2511002175
  • Open Access
  • Article

3P Framework (Prompt, Persist, Produce): Accelerating Skill Development and End-to-End Results through Human-AI Collaboration

  • Neal Cody 1, †,   
  • Veda Sripada 1, 2, †,   
  • Katherine Papciak 1,   
  • Isaac Oyediran 1,   
  • Amanda F. Yanke 1,   
  • Bakhtawer B. Baloch 3,   
  • Chien-Hung Lu 1,   
  • Jameson Born 1,   
  • Nwe N. Aung 1,   
  • Prakruthi Harish 1,   
  • Rishav E. S. Dasgupta 1,   
  • Sashank B. Narayan 4,   
  • Gurkirat Sekhon 5,   
  • Natali Kolker 6,   
  • Nisha Singh 3,   
  • Oleksandr Romanenko 6,   
  • Eugene Kolker 4, 6, 7, 8, 9, *

Received: 29 May 2025 | Revised: 30 Jun 2025 | Accepted: 05 Nov 2025 | Published: 17 Nov 2025

Abstract

This work demonstrates how Human-AI collaboration can substantially accelerate advanced skill development and end-to-end results (transition “from learning to doing”) in complex fields that traditionally require extensive, lengthy training. In a graduate-level course “AI, Generative AI, and Data Science for Biomedical Informatics” taught by Eugene Kolker, the experimental group with little to no prior experience rapidly progressed from instruction to producing credible, real-world results. Enabled by Generative AI (GenAI), the experimental group members processed data, generated code, interpreted results, synthesized literature, and documented findings over a focused 20–hour implementation phase. Applying these sophisticated skills to a rigorous, multi-step analysis of eukaryotic enzymes, they observed underlying preferred sizes, consistent with and extending upon prior work. Notably, the more experienced control group failed to reproduce these results even after 50% more time. This striking success-failure differential was enabled by the 3P (Prompt, Persist, Produce) framework. 3P is a straightforward, robust, and reproducible Human empowerment methodology that draws its inspiration from the Socratic Method, Experiential Learning Theory, and Systems Thinking. The 3P approach is based on three pillars: (1) optimally structured communication, (2) Human expert facilitation (“player-coach” function), and (3) GenAI systems. Comparison of the results obtained by the experimental group with 3P (and GenAI) versus control group without 3P (and GenAI) revealed that 3P significantly shortens the time from question to insight and from learning to outcomes. Through Human-AI collaboration, 3P accelerates advanced skill development and end-to-end results, including, for instance, the preparation of this manuscript. The 3P “from learning to doing” paradigm not only transforms traditional training curves, but also offers a rapid, scalable, field-agnostic blueprint for accelerated research and development, innovation, workforce upskilling and reskilling, and measurable, end-to-end results.

References 

  • 1.
    Marks, S.E.; Walter, G.A. Experiential Learning & Change: Theory, Design & Practice; Wiley: Hoboken, NJ, USA, 1981.
  • 2.
    Kolb, D.A. Experiential Learning: Experience as the Source of Learning and Development; Financial Times Prentice Hall: Englewood Cliffs, NJ, USA, 1984.
  • 3.
    Kolb, D.A. Experiential Learning: Experience as the Source of Learning and Development, 2nd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2015.
  • 4.
    Black, S.L.; DeGrassi, S.W.; Sweet, K.M. Multisource feedback as an experiential learning enabler in large-format management classes. J. Manag. Educ. 2021, 45, 479–517. https://doi.org/10.1177/1052562920987292.
  • 5.
    Cherry, K. The Experiential Learning Theory of David Kolb. Understanding the Four Stages of Learning. 2025. Available online: https://www.verywellmind.com/experiential-learning-2795154 (accessed on 14 November 2025).
  • 6.
    U.S. Department of Health Education and Welfare. Public Health Reports. 1953. Available online: https://babel.hathitrust.org/cgi/pt?id=uiug.30112111844723&seq=255 (accessed on 14 November 2025).
  • 7.
    Plato ‘Apology’. 2025. Available online: https://classics.mit.edu/Plato/apology.html (accessed on 14 November 2025).
  • 8.
    Plato, W.P. The Stanford Encyclopedia of Philosophy (Fall 2024 Edition); Zalta, E.N., Nodelman, U., Eds.; 2024. Available online: https://plato.stanford.edu/archives/fall2024/entries/plato-ethics-shorter/ (accessed on 14 November 2025).
  • 9.
    Littig, B. The Neo-Socratic Dialogue (NSD): A method of teaching the ethics of sustainable development. In Teaching Business Sustainability; Galea, C., Eds.; Greenleaf Publishing: Sheffield, UK, 2004; Volume 1, pp. 240–252. Available online: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-5415 (accessed on 14 November 2025).
  • 10.
