
Ciacka, K.; Staszek, P.; Sobczynska, K.; et al. Nitric oxide in seed biology. Int. J. Mol. Sci. 2022, 23, 14951.
- 56.
Haq, A.U.; Lone, M.L.; Farooq, S.; et al. Nitric oxide effectively orchestrates postharvest flower senescence: A case study of Consolida ajacis. Funct. Plant Biol. 2021, 50, 97–107.
- 57.
Arc, E.; Galland, M.; Godin, B.; et al. Nitric oxide implication in the control of seed dormancy and germination. Front. Plant Sci. 2013, 4, 346.
- 58.
Prado, A.M.; Colaço, R.; Moreno, N.; et al. Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. Mol. Plant 2008, 1, 703–714.
- 59.
Bright, J.; Hiscock, S.J.; James, P.E.; et al. Pollen generates nitric oxide and nitrite: A possible link to pollen-induced allergic responses. Plant Physiol. Biochem. 2009, 47, 49–55.
- 60.
Šírová; J; Sedlářová; M; Piterková; J; et al. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 2011, 181, 560–572.
- 61.
Sanz, L.; Albertos, P.; Mateos, I.; et al. Nitric oxide (NO) and phytohormones crosstalk during early plant development. J. Exp. Bot. 2015, 66, 2857–2868.
- 62.
Khan, M.; Ali, S.; Al Azzawi, T.N.I.; et al. Nitric oxide acts as a key signaling molecule in plant development under stressful conditions. Int. J. Mol. Sci. 2023, 24, 4782.
- 63.
Palma, J.M.; Freschi, L.; Rodríguez-Ruiz, M.; et al. Nitric oxide in the physiology and quality of fleshy fruits. J. Exp. Bot. 2019, 70, 4405–4417.
- 64.
Wang, Y.; Loake, G.J.; Chu, C. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front. Plant Sci. 2013, 4, 314.
- 65.
Serrano, I.; Romero-Puertas, M.C.; Sandalio, L.M.; et al. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 2015, 66, 2869–2876.
- 66.
Clarke, A.; Desikan, R.; Hurst, R.D.; et al. NO way back: Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 2000, 24, 667–677.
- 67.
Fancy, N.N.; Bahlmann, A.K.; Loake, G.J. Nitric oxide function in plant abiotic stress. Plant Cell Environ. 2017, 40, 462–472.
- 68.
Zhou, X.; Joshi, S.; Khare, T.; et al. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. Plant Cell Rep. 2021, 40, 1395–1414.
- 69.
Praveen, A. Nitric oxide mediated alleviation of abiotic challenges in plants. Nitric Oxide 2022, 128, 37–49.
- 70.
Meng, Y.; Jing, H.; Huang, J.; et al. The role of nitric oxide signaling in plant responses to cadmium stress. Int. J. Mol. Sci. 2022, 23, 6901.
- 71.
Ahmad, P.; Alyemeni, M.N.; Wijaya, L.; et al. Nitric oxide donor, sodium nitroprusside, mitigates mercury toxicity in different cultivars of soybean. J. Hazard. Mater. 2021, 408, 124852.
- 72.
He, H.; Zhan, J.; He, L.; et al. Nitric oxide signaling in aluminum stress in plants. Protoplasma 2012, 249, 483–492.
- 73.
Wei, L.; Zhang, J.; Wang, C.; et al. Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants. Plant Physiol. Biochem. 2020, 147, 161–171.
- 74.
Rather, B.A.; Masood, A.; Sehar, Z.; et al. Mechanisms and role of nitric oxide in phytotoxicity-mitigation of copper. Front. Plant Sci. 2020, 11, 675.
- 75.
Emamverdian, A.; Ding, Y.; Barker, J.; et al. Nitric oxide ameliorates plant metal toxicity by increasing antioxidant capacity and reducing Pb and Cd translocation. Antioxidants 2021, 10, 1981.
- 76.
Shang, J.X.; Li, X.; Li, C.; et al. The role of nitric oxide in plant responses to salt stress. Int. J. Mol. Sci. 2022, 23, 6167.
- 77.
Bhardwaj, S.; Kapoor, D.; Singh, S.; et al. Nitric oxide: A ubiquitous signal molecule for enhancing plant tolerance to salinity stress and their molecular mechanisms. J. Plant Growth Regul. 2021, 40, 2329–2341.
- 78.
