- 1.
Marks, S.E.; Walter, G.A. Experiential Learning & Change: Theory, Design & Practice; Wiley: Hoboken, NJ, USA, 1981.
- 2.
Kolb, D.A. Experiential Learning: Experience as the Source of Learning and Development; Financial Times Prentice Hall: Englewood Cliffs, NJ, USA, 1984.
- 3.
Kolb, D.A. Experiential Learning: Experience as the Source of Learning and Development, 2nd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2015.
- 4.
Black, S.L.; DeGrassi, S.W.; Sweet, K.M. Multisource feedback as an experiential learning enabler in large-format management classes. J. Manag. Educ. 2021, 45, 479–517. https://doi.org/10.1177/1052562920987292.
- 5.
Cherry, K. The Experiential Learning Theory of David Kolb. Understanding the Four Stages of Learning. 2025. Available online: https://www.verywellmind.com/experiential-learning-2795154 (accessed on 14 November 2025).
- 6.
U.S. Department of Health Education and Welfare. Public Health Reports. 1953. Available online: https://babel.hathitrust.org/cgi/pt?id=uiug.30112111844723&seq=255 (accessed on 14 November 2025).
- 7.
Plato ‘Apology’. 2025. Available online: https://classics.mit.edu/Plato/apology.html (accessed on 14 November 2025).
- 8.
Plato, W.P. The Stanford Encyclopedia of Philosophy (Fall 2024 Edition); Zalta, E.N., Nodelman, U., Eds.; 2024. Available online: https://plato.stanford.edu/archives/fall2024/entries/plato-ethics-shorter/ (accessed on 14 November 2025).
- 9.
Littig, B. The Neo-Socratic Dialogue (NSD): A method of teaching the ethics of sustainable development. In Teaching Business Sustainability; Galea, C., Eds.; Greenleaf Publishing: Sheffield, UK, 2004; Volume 1, pp. 240–252. Available online: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-5415 (accessed on 14 November 2025).
- 10.
Le, N.-T. How Do Technology-Enhanced Learning Tools Support Critical Thinking? Front. Educ. 2019, 4, 126. Available online: https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2019.00126 (accessed on 14 November 2025).
- 11.
Scholle, C. Understanding the Socratic Method of Teaching. 2020. Available online: https://www.alu.edu/alublog/understanding-the-socratic-method-of-teaching/ (accessed on 14 November 2025).
- 12.
Giuseffi, F. The investigation of a Nelsonian approach to Socratic dialogue with student-teachers at a midwestern private university. InSight J. Sch. Teach. 2024, 20, 1. https://doi.org/10.46504/20202401gi.
- 13.
Hood, L.; Heath, J.R.; Phelps, M.E.; et al. Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306, 640–643.
- 14.
Galperin, M.Y.; Kolker, E. New metrics for comparative genomics. Curr. Opin. Biotechnol. 2006, 17, 440–447.
- 15.
Barga, R.; Howe, B.; Beck, D.; et al. Bioinformatics and Data-Intensive Scientific Discovery in the Beginning of the 21st Century. OMICS J. Integr. Biol. 2011, 15, 199–201.
- 16.
Smith, A.; Balazinska, M.; Baru, C.; et al. Biology and Data-Intensive Scientific Discovery in the Beginning of the 21st Century. OMICS J. Integr. Biol. 2011, 15, 209–212.
- 17.
Faris, J.; Kolker, E.; Szalay, A.; et al. Communication and data-intensive science in the beginning of the 21st century. OMICS J. Integr. Biol. 2011, 15, 213–215.
- 18.
Kolker, E.; Stewart, E.; Ozdemir, V. Opportunities and challenges for the life sciences community. OMICS J. Integr. Biol. 2012, 16, 138–147.
- 19.
Hood, L. Systems Biology and P4 Medicine: Past, Present, and Future. Rambam Maimonides Med. J. 2013, 4, e0012.
- 20.
Russell, L. Ackoff. General Systems Theory and Systems Research Contrasting Conceptions of Systems Science. In Views on a General Systems Theory: Proceedings from the Second System Symposium; Mesarovic, M.D., Ed.; 1968.
- 21.
Barnes, J. Life and Work. In The Cambridge Companion to Aristotle; Cambridge University Press: Cambridge, UK, 1995.
- 22.
Senge, P.M. The Fifth Discipline: The Art & Practice of the Learning Organization; Doubleday: New York, NY, USA, 1990.