    Le, N.-T. How Do Technology-Enhanced Learning Tools Support Critical Thinking? Front. Educ. 2019, 4, 126. Available online: https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2019.00126 (accessed on 14 November 2025).
  • 11.
    Scholle, C. Understanding the Socratic Method of Teaching. 2020. Available online: https://www.alu.edu/alublog/understanding-the-socratic-method-of-teaching/ (accessed on 14 November 2025).
  • 12.
    Giuseffi, F. The investigation of a Nelsonian approach to Socratic dialogue with student-teachers at a midwestern private university. InSight J. Sch. Teach. 2024, 20, 1. https://doi.org/10.46504/20202401gi.
  • 13.
    Hood, L.; Heath, J.R.; Phelps, M.E.; et al. Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306, 640–643.
  • 14.
    Galperin, M.Y.; Kolker, E. New metrics for comparative genomics. Curr. Opin. Biotechnol. 2006, 17, 440–447.
  • 15.
    Barga, R.; Howe, B.; Beck, D.; et al. Bioinformatics and Data-Intensive Scientific Discovery in the Beginning of the 21st Century. OMICS J. Integr. Biol. 2011, 15, 199–201.
  • 16.
    Smith, A.; Balazinska, M.; Baru, C.; et al. Biology and Data-Intensive Scientific Discovery in the Beginning of the 21st Century. OMICS J. Integr. Biol. 2011, 15, 209–212.
  • 17.
    Faris, J.; Kolker, E.; Szalay, A.; et al. Communication and data-intensive science in the beginning of the 21st century. OMICS J. Integr. Biol. 2011, 15, 213–215.
  • 18.
    Kolker, E.; Stewart, E.; Ozdemir, V. Opportunities and challenges for the life sciences community. OMICS J. Integr. Biol. 2012, 16, 138–147.
  • 19.
    Hood, L. Systems Biology and P4 Medicine: Past, Present, and Future. Rambam Maimonides Med. J. 2013, 4, e0012.
  • 20.
    Russell, L. Ackoff. General Systems Theory and Systems Research Contrasting Conceptions of Systems Science. In Views on a General Systems Theory: Proceedings from the Second System Symposium; Mesarovic, M.D., Ed.; 1968.
  • 21.
    Barnes, J. Life and Work. In The Cambridge Companion to Aristotle; Cambridge University Press: Cambridge, UK, 1995.
  • 22.
    Senge, P.M. The Fifth Discipline: The Art & Practice of the Learning Organization; Doubleday: New York, NY, USA, 1990.
  • 23.
    Meadows, D.H. Thinking in Systems: A Primer; Routledge: Oxfordshire, UK, 2008.
  • 24.

    Kolker, E. How Can You Start Using AI? Part 5: When Was the Term ‘AI’ Coined? 2025. Available online: https://www.linkedin.com/feed/update/urn:li:activity:7295216336329228288/?updateEntityUrn=urn%3Ali%3Afs_feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A7295216336329228288%29 (accessed on 14 November 2025).

  • 25.
    Park, S.H. Use of Generative Artificial Intelligence, Including Large Language Models Such as ChatGPT, in Scientific Publications: Policies of KJR and Prominent Authorities. Korean J. Radiol. 2023, 24, 715–718. https://doi.org/10.3348/kjr.2023.0643.
  • 26.
    Corbyn, Z. Reid Hoffman: Start using AI deeply. It is a huge intelligence amplifier. 2025. Available online: https://www.theguardian.com/technology/2025/mar/22/reid-hoffman-superagency-start-using-ai-deeply-it-is-a-huge-intelligence-amplifier (accessed on 14 November 2025).
  • 27.

    Kolker, E. How Can You Start Using AI? Part 3: Get an AI Coach for YOUR Business. 2025. Available online: https://www.linkedin.com/posts/eugenekolker_ai-ai-ai-activity-7287560039408492546-UolS/?utm_source=share&utm_medium=member_desktop&rcm=ACoAADdzCHUB17yvhPTBHa3VY-XBx9BbC3A0l7A (accessed on 14 November 2025).

  • 28.

    Gran, G.; Kolker, E. The Mayfield podcast. Making AI Real.: Kolker E. 2025. Available online: https://www.linkedin.com/posts/makingairealthepodcast_activity-7333592691336720385-IRuK?utm_source=share&utm_medium=member_desktop&rcm=ACoAAAADOL4BtDMMO4K7DZ3pg-dsoRuIIG4w6qY (accessed on 14 November 2025).

  • 29.
    Introducing ChatGPT. 2022. Available online: https://openai.com/index/chatgpt/ (accessed on 14 November 2025).
  • 30.
    Bommasani, R.; Hudson, D.A.; Adeli, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv 2022, arXiv.2108.07258. https://doi.org/10.48550/arXiv.2108.07258.
  • 31.
    Naveed, H.; Khan, A.U.; Qiu, S.; et al. A Comprehensive Overview of Large Language Models. arXiv 2024, arXiv.2307.06435. https://doi.org/10.48550/arXiv.2307.06435.