Cui, J.; Huang, M.; Qi, J.; et al. Nitric Oxide in Plant Cold Stress: Functions, Mechanisms and Challenges. Agronomy 2025, 15, 1072.
- 79.
Naaz, S.; Pande, A.; Laxmi, A. Nitric oxide-mediated thermomemory: A new perspective on plant heat stress resilience. Front. Plant Sci. 2025, 16, 1525336.
- 80.
Rai, K.K. The Role of Salicylic Acid and Nitric Oxide in Plant Heat Response; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2023.
- 81.
Lau, S.E.; Hamdan, M.F.; Pua, T.L.; et al. Plant nitric oxide signaling under drought stress. Plants 2021, 10, 360.
- 82.
Lei, Y.; Chen, S.; Xu, L.; et al. Enhancing plant drought tolerance through exogenous nitric oxide: A comprehensive meta-analysis. BMC Plant Biol. 2025, 25, 447.
- 83.
Saini, S.; Sharma, P.; Pooja, P.; et al. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024, 153, 82–97.
- 84.
Timilsina, A.; Dong, W.; Hasanuzzaman, M.; et al. Nitrate–nitrite–nitric oxide pathway: A mechanism of hypoxia and anoxia tolerance in plants. Int. J. Mol. Sci. 2022, 23, 11522.
- 85.
Da-Silva, C.J.; do Amarante, L. Nitric oxide signaling in plants during flooding stress. In Nitric Oxide in Plant Biology; Academic Press: San Diego, CA, USA, 2022; pp. 241–260.
- 86.
Mur, L.A.; Carver, T.L.; Prats, E. NO way to live; the various roles of nitric oxide in plant–pathogen interactions. J. Exp. Bot. 2006, 57, 489–505.
- 87.
Groß; F; Durner, J.; Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 2013, 4, 419.
- 88.
Beligni, M.V.; Lamattina, L. Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant Cell Environ. 2002, 25, 737–748.
- 89.
Grün, S.; Lindermayr, C.; Sell, S.; et al. Nitric oxide and gene regulation in plants. J. Exp. Bot. 2006, 57, 507–516.
- 90.
Zhong, Y.; Wu, X.; Zhang, L.; et al. The roles of nitric oxide in improving postharvest fruits quality: Crosstalk with phytohormones. Food Chem. 2014, 155, 139977.
- 91.
Ahmad, B.; Mukarram, M.; Choudhary, S.; et al. Adaptive responses of nitric oxide (NO) and its intricate dialogue with phytohormones during salinity stress. Plant Physiol. Biochem. 2024, 208, 108504.
- 92.
Rai, K.K.; Pandey, N.; Rai, S.P. Salicylic acid and nitric oxide signaling in plant heat stress. Physiol. Plant. 2020, 168, 241–255.
- 93.
Prakash, V.; Singh, V.P.; Tripathi, D.K.; et al. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress. Plant Biol. 2021, 23, 39–49.
- 94.
Hancock, J.T.; Neill, S.J.; Wilson, I.D. Nitric oxide and ABA in the control of plant function. Plant Sci. 2011, 181, 555–559.
- 95.
Prakash, V.; Singh, V.P.; Tripathi, D.K.; et al. Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ. Exp. Bot. 2019, 161, 41–49.
- 96.
Kolbert, Z.; Feigl, G.; Freschi, L.; et al. Gasotransmitters in action: Nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. Antioxidants 2019, 8, 167.
- 97.
García, M.J.; Lucena, C.; Romera, F.J. Ethylene and nitric oxide involvement in the regulation of Fe and P deficiency responses in dicotyledonous plants. Int. J. Mol. Sci. 2021, 22, 4904.
- 98.
Lutter, F.; Brenner, W.; Krajinski-Barth, F.; et al. Nitric oxide and cytokinin cross-talk and their role in plant hypoxia response. Plant Signal. Behav. 2024, 19, 2329841.
- 99.
Mur, L.A.; Prats, E.; Pierre, S.; et al. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front. Plant Sci. 2013, 4, 215.
- 100.
Lindermayr, C. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free. Radic. Biol. Med. 2018, 122, 110–115.
- 101.
Kolbert, Z.; Feigl, G. Cross-talk of reactive oxygen species and nitric oxide in various processes of plant development: Past and present. In Reactive Oxygen Species in Plants: Boon or Bane—Revisiting the Role of ROS; Academic Press: Cambridge, MA, USA, 2017; pp. 261–289.
- 102.