- 23.
Meadows, D.H. Thinking in Systems: A Primer; Routledge: Oxfordshire, UK, 2008.
- 24.
Kolker, E. How Can You Start Using AI? Part 5: When Was the Term ‘AI’ Coined? 2025. Available online: https://www.linkedin.com/feed/update/urn:li:activity:7295216336329228288/?updateEntityUrn=urn%3Ali%3Afs_feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A7295216336329228288%29 (accessed on 14 November 2025).
- 25.
Park, S.H. Use of Generative Artificial Intelligence, Including Large Language Models Such as ChatGPT, in Scientific Publications: Policies of KJR and Prominent Authorities. Korean J. Radiol. 2023, 24, 715–718. https://doi.org/10.3348/kjr.2023.0643.
- 26.
Corbyn, Z. Reid Hoffman: Start using AI deeply. It is a huge intelligence amplifier. 2025. Available online: https://www.theguardian.com/technology/2025/mar/22/reid-hoffman-superagency-start-using-ai-deeply-it-is-a-huge-intelligence-amplifier (accessed on 14 November 2025).
- 27.
Kolker, E. How Can You Start Using AI? Part 3: Get an AI Coach for YOUR Business. 2025. Available online: https://www.linkedin.com/posts/eugenekolker_ai-ai-ai-activity-7287560039408492546-UolS/?utm_source=share&utm_medium=member_desktop&rcm=ACoAADdzCHUB17yvhPTBHa3VY-XBx9BbC3A0l7A (accessed on 14 November 2025).
- 28.
Gran, G.; Kolker, E. The Mayfield podcast. Making AI Real.: Kolker E. 2025. Available online: https://www.linkedin.com/posts/makingairealthepodcast_activity-7333592691336720385-IRuK?utm_source=share&utm_medium=member_desktop&rcm=ACoAAAADOL4BtDMMO4K7DZ3pg-dsoRuIIG4w6qY (accessed on 14 November 2025).
- 29.
Introducing ChatGPT. 2022. Available online: https://openai.com/index/chatgpt/ (accessed on 14 November 2025).
- 30.
Bommasani, R.; Hudson, D.A.; Adeli, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv 2022, arXiv.2108.07258. https://doi.org/10.48550/arXiv.2108.07258.
- 31.
Naveed, H.; Khan, A.U.; Qiu, S.; et al. A Comprehensive Overview of Large Language Models. arXiv 2024, arXiv.2307.06435. https://doi.org/10.48550/arXiv.2307.06435.
- 32.
Minaee, S.; Mikolov, T.; Nikzad, N.; et al. Large Language Models: A Survey. arXiv 2025, arXiv.2402.06196. https://doi.org/10.48550/arXiv.2402.06196.
- 33.
Wang, F.; Minhua, L.; Yao, M.; et al. A Survey on Small Language Models in the Era of Large Language Models: Architecture, Capabilities, and Trustworthiness. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Toronto, ON, Canada, 3–7 August 2025. https://doi.org/10.1145/3711896.3736563.
- 34.
Cohen, J.; Rosenfeld, E.; Kolter, J. Z. Certified Adversarial Robustness via Randomized Smoothing. In Proceedings of the 36th International Conference on Machine Learning. ICML 2019, PMLR 97:1310-1320.
- 35.
OpenAI. GPT-4o System Card. arXiv 2024, arXiv:2410.21276. https://arxiv.org/abs/2410.21276.
- 36.
Introducing the next generation of Claude. 2025. Available online: https://www.anthropic.com/news/claude-3-family (accessed on 14 November 2025).
- 37.
Perplexity. Perplexity AI. Deep Research mode. 2025. Available online: https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research (accessed on 14 November 2025).
- 38.
Eger, S.; Cao, Y.; D’Souza, J.; et al. Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation. arXiv 2025, arXiv.2502.05151. https://doi.org/10.48550/arXiv.2502.05151.
- 39.
Garrity, G.M.; Field, D.; Kyrpides, N.; et al. Toward a standards-compliant genomic and metagenomic publication record. OMICS J. Integr. Biol. 2008, 12, 157–160.
- 40.
Higdon, R.; van Belle, G.; Kolker, E. A note on the false discovery rate and inconsistent comparisons between experiments. Bioinformatics 2008, 24, 1225–1228.
- 41.