  • 32.
    Minaee, S.; Mikolov, T.; Nikzad, N.; et al. Large Language Models: A Survey. arXiv 2025, arXiv.2402.06196. https://doi.org/10.48550/arXiv.2402.06196.
  • 33.
    Wang, F.; Minhua, L.; Yao, M.; et al. A Survey on Small Language Models in the Era of Large Language Models: Architecture, Capabilities, and Trustworthiness. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Toronto, ON, Canada, 3–7 August 2025. https://doi.org/10.1145/3711896.3736563.
  • 34.
    Cohen, J.; Rosenfeld, E.; Kolter, J. Z. Certified Adversarial Robustness via Randomized Smoothing. In Proceedings of the 36th International Conference on Machine Learning. ICML 2019, PMLR 97:1310-1320.
  • 35.
    OpenAI. GPT-4o System Card. arXiv 2024, arXiv:2410.21276. https://arxiv.org/abs/2410.21276.
  • 36.
    Introducing the next generation of Claude. 2025. Available online: https://www.anthropic.com/news/claude-3-family (accessed on 14 November 2025).
  • 37.
    Perplexity. Perplexity AI. Deep Research mode. 2025. Available online: https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research (accessed on 14 November 2025).
  • 38.
    Eger, S.; Cao, Y.; D’Souza, J.; et al. Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation. arXiv 2025, arXiv.2502.05151. https://doi.org/10.48550/arXiv.2502.05151.
  • 39.
    Garrity, G.M.; Field, D.; Kyrpides, N.; et al. Toward a standards-compliant genomic and metagenomic publication record. OMICS J. Integr. Biol. 2008, 12, 157–160.
  • 40.
    Higdon, R.; van Belle, G.; Kolker, E. A note on the false discovery rate and inconsistent comparisons between experiments. Bioinformatics 2008, 24, 1225–1228.
  • 41.
    Louie, B.; Higdon, R.; Kolker, E. A statistical model of protein sequence similarity and function similarity reveals overly-specific function predictions. PLoS ONE 2009, 4, e7546.
  • 42.
    Kolker, E.; Higdon, R.; Welch, D.; et al. SPIRE: Systematic protein investigative research environment. J. Proteom. 2011, 75, 122–126.
  • 43.
    Dove, E.S.; Faraj, S.A.; Kolker, E. Ozdemir. Designing a post-genomics knowledge ecosystem to translate pharmacogenomics into public health action. Genome Med. 2012, 4, 91.
  • 44.
    Ozdemir, V.; Kolker, E.; Hotez, P.J.; et al. Ready to put metadata on the post-2015 development agenda? Linking data publications to responsible innovation and science diplomacy. OMICS J. Integr. Biol. 2014, 18, 1–9.
  • 45.
    Higdon, R.; Haynes, W.; Stanberry, L.; et al. Unraveling the complexities of life sciences data. Big Data 2015, 1, 42–50.
  • 46.
    Janes, K.A.; Chandran, P.L.; Ford, R.M.; et al. An engineering design approach to systems biology. OMICS J. Integr Biol. 2017, 9, 574–583. https://doi.org/10.1039/c7ib00014f.
  • 47.
    Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. https://doi.org/10.1186/s13059-017-1215-1.
  • 48.
    Mura, C.; Draizen, E.J.; Bourne, P.E. Structural biology meets data science: Does anything change? Curr. Opin. Struct. Biol. 2018, 52, 95–102. https://doi.org/10.1016/j.sbi.2018.09.003.
  • 49.
    Kolker, E. How Can YOU Start Using AI? Part 6: AI Agents. 2025. Available online: https://www.linkedin.com/feed/update/urn:li:activity:7297627727518486528/ (accessed on 14 November 2025).
  • 50.
    Frishman D.A. Yet Another AI Journal? LifeAI 2025, 1, 1. https://www.sciltp.com/journals/lifeai.
  • 51.
    Chen, L.; Chen, P.; Lin, Z. Artificial Intelligence in Education: A Review. IEEE Access 2020, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510.
  • 52.
    Vaswani, A.; Shazeer, N.; Parmar, N.; et al. Attention Is All You Need. arXiv 2023, arXiv.1706.03762. https://doi.org/10.48550/arXiv.1706.03762.
  • 53.
    Wang, S.; Wang, F.; Zhu, Z.; et al. Artificial intelligence in education: A systematic literature review. Expert Syst. Appl. 2024, 252, 124167. https://doi.org/10.1016/j.eswa.2024.124167.
  • 54.
    Touvron, H.; Lavril, T.; Izacard, G.; et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv.2302.13971. https://doi.org/10.48550/arXiv.2302.13971.
  • 55.
    Buriak, J.M.; Akinwande, D.; Artzi, N.; et al. Best Practices for Using AI When Writing Scientific Manuscripts. ACS Nano 2023, 17, 4091–4093. https://doi.org/10.1021/acsnano.3c01544.