Liu, L.; Huang, L.; Sun, C.; et al. Cross-talk between hydrogen peroxide and nitric oxide during plant development and responses to stress. J. Agric. Food Chem. 2021, 69, 9485–9497.
- 103.
Mishra, V.; Singh, P.; Tripathi, D.K.; et al. Nitric oxide and hydrogen sulfide: An indispensable combination for plant functioning. Trends Plant Sci. 2021, 26, 1270–1285.
- 104.
Corpas, F.J.; González-Gordo, S.; Cañas, A.; et al. Nitric oxide and hydrogen sulfide in plants: Which comes first? J. Exp. Bot. 2019, 70, 4391–4404.
- 105.
Zhu, Y.; Liao, W.; Wang, M.; et al. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber. J. Plant Physiol. 2016, 195, 50–58.
- 106.
Lindermayr, C.; Durner, J. S-Nitrosylation in plants: Pattern and function. J. Proteom. 2009, 73, 1–9.
- 107.
Innocenti, G.; Pucciariello, C.; Le Gleuher, M.; et al. Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 2007, 225, 1597–1602.
- 108.
Corpas, F.J.; Alché; JD; Barroso, J.B. Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front. Plant Sci. 2013, 4, 126.
- 109.
Mata-Pérez, C.; Sánchez-Calvo, B.; Padilla, M.N.; et al. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism. Redox Biol. 2017, 11, 554–561.
- 110.
Corpas, F.J.; Rodríguez-Ruiz, M.; Muñoz-Vargas, M.A.; et al. Interactions of melatonin, reactive oxygen species, and nitric oxide during fruit ripening: An update and prospective view. J. Exp. Bot. 2022, 73, 5947–5960.
- 111.
Vandelle, E.; Delledonne, M. Peroxynitrite formation and function in plants. Plant Sci. 2011, 181, 534–539.
- 112.
Speckmann, B.; Steinbrenner, H.; Grune, T.; et al. Peroxynitrite: From interception to signaling. Arch. Biochem. Biophys. 2016, 595, 153–160.
- 113.
Whiteman, M.; Li, L.; Kostetski, I.; et al. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem. Biophys. Res. Commun. 2006, 343, 303–310.
- 114.
Marozkina, N.; Gaston, B. An update on thiol signaling: S-nitrosothiols, hydrogen sulfide and a putative role for thionitrous acid. Antioxidants 2020, 9, 225.
- 115.
Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878.
- 116.
Igamberdiev, A.U.; Ratcliffe, R.G.; Gupta, K.J. Plant mitochondria: Source and target for nitric oxide. Mitochondrion 2014, 19, 329–333.
- 117.
Silveira, N.M.; Hancock, J.T.; Frungillo, L.; et al. Evidence towards the involvement of nitric oxide in drought tolerance of sugarcane. Plant Physiol. Biochem. 2017, 115, 354–359.
- 118.
Izbiańska, K.; Floryszak-Wieczorek, J.; Gajewska, J.; et al. RNA and mRNA nitration as a novel metabolic link in potato immune response to Phytophthora infestans. Front. Plant Sci. 2018, 9, 672.
- 119.
Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J. A physiological perspective on targets of nitration in NO-based signaling networks in plants. J. Exp. Bot. 2019, 70, 4379–4389.
- 120.
Yu, N.N.; Park, G. Nitric oxide in fungi: Production and function. J. Fungi 2024, 10, 155.
- 121.
Martínez-Medina, A.; Pescador, L.; Terrón-Camero, L.C.; et al. Nitric oxide in plant–fungal interactions. J. Exp. Bot. 2019, 70, 4489–4503.
- 122.
Jedelská, T.; Luhová, L.; Petřivalský, M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. J. Exp. Bot. 2021, 72, 848–863.
- 123.
Borland, C.; Cox, Y.; Higenbottam, T. Measurement of exhaled nitric oxide in man. Thorax 1993, 48, 1160–1162.
- 124.
Lim, G.H.; Kachroo, A.; Kachroo, P. Role of plasmodesmata and plasmodesmata localizing proteins in systemic immunity. Plant Signal. Behav. 2016, 11, e1219829.
- 125.
Pieretti, J.C.; Pelegrino, M.T.; Silveira, N.M.; et al. State-of-the-Art and Perspectives for Nanomaterials Combined with Nitric Oxide Donors: From Biomedical to Agricultural Applications. ACS Appl. Nano Mater. 2023, 7, 18590–18609.