Downloads
Download
This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
Size-Controlled Synthesis of Rhodium Nanocatalysts and Applications in Low-Temperature Hydroformylation
Andrew Lamkins 1,2, Charles J. Ward 1,2, Jeffrey T. Miller 3, Ziad Alsudairy 4, Xinle Li 4, Joseph Thuma 1,2, Ruoyu Cui 1,2, Xun Wu 1,2, Levi M. Stanley 1 and Wenyu Huang 1,2,*
1 Department of Chemistry, Iowa State University, Ames, IA 50010, USA
2 Ames Laboratory, U.S. Department of Energy, Ames, IA 50010, USA
3 Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
4 Department of Chemistry, Clark Atlanta University, Atlanta, GA 30314, USA
* Correspondence: whuang@iastate.edu
Received: 3 December 2024; Revised: 30 December 2024; Accepted: 3 January 2025; Published: 10 January 2025
Abstract: Controlling the size and distribution of metal nanoparticles is one of the simplest methods of tuning the catalytic properties of a material. For a nanocrystal particle, the ratio of edge-to-terrace sites can be critical in determining its catalytic activity and selectivity to desired products. To study these effects, we have developed a simple impregnation method of controlling the dispersion of rhodium atoms at the same metal loading in the range of nanoparticles less than 10 nm. Rh precursor salts are loaded onto inert SBA-15, and increasing the ratio of chloride to acetylacetonate salts improves the dispersion of rhodium atoms to form small Rh nanoparticles. Extensive characterization of the size-controlled catalysts, including XAS and in-situ CO-DRIFTS studies, has been performed to characterize the structure of Rh nanoparticles. Applying these catalysts to the hydroformylation of styrene, we observed that turnover frequency increases with decreasing particle size from 6.4 to 1.6 nm. When applied to hydroformylation reactions, we achieved a high branched product selectivity and successfully demonstrated a route to synthesizing the pain relief drug ibuprofen. This simple method can also synthesize Pt and Pd nanoparticles between 2–10 nm.
Keywords:
heterogeneous catalysis hydroformylation EXAFS infrared spectroscopy nanoparticleReferences
- Xu, L.; Liu, D.; Chen, D.; et al. Size and Shape Controlled Synthesis of Rhodium Nanoparticles. Heliyon 2019, 5, e01165. https://doi.org/10.1016/j.heliyon.2019.e01165.
- Yang, F.; Deng, D.; Pan, X.; et al. Understanding Nano Effects in Catalysis. Natl. Sci. Rev. 2015, 2, 183–201. https://doi.org/10.1093/nsr/nwv024.
- Cuenya, B.R. Synthesis and Catalytic Properties of Metal Nanoparticles: Size, Shape, Support, Composition, and Oxidation State Effects. Thin Solid. Films 2010, 518, 3127–3150. https://doi.org/10.1016/j.tsf.2010.01.018.
- Suchomel, P.; Kvitek, L.; Prucek, R.; et al. Simple Size-Controlled Synthesis of Au Nanoparticles and Their Size-Dependent Catalytic Activity. Sci. Rep. 2018, 8, 4589. https://doi.org/10.1038/s41598-018-22976-5.
- Alabdullah, M.; Ibrahim, M.; Dhawale, D.; et al. Rhodium Nanoparticle Size Effects on the CO2 Reforming of Methane and Propane. ChemCatChem 2021, 13, 2879–2886. https://doi.org/10.1002/cctc.202100063.
- Chen, M.; Han, Y.; Wei Goh, T.; et al. Kinetics, Energetics, and Size Dependence of the Transformation from Pt to Ordered PtSn Intermetallic Nanoparticles. Nanoscale 2019, 11, 5336–5345. https://doi.org/10.1039/C8NR10067E.
- Humphrey, S.M.; Grass, M.E.; Habas, S.E.; et al. Rhodium Nanoparticles from Cluster Seeds: Control of Size and Shape by Precursor Addition Rate. Nano Lett. 2007, 7, 785–790. https://doi.org/10.1021/nl070035y.
- Wang, C.; Li, Y.; Zhang, C.; et al. A Simple Strategy to Improve Pd Dispersion and Enhance Pd/TiO2 Catalytic Activity for Formaldehyde Oxidation: The Roles of Surface Defects. Appl. Catal. B Environ. 2021, 282, 119540. https://doi.org/10.1016/j.apcatb.2020.119540.