  • 56.
    Koller, D.; Beam, A.; Manrai, A.; et al. Why We Support and Encourage the Use of Large Language Models in NEJM AI Submissions. NEJM AI 2024, 1, AIe2300128. https://doi.org/10.1056/AIe2300128.
  • 57.
    OpenAI. GPT-4 Technical Report. arXiv 2024, arXiv.2303.08774. https://doi.org/10.48550/arXiv.2303.08774.
  • 58.
    Möller, M.; Nirmal, G.; Fabietti, D.; et al. Revolutionising Distance Learning: A Comparative Study of Learning Progress With AI-Driven Tutoring. arXiv 2024, arXiv.2403.14642. https://doi.org/10.48550/arXiv.2403.14642.
  • 59.
    Zhang, J.; Fenton, S.H. Preparing healthcare education for an AI-augmented future. NPJ Health Syst. 2024, 1, 4. https://doi.org/10.1038/s44401-024-00006-z.
  • 60.
    Hersh, W. Generative Artificial Intelligence: Implications for Biomedical and Health Professions Education. Annu. Rev. Biomed. Data Sci. 2025, 8, 355–380. https://doi.org/10.1146/annurev-biodatasci-103123-094756.
  • 61.
    Zhao, W.X.; Zhou, K.; Li, J.; et al. A Survey of Large Language Models. arXiv 2025, arXiv.2303.18223.
  • 62.
    Cursor. Best practices for medium/large projects. 2025. Available online: https://forum.cursor.com/t/best-practices-for-medium-large-projects/21206 (accessed on 14 November 2025).
  • 63.
    Replit Guides. 2025. Available online: https://replit.com/guides (accessed on 14 November 2025).
  • 64.
    Leaderboards. 2025. Available online: https://www.swebench.com (accessed on 14 November 2025).
  • 65.
    GPT-5 Codex. 2025. Available online: https://openai.com/index/introducing-codex/ (accessed on 14 November 2025).
  • 66.
    Nobel Prize in Chemistry. 2024. Available online: https://www.nobelprize.org/prizes/chemistry/2024/press-release/ (accessed on 14 November 2025).
  • 67.
    Krishna, R.; Wang, J.; Ahern, W.; et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 2024, 384, eadl2528. https://doi.org/10.1126/science.adl2528.
  • 68.
    Abramson, J.; Adler, J.; Dunger, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. https://doi.org/10.1038/s41586-024-07487-w.
  • 69.
    Kovalevskiy, O.; Mateos-Garcia, J.; Tunyasuvunakool, K. AlphaFold two years on: Validation and impact. Proc. Natl. Acad. Sci. USA 2024, 121, e2315002121. https://doi.org/10.1073/pnas.2315002121.
  • 70.
    Kim, G.B.; Kim, J.Y.; Lee, J.A.; et al. Functional annotation of enzyme-encoding genes using deep learning with transformer layers. Nat. Commun. 2023, 14, 7370. https://doi.org/10.1038/s41467-023-43216-z.
  • 71.
    Zheng, L.; Shi, S.; Lu, M.; et al. AnnoPRO: A strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding. Genome Biol. 2024, 25, 41. https://doi.org/10.1186/s13059-024-03166-1.
  • 72.
    Berman, A.L.; Kolker, E.; Trifonov, E.N. Underlying order in protein sequence organization. Proc. Natl. Acad. Sci. USA 1994, 91, 4044–4047.
  • 73.
    Welch, W.J.; Eggers, D.K.; Hansen, W.J.; et al. Early Events in the Synthesis and Maturation of Polypeptides. 1999. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781482283440-19/early-events-synthesis-maturation-polypeptides-welch-eggers-hansen-nagata (accessed on 14 November 2025).
  • 74.
    Kolker, E.; Tjaden, B.C.; Hubley, R.; et al. Spectral Analysis of Distributions: Finding Periodic Components in Eukaryotic Enzyme Length Data. OMICS J. Integr. Biol. 2002, 6, 123–130.
  • 75.
    Lynch, M.; Marinov, G. The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. USA 2015, 112, 15690–15695.
  • 76.
    Masse, M.M.; Hutchinson, R.B.; Morgan, C.E.; et.al. Mapping Protein–Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome–Nascent Globin Complex. ACS Cent. Sci. 2024, 10, 385–401.
  • 77.
    Perin, C.; Cretin, G.; Gelly, J.-C. Hierarchical Analysis of Protein Structures: From Secondary Structures to Protein Units and Domains. In Protein Supersecondary Structures: Methods and Protocols; Springer US: New York, NY, USA, 2025; pp. 357–370. https://doi.org/10.1007/978-1-0716-4213-9_18.
  • 78.