Louie, B.; Higdon, R.; Kolker, E. A statistical model of protein sequence similarity and function similarity reveals overly-specific function predictions. PLoS ONE 2009, 4, e7546.
- 42.
Kolker, E.; Higdon, R.; Welch, D.; et al. SPIRE: Systematic protein investigative research environment. J. Proteom. 2011, 75, 122–126.
- 43.
Dove, E.S.; Faraj, S.A.; Kolker, E. Ozdemir. Designing a post-genomics knowledge ecosystem to translate pharmacogenomics into public health action. Genome Med. 2012, 4, 91.
- 44.
Ozdemir, V.; Kolker, E.; Hotez, P.J.; et al. Ready to put metadata on the post-2015 development agenda? Linking data publications to responsible innovation and science diplomacy. OMICS J. Integr. Biol. 2014, 18, 1–9.
- 45.
Higdon, R.; Haynes, W.; Stanberry, L.; et al. Unraveling the complexities of life sciences data. Big Data 2015, 1, 42–50.
- 46.
Janes, K.A.; Chandran, P.L.; Ford, R.M.; et al. An engineering design approach to systems biology. OMICS J. Integr Biol. 2017, 9, 574–583. https://doi.org/10.1039/c7ib00014f.
- 47.
Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. https://doi.org/10.1186/s13059-017-1215-1.
- 48.
Mura, C.; Draizen, E.J.; Bourne, P.E. Structural biology meets data science: Does anything change? Curr. Opin. Struct. Biol. 2018, 52, 95–102. https://doi.org/10.1016/j.sbi.2018.09.003.
- 49.
Kolker, E. How Can YOU Start Using AI? Part 6: AI Agents. 2025. Available online: https://www.linkedin.com/feed/update/urn:li:activity:7297627727518486528/ (accessed on 14 November 2025).
- 50.
Frishman D.A. Yet Another AI Journal? LifeAI 2025, 1, 1. https://www.sciltp.com/journals/lifeai.
- 51.
Chen, L.; Chen, P.; Lin, Z. Artificial Intelligence in Education: A Review. IEEE Access 2020, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510.
- 52.
Vaswani, A.; Shazeer, N.; Parmar, N.; et al. Attention Is All You Need. arXiv 2023, arXiv.1706.03762. https://doi.org/10.48550/arXiv.1706.03762.
- 53.
Wang, S.; Wang, F.; Zhu, Z.; et al. Artificial intelligence in education: A systematic literature review. Expert Syst. Appl. 2024, 252, 124167. https://doi.org/10.1016/j.eswa.2024.124167.
- 54.
Touvron, H.; Lavril, T.; Izacard, G.; et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv.2302.13971. https://doi.org/10.48550/arXiv.2302.13971.
- 55.
Buriak, J.M.; Akinwande, D.; Artzi, N.; et al. Best Practices for Using AI When Writing Scientific Manuscripts. ACS Nano 2023, 17, 4091–4093. https://doi.org/10.1021/acsnano.3c01544.
- 56.
Koller, D.; Beam, A.; Manrai, A.; et al. Why We Support and Encourage the Use of Large Language Models in NEJM AI Submissions. NEJM AI 2024, 1, AIe2300128. https://doi.org/10.1056/AIe2300128.
- 57.
OpenAI. GPT-4 Technical Report. arXiv 2024, arXiv.2303.08774. https://doi.org/10.48550/arXiv.2303.08774.
- 58.
Möller, M.; Nirmal, G.; Fabietti, D.; et al. Revolutionising Distance Learning: A Comparative Study of Learning Progress With AI-Driven Tutoring. arXiv 2024, arXiv.2403.14642. https://doi.org/10.48550/arXiv.2403.14642.
- 59.
Zhang, J.; Fenton, S.H. Preparing healthcare education for an AI-augmented future. NPJ Health Syst. 2024, 1, 4. https://doi.org/10.1038/s44401-024-00006-z.
- 60.
Hersh, W. Generative Artificial Intelligence: Implications for Biomedical and Health Professions Education. Annu. Rev. Biomed. Data Sci. 2025, 8, 355–380. https://doi.org/10.1146/annurev-biodatasci-103123-094756.
- 61.
Zhao, W.X.; Zhou, K.; Li, J.; et al. A Survey of Large Language Models. arXiv 2025, arXiv.2303.18223.
- 62.