- Wu, X.; Tennakoon, A.; Yappert, R.; et al. Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and Selective Hydrogenolysis of Polyolefins. J. Am. Chem. Soc. 2022, 144, 5323–5334. https://doi.org/10.1021/jacs.1c11694.
- Luo, L.; Li, H.; Peng, Y.; et al. Rh-Based Nanocatalysts for Heterogeneous Reactions. ChemNanoMat 2018, 4, 451–466. https://doi.org/10.1002/cnma.201800033.
- Zhang, Y.; Grass, M.E.; Kuhn, J.N.; et al. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes. J. Am. Chem. Soc. 2008, 130, 5868–5869. https://doi.org/10.1021/ja801210s.
- Han, D.; Li, X.; Zhang, H.; et al. Heterogeneous Asymmetric Hydroformylation of Olefins on Chirally Modified Rh/SiO2 Catalysts. J. Catal. 2006, 243, 318–328. https://doi.org/10.1016/j.jcat.2006.08.003.
- Chen, M.; Gupta, G.; Ordonez, C.W.; et al. Intermetallic Nanocatalyst for Highly Active Heterogeneous Hydroformylation. J. Am. Chem. Soc. 2021, 143, 20907–20915. https://doi.org/10.1021/jacs.1c09665.
- Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 2015, 115, 6687–6718. https://doi.org/10.1021/cr500486u.
- García-Sánchez, J.T.; Valderrama-Zapata, R.; Acevedo-Córdoba, L.F.; et al. Calculation of Mass Transfer Limitations for a Gas-Phase Reaction in an Isothermal Fixed Bed Reactor: Tutorial and Sensitivity Analysis. ACS Catal. 2023, 13, 6905–6918. https://doi.org/10.1021/acscatal.3c01282.
- Franke, R.; Selent, D.; Börner, A. Applied Hydroformylation. Chem. Rev. 2012, 112, 5675–5732. https://doi.org/10.1021/cr3001803.
- Lang, R.; Li, T.; Matsumura, D.; et al. Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 2016, 55, 16054–16058. https://doi.org/10.1002/anie.201607885.
- Gao, P.; Liang, G.; Ru, T.; et al. Phosphorus Coordinated Rh Single-Atom Sites on Nanodiamond as Highly Regioselective Catalyst for Hydroformylation of Olefins. Nat. Commun. 2021, 12, 4698. https://doi.org/10.1038/s41467-021-25061-0.
- Tudor, R.; Shah, A. Industrial Low Pressure Hydroformylation: Forty-Five Years of Progress for the LP OxoSM Process. Johns. Matthey Technol. Rev. 2017, 61, 246–256. https://doi.org/10.1595/205651317X695875.
- Hanf, S.; Alvarado Rupflin, L.; Gläser, R.; et al. Current State of the Art of the Solid Rh-Based Catalyzed Hydroformylation of Short-Chain Olefins. Catalysts 2020, 10, 510. https://doi.org/10.3390/catal10050510.
- Liu, Y.; Zhao, J.; Zhao, Y.; et al. Homogeneous Hydroformylation of Long Chain Alkenes Catalyzed by Water Soluble Phosphine Rhodium Complex in CH3OH and Efficient Catalyst Cycling. RSC Adv. 2019, 9, 7382–7387. https://doi.org/10.1039/C8RA08787C.
- Wang, P.; Shi, H.; Feng, B.; et al. Highly Selective and Recyclable Homogeneous Hydroformylation of Olefins with [Rh(Cod)Cl]2/PPh3 Regulated by Et3N as Additive. Mol. Catal. 2023, 548, 113459. https://doi.org/10.1016/j.mcat.2023.113459.
- Evans, D.; Osborn, J.A.; Wilkinson, G. Hydroformylation of Alkenes by Use of Rhodium Complex Catalysts. J. Chem. Soc. Inorg. Phys. Theor. 1968, 3133–3142. https://doi.org/10.1039/J19680003133.
- Brown, C.K.; Wilkinson, G. Homogeneous Hydroformylation of Alkenes with Hydridocarbonyltris-(Triphenylphosphine)Rhodium(I) as Catalyst. J. Chem. Soc. Inorg. Phys. Theor. 1970, 2753–2764. https://doi.org/10.1039/J19700002753.
- Bohnen, H.-W.; Cornils, B. Hydroformylation of Alkenes: An Industrial View of the Status and Importance. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 2002; Volume 47, pp. 1–64.