    Trifonov, E.N. Thirty Years of Multiple Sequence Codes. Genom. Proteom. Bioinform. 2011, 9, 1–6. https://doi.org/10.1016/S1672-0229(11)60001-6.
  • 79.
    Trifonov, E.N. Codes of Biosequences. Barbieri, M. (Ed.). The Codes of LIFE: The Rules of Macroevolution; Springer: Berlin/Heidelberg, Germany, 2008.
  • 80.
    Doolittle, R.F. The multiplicity of domains in proteins. Annu. Rev. Biochem. 1995, 64, 287–314.
  • 81.
    Bashton, M.; Chothia, C. The geometry of domain combination in proteins. J. Mol. Biol. 2002, 315, 927–939. https://doi.org/10.1006/jmbi.2001.5288.
  • 82.
    Chothia, C.; Gough, J.; Vogel, C.; et al. Evolution of the protein repertoire. Nat. Rev. Genet. 2003, 4, 261–270.
  • 83.
    Wetlaufer, D.B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl. Acad. Sci. USA 1973, 70, 697–701.
  • 84.
    Savageau, M.A. Proteins of Escherichia coli come in sizes that are multiples of 14 kDa: Domain concepts & evolutionary implications. Proc. Natl. Acad. Sci. USA 1986, 83, 1198–1202.
  • 85.
    Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; et al. Synthesis of proteins by native chemical ligation. Science 1994, 266, 778–779.
  • 86.
    Kelman, Z.; Finkelstein, J.; O’Donnell, M. Protein Structure: Why have six-fold symmetry? Curr. Biol. 1995, 5, 1239–1242.
  • 87.
    Kolker, E.; Trifonov, E.N. Sequence sizes of eukaryotic enzymes. In Pacific Symposium on Biocomputing: Proceedings; World Scientific: Singapore, 1995; pp. 351–361.
  • 88.
    Kolker, E.; Trifonov, E.N. Segments, folds and overall protein structure. Biol. Struct.Dyn. Proc. Ninth Conversat. Discip. Biomol. Stereodyn. 1996, 1, 257–265.
  • 89.
    Lindgård, P.-A.; Bohr, H. Magic Numbers in Protein Structures. Phys. Rev. Lett. 1996, 77, 779–782.
  • 90.
    Bohr, J.; Bohr, H.; Brunak, S. Protein folding and wring resonances. Biophys. Chem. 1997, 63, 97–105.
  • 91.
    Durup, J. On “Levinthal paradox” and the theory of protein folding. J. Mol. Struct. 1998, 424, 157–169.
  • 92.
    Xu, D.; Nussinov, R. Favorable domain size in proteins. Fold. Des. 1998, 3, 11–17. https://doi.org/10.1016/S1359-0278(98)00004-2.
  • 93.
    Wheelan, S.J.; Marchler-Bauer, A.; Bryant, S.H. Domain size distributions can predict domain boundaries. Bioinformatics 2000, 16, 613–618. https://doi.org/10.1093/bioinformatics/16.7.613.
  • 94.
    Dawson, P.E.; Kent, S.B.H. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 2000, 69, 923–960.
  • 95.
    Baldi, P.; Brunak, S. Bioinformatics: The Machine Learning Approach; Dietterich, T., Bishop, C., Heckerman, D., Jordan, M., Kearns, M., Eds.; MIT Press: Cambridge, MA, USA, 2001.
  • 96.
    Kimmerlin, T.; Seebach, D. 100 years of peptide synthesis: Ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J. Pept. Res. 2005, 65, 229–260.
  • 97.
    Li, D.J.; Zhang, S. Prediction of genomic properties and classification of life by protein length distributions. arXiv 2008, arXiv:0806.0205.
  • 98.
    Broglia, R.A. Learning to design resistance proof drugs from folding. Eur. Phys. J. D 2009, 51, 137–151.
  • 99.
    Hegazy, U.M.; Mannervik, B. Semisynthetic Enzymes. Amino Acids Pept. Proteins Org. Chem. 2009, 2, 381–433.
  • 100.
    Zhao, L.; Lu, W. Mirror image proteins. Curr. Opin. Chem. Biol. 2014, 22, 56–61.
  • 101.
    Possenti, A.; Vendruscolo, M.; Camilloni, C.; et al. A method for partitioning the information contained in a protein sequence between its structure and function. Proteins Struct. 2018, 86, 956–964.
  • 102.
    Svedberg, T. Mass and size of protein molecules. Nature 1929, 123, 871.
  • 103.
    Eisenberg, H. Birth of the macromolecule. Biophys. Chem. 1996, 59, 247–257.
  • 104.
    Jordan, I.K.; Rogozin, I.B.; Wolf, Y.I.; et al. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 2002, 12, 962–968. https://doi.org/10.1101/gr.87702.
  • 105.
    Zhang J., He X. Significant Impact of Protein Dispensability on the Instantaneous Rate of Protein Evolution. Mol. Biol. Evol. 2005, 22, 1147–1155. https://doi.org/10.1093/molbev/msi101.