Cursor. Best practices for medium/large projects. 2025. Available online: https://forum.cursor.com/t/best-practices-for-medium-large-projects/21206 (accessed on 14 November 2025).
- 63.
Replit Guides. 2025. Available online: https://replit.com/guides (accessed on 14 November 2025).
- 64.
Leaderboards. 2025. Available online: https://www.swebench.com (accessed on 14 November 2025).
- 65.
GPT-5 Codex. 2025. Available online: https://openai.com/index/introducing-codex/ (accessed on 14 November 2025).
- 66.
Nobel Prize in Chemistry. 2024. Available online: https://www.nobelprize.org/prizes/chemistry/2024/press-release/ (accessed on 14 November 2025).
- 67.
Krishna, R.; Wang, J.; Ahern, W.; et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 2024, 384, eadl2528. https://doi.org/10.1126/science.adl2528.
- 68.
Abramson, J.; Adler, J.; Dunger, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. https://doi.org/10.1038/s41586-024-07487-w.
- 69.
Kovalevskiy, O.; Mateos-Garcia, J.; Tunyasuvunakool, K. AlphaFold two years on: Validation and impact. Proc. Natl. Acad. Sci. USA 2024, 121, e2315002121. https://doi.org/10.1073/pnas.2315002121.
- 70.
Kim, G.B.; Kim, J.Y.; Lee, J.A.; et al. Functional annotation of enzyme-encoding genes using deep learning with transformer layers. Nat. Commun. 2023, 14, 7370. https://doi.org/10.1038/s41467-023-43216-z.
- 71.
Zheng, L.; Shi, S.; Lu, M.; et al. AnnoPRO: A strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding. Genome Biol. 2024, 25, 41. https://doi.org/10.1186/s13059-024-03166-1.
- 72.
Berman, A.L.; Kolker, E.; Trifonov, E.N. Underlying order in protein sequence organization. Proc. Natl. Acad. Sci. USA 1994, 91, 4044–4047.
- 73.
Welch, W.J.; Eggers, D.K.; Hansen, W.J.; et al. Early Events in the Synthesis and Maturation of Polypeptides. 1999. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781482283440-19/early-events-synthesis-maturation-polypeptides-welch-eggers-hansen-nagata (accessed on 14 November 2025).
- 74.
Kolker, E.; Tjaden, B.C.; Hubley, R.; et al. Spectral Analysis of Distributions: Finding Periodic Components in Eukaryotic Enzyme Length Data. OMICS J. Integr. Biol. 2002, 6, 123–130.
- 75.
Lynch, M.; Marinov, G. The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. USA 2015, 112, 15690–15695.
- 76.
Masse, M.M.; Hutchinson, R.B.; Morgan, C.E.; et.al. Mapping Protein–Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome–Nascent Globin Complex. ACS Cent. Sci. 2024, 10, 385–401.
- 77.
Perin, C.; Cretin, G.; Gelly, J.-C. Hierarchical Analysis of Protein Structures: From Secondary Structures to Protein Units and Domains. In Protein Supersecondary Structures: Methods and Protocols; Springer US: New York, NY, USA, 2025; pp. 357–370. https://doi.org/10.1007/978-1-0716-4213-9_18.
- 78.
Trifonov, E.N. Thirty Years of Multiple Sequence Codes. Genom. Proteom. Bioinform. 2011, 9, 1–6. https://doi.org/10.1016/S1672-0229(11)60001-6.
- 79.
Trifonov, E.N. Codes of Biosequences. Barbieri, M. (Ed.). The Codes of LIFE: The Rules of Macroevolution; Springer: Berlin/Heidelberg, Germany, 2008.
- 80.
Doolittle, R.F. The multiplicity of domains in proteins. Annu. Rev. Biochem. 1995, 64, 287–314.
- 81.
Bashton, M.; Chothia, C. The geometry of domain combination in proteins. J. Mol. Biol. 2002, 315, 927–939. https://doi.org/10.1006/jmbi.2001.5288.
- 82.
Chothia, C.; Gough, J.; Vogel, C.; et al. Evolution of the protein repertoire. Nat. Rev. Genet. 2003, 4, 261–270.
- 83.
Wetlaufer, D.B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl. Acad. Sci. USA 1973, 70, 697–701.
- 84.