- Han, D.; Li, X.; Zhang, H.; et al. Asymmetric Hydroformylation of Olefins Catalyzed by Rhodium Nanoparticles Chirally Stabilized with (R)-BINAP Ligand. J. Mol. Catal. Chem. 2008, 283, 15–22. https://doi.org/10.1016/j.molcata.2007.12.008.
- Bruss, A.J.; Gelesky, M.A.; Machado, G.; et al. Rh(0) Nanoparticles as Catalyst Precursors for the Solventless Hydroformylation of Olefins. J. Mol. Catal. Chem. 2006, 252, 212–218. https://doi.org/10.1016/j.molcata.2006.02.063.
- McClure, S.M.; Lundwall, M.J.; Goodman, D.W. Planar Oxide Supported Rhodium Nanoparticles as Model Catalysts. Proc. Natl. Acad. Sci. USA 2011, 108, 931–936. https://doi.org/10.1073/pnas.1006635107.
- Yang, Q.; Wang, P.; Li, C.; et al. Unravelling Structure Sensitivity in Heterogeneous Hydroformylation of Aldehyde over Rh. Chem. Eng. J. 2024, 481, 148529. https://doi.org/10.1016/j.cej.2024.148529.
- Hanaoka, T.; Arakawa, H.; Matsuzaki, T.; et al. Ethylene Hydroformylation and Carbon Monoxide Hydrogenation over Modified and Unmodified Silica Supported Rhodium Catalysts. Catal. Today 2000, 58, 271–280. https://doi.org/10.1016/S0920-5861(00)00261-3.
- Barbier, J.; Bahloul, D.; Marecot, P. Reduction of Pt/Al2O3 Catalysts: Effect of Hydrogen and of Water and Hydrochloric Acid Vapor on the Accessibility of Platinum. J. Catal. 1992, 137, 377–384. https://doi.org/10.1016/0021-9517(92)90165-E.
- Zhao, D.; Feng, J.; Huo, Q.; et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552. https://doi.org/10.1126/science.279.5350.548.
- Greenhalgh, M.D.; Thomas, S.P. Iron-Catalyzed, Highly Regioselective Synthesis of α-Aryl Carboxylic Acids from Styrene Derivatives and CO2. J. Am. Chem. Soc. 2012, 134, 11900–11903. https://doi.org/10.1021/ja3045053.
- Marinkovic, N.S.; Sasaki, K.; Adzic, R.R. Determination of Single- and Multi-Component Nanoparticle Sizes by X-ray Absorption Spectroscopy. J. Electrochem. Soc. 2018, 165, J3222. https://doi.org/10.1149/2.0281815jes.
- Asokan, C.; Xu, M.; Dai, S.; et al. Synthesis of Atomically Dispersed Rh Catalysts on Oxide Supports via Strong Electrostatic Adsorption and Characterization by Cryogenic Infrared Spectroscopy. J. Phys. Chem. C 2022, 126, 18704–18715. https://doi.org/10.1021/acs.jpcc.2c05426.
- Yang, C.; Garl, C.W. Infrared Studies of Carbon Monoxide Chemisorbed on Rhodium. J. Phys. Chem. 1957, 61, 1504–1512. https://doi.org/10.1021/j150557a013.
- Chen, M.; Yan, Y.; Gebre, M.; et al. Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity. Angew. Chem. Int. Ed. 2021, 60, 18309–18317. https://doi.org/10.1002/anie.202106515.
- Meng, X.; Yang, Y.; Chen, L.; et al. A Control over Hydrogenation Selectivity of Furfural via Tuning Exposed Facet of Ni Catalysts. ACS Catal. 2019, 9, 4226–4235. https://doi.org/10.1021/acscatal.9b00238.
- Marino, S.; Wei, L.; Cortes-Reyes, M.; et al. Rhodium Catalyst Structural Changes during, and Their Impacts on the Kinetics of, CO Oxidation. JACS Au 2023, 3, 459–467. https://doi.org/10.1021/jacsau.2c00595.
- Caiazzo, A.; Settambolo, R.; Uccello-Barretta, G.; et al. Influence of the Reaction Temperature on the Regioselectivity in the Rhodium-Catalyzed Hydroformylation of Vinylpyrroles. J. Organomet. Chem. 1997, 548, 279–284. https://doi.org/10.1016/S0022-328X(97)00479-8.
- Yan, G.; Tang, Y.; Li, Y.; et al. Reaction Product-Driven Restructuring and Assisted Stabilization of a Highly Dispersed Rh-on-Ceria Catalyst. Nat. Catal. 2022, 5, 119–127. https://doi.org/10.1038/s41929-022-00741-2.