  • 106.
    Wolf, Y.I.; Gopich, I.V.; Lipman, D.J.; et al. Relative Contributions of Intrinsic Structural–Functional Constraints and Translation Rate to the Evolution of Protein-Coding Genes. Genome Biol. Evol. 2010, 2, 190–199. https://doi.org/10.1093/gbe/evq010.
  • 107.
    Dill, K.A. Theory for the Folding and Stability of Globular Proteins. Biochemistry 1985, 24, 1501–1509.
  • 108.
    Mahmoud, K.; Poyner, D.P. Protein Chimeras by Exchangeable Modules: A Generic Approach for Engineering Proteins. Res. J. Cell Mol. Biol. 2007, 1, 1–8.
  • 109.
    Gerstein, M.; Levitt, M. A structural census of the current population of protein sequences. Proc. Natl. Acad. Sci. USA 1997, 94, 11911–11916.
  • 110.
    Gerstein, M.; Levitt, M. Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins. Protein Sci. 1998, 7, 445–456.
  • 111.
    Apic, G.; Gough, J.; Teichmann, S.A. Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J. Mol. Biol. 2001, 310, 311–325. https://doi.org/10.1006/jmbi.2001.4776.
  • 112.
    Ekman, D.; Björklund, A.K.; Frey-Skött, J.; Multi-domain proteins in the three kingdoms of life: Orphan domains and other unassigned regions. J. Mol. Biol. 2005, 348, 231–243. https://doi.org/10.1016/j.jmb.2005.02.007.
  • 113.
    Han, J.-H.; Batey, S.; Nickson, A.A.; et al. The folding and evolution of multidomain proteins. Nat. Rev. Mol. Cell Biol. 2007, 8, 319–330. https://doi.org/10.1038/nrm2144.
  • 114.
    Kolker, E.; Trifonov, E.N. Periodic recurrence of methionines: Fossil of gene fusion? Proc. Natl. Acad. Sci. USA 1995, 92, 557–560.
  • 115.
    Pohlmann, K.C. Principles of Digital Audio, 4th ed.; MacGraw-Hill: New York, NY, USA, 2000.
  • 116.
    The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–31.
  • 117.
    Shapiro, S.; Sanford, S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. https://www.jstor.org/stable/2333709?origin=crossref&seq=1.
  • 118.
    Irrizarry, A. Introduction to Data Science. Chi-Square Goodness-of-Fit Test. In Statistical Inference; 2010. https://rafalab.dfci.harvard.edu/dsbook/inference.html.
  • 119.
    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705.
  • 120.
    Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. https://doi.org/10.1214/aos/1176344136.
  • 121.
    Bayesian Information Criterion—An overview. 2025. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/bayesian-information-criterion (accessed on 14 November 2025).
  • 122.
    Akaike Information Criterion—An overview. ScienceDirect Topics. 2025. Available online: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/akaike-information-criterion (accessed on 14 November 2025).
  • 123.
    McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Finite Mixture Models. 2018. Available online: https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-031017-100325 (accessed on 14 November 2025).
  • 124.
    Lakshmi, R.V.; Vaidyanathan, V.S. Parameter Estimation in Gamma Mixture Model using Normal-based Approximation. J. Stat. Theory Appl. 2016, 15, 25–35. https://doi.org/10.2991/jsta.2016.15.1.3.
  • 125.
    1.2—Maximum Likelihood Estimation | STAT 415. 2025. Available online: https://online.stat.psu.edu/stat415/lesson/1/1.2 (accessed on 14 November 2025).
  • 126.
    Wong, T.S.T.; Li, W.K. Test for homogeneity in gamma mixture models using likelihood ratio. Comput. Stat. Data Anal. 2014, 70, 127–137. https://doi.org/10.1016/j.csda.2013.09.001.
  • 127.
    Deeks, J.J.; Altman, D.G. Diagnostic tests 4: Likelihood ratios. BMJ 2004, 329, 168–169. https://doi.org/10.1136/bmj.329.7458.168.
  • 128.
    Ebeling, W.; Molgedey, L.; Kurths, J.; et al. Entropy, Complexity, Predictability, and Data Analysis of Time Series and Letter Sequences. In The Science of Disasters; Bunde, A., Kropp, J., Schellnhuber, H.J. eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 3–47. https://doi.org/10.1093/nar/gkac1052.
  • 129.
    Strang, G. Wavelet transforms versus Fourier transforms. Bull. Am. Math. Soc. 1993, 28, 288–305.
  • 130.
    van der Vaart, A.W. (Ed.). Likelihood Ratio Tests. In Asymptotic Statistics; Cambridge University Press: Cambridge, UK, 1998; pp. 227–241. https://doi.org/10.1017/CBO9780511802256.017.
  • 131.