Savageau, M.A. Proteins of Escherichia coli come in sizes that are multiples of 14 kDa: Domain concepts & evolutionary implications. Proc. Natl. Acad. Sci. USA 1986, 83, 1198–1202.
- 85.
Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; et al. Synthesis of proteins by native chemical ligation. Science 1994, 266, 778–779.
- 86.
Kelman, Z.; Finkelstein, J.; O’Donnell, M. Protein Structure: Why have six-fold symmetry? Curr. Biol. 1995, 5, 1239–1242.
- 87.
Kolker, E.; Trifonov, E.N. Sequence sizes of eukaryotic enzymes. In Pacific Symposium on Biocomputing: Proceedings; World Scientific: Singapore, 1995; pp. 351–361.
- 88.
Kolker, E.; Trifonov, E.N. Segments, folds and overall protein structure. Biol. Struct.Dyn. Proc. Ninth Conversat. Discip. Biomol. Stereodyn. 1996, 1, 257–265.
- 89.
Lindgård, P.-A.; Bohr, H. Magic Numbers in Protein Structures. Phys. Rev. Lett. 1996, 77, 779–782.
- 90.
Bohr, J.; Bohr, H.; Brunak, S. Protein folding and wring resonances. Biophys. Chem. 1997, 63, 97–105.
- 91.
Durup, J. On “Levinthal paradox” and the theory of protein folding. J. Mol. Struct. 1998, 424, 157–169.
- 92.
Xu, D.; Nussinov, R. Favorable domain size in proteins. Fold. Des. 1998, 3, 11–17. https://doi.org/10.1016/S1359-0278(98)00004-2.
- 93.
Wheelan, S.J.; Marchler-Bauer, A.; Bryant, S.H. Domain size distributions can predict domain boundaries. Bioinformatics 2000, 16, 613–618. https://doi.org/10.1093/bioinformatics/16.7.613.
- 94.
Dawson, P.E.; Kent, S.B.H. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 2000, 69, 923–960.
- 95.
Baldi, P.; Brunak, S. Bioinformatics: The Machine Learning Approach; Dietterich, T., Bishop, C., Heckerman, D., Jordan, M., Kearns, M., Eds.; MIT Press: Cambridge, MA, USA, 2001.
- 96.
Kimmerlin, T.; Seebach, D. 100 years of peptide synthesis: Ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J. Pept. Res. 2005, 65, 229–260.
- 97.
Li, D.J.; Zhang, S. Prediction of genomic properties and classification of life by protein length distributions. arXiv 2008, arXiv:0806.0205.
- 98.
Broglia, R.A. Learning to design resistance proof drugs from folding. Eur. Phys. J. D 2009, 51, 137–151.
- 99.
Hegazy, U.M.; Mannervik, B. Semisynthetic Enzymes. Amino Acids Pept. Proteins Org. Chem. 2009, 2, 381–433.
- 100.
Zhao, L.; Lu, W. Mirror image proteins. Curr. Opin. Chem. Biol. 2014, 22, 56–61.
- 101.
Possenti, A.; Vendruscolo, M.; Camilloni, C.; et al. A method for partitioning the information contained in a protein sequence between its structure and function. Proteins Struct. 2018, 86, 956–964.
- 102.
Svedberg, T. Mass and size of protein molecules. Nature 1929, 123, 871.
- 103.
Eisenberg, H. Birth of the macromolecule. Biophys. Chem. 1996, 59, 247–257.
- 104.
Jordan, I.K.; Rogozin, I.B.; Wolf, Y.I.; et al. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 2002, 12, 962–968. https://doi.org/10.1101/gr.87702.
- 105.
Zhang J., He X. Significant Impact of Protein Dispensability on the Instantaneous Rate of Protein Evolution. Mol. Biol. Evol. 2005, 22, 1147–1155. https://doi.org/10.1093/molbev/msi101.
- 106.
Wolf, Y.I.; Gopich, I.V.; Lipman, D.J.; et al. Relative Contributions of Intrinsic Structural–Functional Constraints and Translation Rate to the Evolution of Protein-Coding Genes. Genome Biol. Evol. 2010, 2, 190–199. https://doi.org/10.1093/gbe/evq010.
- 107.
Dill, K.A. Theory for the Folding and Stability of Globular Proteins. Biochemistry 1985, 24, 1501–1509.
- 108.
Mahmoud, K.; Poyner, D.P. Protein Chimeras by Exchangeable Modules: A Generic Approach for Engineering Proteins. Res. J. Cell Mol. Biol. 2007, 1, 1–8.
- 109.
Gerstein, M.; Levitt, M. A structural census of the current population of protein sequences. Proc. Natl. Acad. Sci. USA 1997, 94, 11911–11916.
- 110.
Gerstein, M.; Levitt, M. Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins. Protein Sci. 1998, 7, 445–456.
- 111.
Apic, G.; Gough, J.; Teichmann, S.A. Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J. Mol. Biol. 2001, 310, 311–325. https://doi.org/10.1006/jmbi.2001.4776.
- 112.
Ekman, D.; Björklund, A.K.; Frey-Skött, J.; Multi-domain proteins in the three kingdoms of life: Orphan domains and other unassigned regions. J. Mol. Biol. 2005, 348, 231–243. https://doi.org/10.1016/j.jmb.2005.02.007.
- 113.
Han, J.-H.; Batey, S.; Nickson, A.A.; et al. The folding and evolution of multidomain proteins. Nat. Rev. Mol. Cell Biol. 2007, 8, 319–330. https://doi.org/10.1038/nrm2144.
- 114.
Kolker, E.; Trifonov, E.N. Periodic recurrence of methionines: Fossil of gene fusion? Proc. Natl. Acad. Sci. USA 1995, 92, 557–560.
- 115.
Pohlmann, K.C. Principles of Digital Audio, 4th ed.; MacGraw-Hill: New York, NY, USA, 2000.
- 116.
The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–31.
- 117.
Shapiro, S.; Sanford, S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. https://www.jstor.org/stable/2333709?origin=crossref&seq=1.
- 118.
Irrizarry, A. Introduction to Data Science. Chi-Square Goodness-of-Fit Test. In Statistical Inference; 2010. https://rafalab.dfci.harvard.edu/dsbook/inference.html.
- 119.
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705.
- 120.
Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. https://doi.org/10.1214/aos/1176344136.
- 121.
Bayesian Information Criterion—An overview. 2025. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/bayesian-information-criterion (accessed on 14 November 2025).
- 122.
Akaike Information Criterion—An overview. ScienceDirect Topics. 2025. Available online: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/akaike-information-criterion (accessed on 14 November 2025).
- 123.
McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Finite Mixture Models. 2018. Available online: https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-031017-100325 (accessed on 14 November 2025).
- 124.
Lakshmi, R.V.; Vaidyanathan, V.S. Parameter Estimation in Gamma Mixture Model using Normal-based Approximation. J. Stat. Theory Appl. 2016, 15, 25–35. https://doi.org/10.2991/jsta.2016.15.1.3.
- 125.
1.2—Maximum Likelihood Estimation | STAT 415. 2025. Available online: https://online.stat.psu.edu/stat415/lesson/1/1.2 (accessed on 14 November 2025).
- 126.
Wong, T.S.T.; Li, W.K. Test for homogeneity in gamma mixture models using likelihood ratio. Comput. Stat. Data Anal. 2014, 70, 127–137. https://doi.org/10.1016/j.csda.2013.09.001.
- 127.
Deeks, J.J.; Altman, D.G. Diagnostic tests 4: Likelihood ratios. BMJ 2004, 329, 168–169. https://doi.org/10.1136/bmj.329.7458.168.
- 128.
Ebeling, W.; Molgedey, L.; Kurths, J.; et al. Entropy, Complexity, Predictability, and Data Analysis of Time Series and Letter Sequences. In The Science of Disasters; Bunde, A., Kropp, J., Schellnhuber, H.J. eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 3–47. https://doi.org/10.1093/nar/gkac1052.
- 129.
Strang, G. Wavelet transforms versus Fourier transforms. Bull. Am. Math. Soc. 1993, 28, 288–305.
- 130.
van der Vaart, A.W. (Ed.). Likelihood Ratio Tests. In Asymptotic Statistics; Cambridge University Press: Cambridge, UK, 1998; pp. 227–241. https://doi.org/10.1017/CBO9780511802256.017.
- 131.
Muthuswamy, J.; Thakor, N.V. Spectral analysis methods for neurological signals. J. Neurosci. Methods 1998, 83, 1–14. https://doi.org/10.1016/S0165-0270(98)00065-X.
- 132.