    Muthuswamy, J.; Thakor, N.V. Spectral analysis methods for neurological signals. J. Neurosci. Methods 1998, 83, 1–14. https://doi.org/10.1016/S0165-0270(98)00065-X.
  • 132.
    Ahdesmäki, M.; Lähdesmäki, H.; Pearson, R.; et al. Robust detection of periodic time series measured from biological systems. BMC Bioinform. 2005, 6, 117. https://doi.org/10.1186/1471-2105-6-117.
  • 133.
    Wang, Z.; Atchley, W. Spectral Analysis of Sequence Variability in Basic-Helix-loop-helix (bHLH) Protein Domains. Evol. Bioinform. 2007, 2. https://pmc.ncbi.nlm.nih.gov/articles/PMC2674655/.
  • 134.
    Hatton, L.; Warr, G. Protein structure and evolution: Are they constrained globally by a principle derived from information theory? PLoS ONE 2015, 10, e0125663. https://doi.org/10.1371/journal.pone.0125663.
  • 135.
    Jaiswal, S.; Murthy, H.A.; Narayanan, M. SpecGMM: Integrating Spectral analysis and Gaussian Mixture Models for taxonomic classification and identification of discriminative DNA regions. Bioinforma. Adv. 2024, 4, vbae171. https://doi.org/10.1093/bioadv/vbae171.
  • 136.
    Fourier Transform An Interactive Guide to the Fourier Transform—Better Explained. 2025. Available online: https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/ (accessed on 14 November 2025).
  • 137.
    Short-Time Fourier Transform—An overview. 2025. Available online: https://www.sciencedirect.com/topics/engineering/short-time-fourier-transform (accessed on 14 November 2025).
  • 138.
    Exploratory Data Analysis—An overview. 2025. Available online: https://www.sciencedirect.com/ topics/social-sciences/exploratory-data-analysis?utm_source=chatgpt.com (accessed on 14 November 2025).
  • 139.
    Kolmogorov-Smirnov Goodness-of-Fit Test. 2025. Available online: https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm (accessed on 14 November 2025).
  • 140.
    Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. https://doi.org/10.32614/RJ-2016-025.
  • 141.
    Wright, E.S. Accurately clustering biological sequences in linear time by relatedness sorting. Nat. Commun. 2024, 15, 3047. https://doi.org/10.1038/s41467-024-47371-9.
  • 142.
    Ong, A.Y.; Merle, D.A.; Wanger, S.K.; et al. Exploring the Dilemma of AI Use in Medical Research and Knowledge Synthesis: A Perspective on Deep Research Tools. J. Med. Internet Res. 2025, 27, e75666.
  • 143.
    Gilbert, W. Why genes in pieces? Nature 1978, 271, 501. https://doi.org/10.1038/271501a0.
  • 144.
    Patthy, L. Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa. Genes 2021, 12, 382. https://doi.org/10.3390/genes12030382.
  • 145.
    Cody, I.A. The Human Element in Information. In The Palgrave Handbook of Breakthrough Technologies in Contemporary Organisations; Moussa, M, McMurray, A, Eds.; Springer Nature: Singapore, 2025; pp. 249–259.
  • 146.
    Tan, X.; Xu, W.; Wang, C. Voice in AI-assisted multimodal texts: What do readers pay attention to? Comput. Compos. 2025, 75, 102918. https://doi.org/10.1016/j.compcom.2025.102918.
  • 147.
    Triola, M.M.; Rodman, A. Integrating Generative Artificial Intelligence into Medical Education: Curriculum, Policy, and Governance Strategies. Acad. Med. J. Assoc. Am. Med. Coll. 2025, 100, 413–418.
  • 148.
    Kolker, E. How Can You Start Using AI? Part 11: Meet ‘Coach AI’ from NYU Grossman. 2025. Available online: https://www.linkedin.com/pulse/how-can-you-start-using-ai-post-11-meet-coach-from-kolker-gene--rbz8e/ (accessed on 14 November 2025).
  • 149.
    Guo, H.-H.; Hu, Y.; Liu, K.; et al. FireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications. arXiv 2025, arXiv.2409.03283. https://doi.org/10.48550/arXiv.2409.03283.
  • 150.
    Introducing OpenAI o3 and o4-Mini. 2025. Available online: https://openai.com/index/introducing-o3-and-o4-mini/ (accessed on 14 November 2025).
  • 151.
    Transforming R&D with Agentic AI: Introducing Microsoft Discovery. 2025. Available online: https://azure.microsoft.com/en-us/blog/transforming-rd-with-agentic-ai-introducing-microsoft-discovery/ (accessed on 14 November 2025).
  • 152.
    Claude Takes Research to New Places. 2025. Available online: https://www.anthropic.com/news/research (accessed on 14 November 2025).
  • 153.
    Introducing Claude 4. 2025. Available online: https://www.anthropic.com/news/claude-4 (accessed on 14 November 2025).
  • 154.