Ahdesmäki, M.; Lähdesmäki, H.; Pearson, R.; et al. Robust detection of periodic time series measured from biological systems. BMC Bioinform. 2005, 6, 117. https://doi.org/10.1186/1471-2105-6-117.
- 133.
Wang, Z.; Atchley, W. Spectral Analysis of Sequence Variability in Basic-Helix-loop-helix (bHLH) Protein Domains. Evol. Bioinform. 2007, 2. https://pmc.ncbi.nlm.nih.gov/articles/PMC2674655/.
- 134.
Hatton, L.; Warr, G. Protein structure and evolution: Are they constrained globally by a principle derived from information theory? PLoS ONE 2015, 10, e0125663. https://doi.org/10.1371/journal.pone.0125663.
- 135.
Jaiswal, S.; Murthy, H.A.; Narayanan, M. SpecGMM: Integrating Spectral analysis and Gaussian Mixture Models for taxonomic classification and identification of discriminative DNA regions. Bioinforma. Adv. 2024, 4, vbae171. https://doi.org/10.1093/bioadv/vbae171.
- 136.
Fourier Transform An Interactive Guide to the Fourier Transform—Better Explained. 2025. Available online: https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/ (accessed on 14 November 2025).
- 137.
Short-Time Fourier Transform—An overview. 2025. Available online: https://www.sciencedirect.com/topics/engineering/short-time-fourier-transform (accessed on 14 November 2025).
- 138.
Exploratory Data Analysis—An overview. 2025. Available online: https://www.sciencedirect.com/ topics/social-sciences/exploratory-data-analysis?utm_source=chatgpt.com (accessed on 14 November 2025).
- 139.
Kolmogorov-Smirnov Goodness-of-Fit Test. 2025. Available online: https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm (accessed on 14 November 2025).
- 140.
Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. https://doi.org/10.32614/RJ-2016-025.
- 141.
Wright, E.S. Accurately clustering biological sequences in linear time by relatedness sorting. Nat. Commun. 2024, 15, 3047. https://doi.org/10.1038/s41467-024-47371-9.
- 142.
Ong, A.Y.; Merle, D.A.; Wanger, S.K.; et al. Exploring the Dilemma of AI Use in Medical Research and Knowledge Synthesis: A Perspective on Deep Research Tools. J. Med. Internet Res. 2025, 27, e75666.
- 143.
Gilbert, W. Why genes in pieces? Nature 1978, 271, 501. https://doi.org/10.1038/271501a0.
- 144.
Patthy, L. Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa. Genes 2021, 12, 382. https://doi.org/10.3390/genes12030382.
- 145.
Cody, I.A. The Human Element in Information. In The Palgrave Handbook of Breakthrough Technologies in Contemporary Organisations; Moussa, M, McMurray, A, Eds.; Springer Nature: Singapore, 2025; pp. 249–259.
- 146.
Tan, X.; Xu, W.; Wang, C. Voice in AI-assisted multimodal texts: What do readers pay attention to? Comput. Compos. 2025, 75, 102918. https://doi.org/10.1016/j.compcom.2025.102918.
- 147.
Triola, M.M.; Rodman, A. Integrating Generative Artificial Intelligence into Medical Education: Curriculum, Policy, and Governance Strategies. Acad. Med. J. Assoc. Am. Med. Coll. 2025, 100, 413–418.
- 148.
Kolker, E. How Can You Start Using AI? Part 11: Meet ‘Coach AI’ from NYU Grossman. 2025. Available online: https://www.linkedin.com/pulse/how-can-you-start-using-ai-post-11-meet-coach-from-kolker-gene--rbz8e/ (accessed on 14 November 2025).
- 149.
Guo, H.-H.; Hu, Y.; Liu, K.; et al. FireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications. arXiv 2025, arXiv.2409.03283. https://doi.org/10.48550/arXiv.2409.03283.
- 150.
Introducing OpenAI o3 and o4-Mini. 2025. Available online: https://openai.com/index/introducing-o3-and-o4-mini/ (accessed on 14 November 2025).
- 151.
Transforming R&D with Agentic AI: Introducing Microsoft Discovery. 2025. Available online: https://azure.microsoft.com/en-us/blog/transforming-rd-with-agentic-ai-introducing-microsoft-discovery/ (accessed on 14 November 2025).
- 152.
Claude Takes Research to New Places. 2025. Available online: https://www.anthropic.com/news/research (accessed on 14 November 2025).
- 153.
Introducing Claude 4. 2025. Available online: https://www.anthropic.com/news/claude-4 (accessed on 14 November 2025).
- 154.
Gemini Deep Researc—Your Personal Research Assistant. Gemini. 2025. Available online: https://gemini.google/overview/deep-research/?hl=en (accessed on 14 November 2025).
- 155.
Grok. Grok 3. 2025. Available online: https://www.tryprofound.com/blog/understanding-grok-a-comprehensive-guide-to-grok-websearch-grok-deepsearch (accessed on 14 November 2025).
- 156.
NVIDIA. Deep Research. 2025. Available online: https://research.nvidia.com/labs/adlr/ (accessed on 14 November 2025).
- 157.
IBM Watsonx Assistant Virtual Agent. 2025. Available online: https://www.ibm.com/products/watsonx-assistant. https://doi.org/10.1097/ACM.0000000000005963 (accessed on 14 November 2025).
- 158.
OpenAI. Deep Research FAQ. 2025. Available online: https://help.openai.com/en/articles/10500283-deep-research-faq (accessed on 14 November 2025).
- 159.
OpenAI. GPT-5 System Card. 2025. Available online: https://cdn.openai.com/gpt-5-system-card.pdf (accessed on 14 November 2025).
- 160.
Georgiou, G.P. Capabilities of GPT-5 across Critical Domains: Is It the Next Breakthrough? arXiv 2025, arXiv:2508.19259. https://arxiv.org/abs/2508.19259.
- 161.
Swanson, K.; Wu, W.; Bulaong, N.L.; et al. The Virtual Lab of AI Agents Designs New SARS-CoV-2 Nanobodies. Nature 2025, 646, 716–723. https://doi.org/10.1038/s41586-025-09442-9.
- 162.
Gao, S.; Fang, A.; Huang, Y.; et al. Empowering biomedical discovery with AI agents. Cell 2025, 187, 6125–6151.
- 163.
Introducing ChatGPT Edu. 2024. Available online: https://openai.com/index/introducing-chatgpt-edu/ (accessed on 14 November 2025).
- 164.
Singer, N. Welcome to Campus. Here’s Your ChatGPT. The New York Times. 2025. Available online: https://www.nytimes.com/2025/06/07/technology/chatgpt-openai-colleges.html?utm_source=grant.beehiiv.com&utm_medium=newsletter&utm_campaign=apple-s-new-operating-system&_bhlid=dd56f94771d120207ff1629e20c381a48e0c8240 (accessed on 14 November 2025).
- 165.
OpenAI. ChatGPT Edu Launch Guide for Higher Ed Universities. OpenAI Academy. 2025. Available online: https://academy.openai.com/public/resources/step-by-step-launch-guide (accessed on 14 November 2025).
- 166.
Cirra AI. GPT-5: A Technical Analysis of Its Evolution & Features. 2025. Available online: https://cirra.ai/articles/pdfs/gpt-5-technical-overview.pdf (accessed on 14 November 2025).
- 167.
Brynjolfsson, E.; Chandar, B.; Chen, R. Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence. 2025. Available online: https://digitaleconomy.stanford.edu/wp-content/uploads/2025/08/Canaries_BrynjolfssonChandarChen.pdf (accessed on 14 November 2025).
- 168.
Challapally, A.; Pease, C.; Raskar, R.; et al. The GenAI Divide: State of AI in Business. 2025. Available online: https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf (accessed on 14 November 2025).
- 169.
Lichtenberg, N. First-of-Its-Kind Stanford Study Says AI Is Starting to Have a ‘Significant and Disproportionate Impact’ on Entry-Level Workers in the U.S. Fortune. 2025. Available online: https://fortune.com/2025/08/26/stanford-ai-entry-level-jobs-gen-z-erik-brynjolfsson/ (accessed on 14 November 2025).
- 170.
Saini, K. Young Software Developers Losing Jobs to AI, Stanford Study Confirms. Final Round. 2025. Available online: https://www.finalroundai.com/blog/stanford-study-shows-young-software-developers-losing-jobs-to-ai (accessed on 14 November 2025).
- 171.
Estrada, S. MIT Report: 95% of Generative AI Pilots at Companies Are Failing. Fortune. 2025. Available online: https://fortune.com/2025/08/18/mit-report-95-percent-generative-ai-pilots-at-companies-failing-cfo/ (accessed on 14 November 2025).