    Gemini Deep Researc—Your Personal Research Assistant. Gemini. 2025. Available online: https://gemini.google/overview/deep-research/?hl=en (accessed on 14 November 2025).
  • 155.
    Grok. Grok 3. 2025. Available online: https://www.tryprofound.com/blog/understanding-grok-a-comprehensive-guide-to-grok-websearch-grok-deepsearch (accessed on 14 November 2025).
  • 156.
    NVIDIA. Deep Research. 2025. Available online: https://research.nvidia.com/labs/adlr/ (accessed on 14 November 2025).
  • 157.
    IBM Watsonx Assistant Virtual Agent. 2025. Available online: https://www.ibm.com/products/watsonx-assistant. https://doi.org/10.1097/ACM.0000000000005963 (accessed on 14 November 2025).
  • 158.
    OpenAI. Deep Research FAQ. 2025. Available online: https://help.openai.com/en/articles/10500283-deep-research-faq (accessed on 14 November 2025).
  • 159.
    OpenAI. GPT-5 System Card. 2025. Available online: https://cdn.openai.com/gpt-5-system-card.pdf (accessed on 14 November 2025).
  • 160.
    Georgiou, G.P. Capabilities of GPT-5 across Critical Domains: Is It the Next Breakthrough? arXiv 2025, arXiv:2508.19259. https://arxiv.org/abs/2508.19259.
  • 161.
    Swanson, K.; Wu, W.; Bulaong, N.L.; et al. The Virtual Lab of AI Agents Designs New SARS-CoV-2 Nanobodies. Nature 2025, 646, 716–723. https://doi.org/10.1038/s41586-025-09442-9.
  • 162.
    Gao, S.; Fang, A.; Huang, Y.; et al. Empowering biomedical discovery with AI agents. Cell 2025, 187, 6125–6151.
  • 163.
    Introducing ChatGPT Edu. 2024. Available online: https://openai.com/index/introducing-chatgpt-edu/ (accessed on 14 November 2025).
  • 164.
    Singer, N. Welcome to Campus. Here’s Your ChatGPT. The New York Times. 2025. Available online: https://www.nytimes.com/2025/06/07/technology/chatgpt-openai-colleges.html?utm_source=grant.beehiiv.com&utm_medium=newsletter&utm_campaign=apple-s-new-operating-system&_bhlid=dd56f94771d120207ff1629e20c381a48e0c8240 (accessed on 14 November 2025).
  • 165.
    OpenAI. ChatGPT Edu Launch Guide for Higher Ed Universities. OpenAI Academy. 2025. Available online: https://academy.openai.com/public/resources/step-by-step-launch-guide (accessed on 14 November 2025).
  • 166.
    Cirra AI. GPT-5: A Technical Analysis of Its Evolution & Features. 2025. Available online: https://cirra.ai/articles/pdfs/gpt-5-technical-overview.pdf (accessed on 14 November 2025).
  • 167.
    Brynjolfsson, E.; Chandar, B.; Chen, R. Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence. 2025. Available online: https://digitaleconomy.stanford.edu/wp-content/uploads/2025/08/Canaries_BrynjolfssonChandarChen.pdf (accessed on 14 November 2025).
  • 168.
    Challapally, A.; Pease, C.; Raskar, R.; et al. The GenAI Divide: State of AI in Business. 2025. Available online: https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf (accessed on 14 November 2025).
  • 169.
    Lichtenberg, N. First-of-Its-Kind Stanford Study Says AI Is Starting to Have a ‘Significant and Disproportionate Impact’ on Entry-Level Workers in the U.S. Fortune. 2025. Available online: https://fortune.com/2025/08/26/stanford-ai-entry-level-jobs-gen-z-erik-brynjolfsson/ (accessed on 14 November 2025).
  • 170.
    Saini, K. Young Software Developers Losing Jobs to AI, Stanford Study Confirms. Final Round. 2025. Available online: https://www.finalroundai.com/blog/stanford-study-shows-young-software-developers-losing-jobs-to-ai (accessed on 14 November 2025).
  • 171.
    Estrada, S. MIT Report: 95% of Generative AI Pilots at Companies Are Failing. Fortune. 2025. Available online: https://fortune.com/2025/08/18/mit-report-95-percent-generative-ai-pilots-at-companies-failing-cfo/ (accessed on 14 November 2025).
Share this article:
How to Cite
Cody, N.; Sripada, V.; Papciak, K.; Oyediran, I.; Yanke, A. F.; Baloch, B. B.; Lu, C.-H.; Born, J.; Aung, N. N.; Harish, P.; Dasgupta, R. E. S.; Narayan, S. B.; Sekhon, G.; Kolker, N.; Singh, N.; Romanenko, O.; Kolker, E. 3P Framework (Prompt, Persist, Produce): Accelerating Skill Development and End-to-End Results through Human-AI Collaboration. LifeAI 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.