2509001363
  • Open Access
  • Article

Effect of Microstructure in MOR Membrane on its Adsorption and Permeation Properties for Water and Acetic Acid

  • Motomu Sakai 1, *,   
  • Yuhei Imanishi 1,   
  • Masatoshi Narashima 1,   
  • Masahiro Seshimo 1,   
  • Masahiko Matsukata 1, 2, 3

Submitted: 31 Dec 2024 | Revised: 20 Jul 2025 | Accepted: 03 Sep 2025 | Published: 19 Sep 2025

Abstract

The effect of crystal orientation on the permeation and separation performance of MOR-type membrane for water/acetic acid mixtures was investigated. The crystal orientation of MOR membrane was controlled by changing the water content of the synthesis gel. The orientation gradually changed from c-orientation to random orientation with increasing water content. Regardless of their crystal orientation, both membranes exhibited the extremely high separation performances (a > 10,000). c-Oriented MOR membrane showed a higher water flux than that through randomly oriented membrane in the unary systems. In contrast, the water flux through c-oriented membrane decreased in the binary system, because acetic acid molecules in the 12-ring along the c-axis hindered water permeation. The randomly oriented membrane maintained a relatively high water flux even in the binary system possibly because the 8-ring along b-axis avoided the entering of acetic acid. From the results of the adsorption test of acetic acid on MOR powder and randomly oriented membrane, the adsorbed amount on the membrane was approximately 30% less than that on MOR powder, suggesting that acetic acid can only access the part of crystals in a membrane layer. The region inside the membrane, where acetic acid cannot enter, contributes to its extremely high separation performance. 

References 

  • 1.
    Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. https://doi.org/10.1038/532435a.
  • 2.
    Yamaki, T.; Yoshimune, M.; Hara, N.; et al. Heat-integrated hybrid membrane separation-distillation process for energy-efficient isopropyl alcohol dehydration. J. Chem. Eng. J. 2018, 51, 890–897. https://doi.org/10.1252/jcej.18we039.
  • 3.
    Amedi, H.R.; Aghajani, M. Economic Estimation of Various Membranes and Distillation for Propylene and Propane Separation. Ind. Eng. Chem. Res. 2018, 57, 4366–4376. https://doi.org/10.1021/acs.iecr.7b04169.
  • 4.
    Zhang, Y.; Chen, S.; Shi, R.; et al. Pervaporation dehydration of acetic acid through hollow fiber supported DD3R zeolite membrane. Sep. Purif. Technol. 2018, 204, 234–242. https://doi.org/10.1016/j.seppur.2018.04.066.
  • 5.
    Sun, W.; Wang, X.; Yang, J.; et al. Pervaporation separation of acetic acid–water mixtures through Sn-substituted ZSM-5 zeolite membranes. J. Membr. Sci. 2009, 335, 83–88. https://doi.org/10.1016/j.memsci.2009.02.037.
  • 6.
    Hasegawa, Y.; Abe, C.; Ikeda, A. Pervaporative Dehydration of Organic Solvents Using High-Silica CHA-Type Zeolite Membrane. Membranes 2021, 11, 229. https://doi.org/10.3390/membranes11030229.
  • 7.
    Nagase, T.; Kiyozumi, Y.; Hasegawa, Y.; et al. Dehydration of Concentrated Acetic Acid Solutions by Pervaporation Using Novel MER Zeolite Membranes. Chem. Lett. 2007, 36, 594–595. https://doi.org/10.1246/cl.2007.594.
  • 8.
    Sato, K.; Sugimoto, K.; Kyotani, T.; et al. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution. J. Membr. Sci. 2011, 385, 20–29. https://doi.org/10.1016/j.memsci.2011.09.001.
  • 9.
    Li, Y.; Zhu, M.; Hu, N.; et al. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures. J. Membr. Sci. 2018, 564, 174–183. https://doi.org/10.1016/j.memsci.2018.07.024.
  • 10.
    Matsukata, M.; Sawamura, K.; Shirai, T.; et al. Controlled growth for synthesizing a compact mordenite membrane. J. Membr. Sci. 2008, 316, 18–27. https://doi.org/10.1016/j.memsci.2007.11.037.
  • 11.
    Li, G.; Kikuchi, E.; Matsukata, M. The control of phase and orientation in zeolite membranes by the secondary growth method. Micropor. Mesopor. Mater. 2003, 62, 211–220. https://doi.org/10.1016/S1387-1811(03)00407-4.
  • 12.
    Lai, Z.; Bonilla, G.; Diaz, I.; et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation. Science 2003, 300, 456–460. https://doi.org/10.1126/science.1082169.
  • 13.
    Cao, T.; Pham, T.; Kim, H.S.; et al. Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science 2011, 334, 1533–1538. https://doi.org/10.1126/science.1212472.
  • 14.
    Kim, D.; Shete, M.; Tsapatsis, M. Large-Grain, Oriented, and Thin Zeolite MFI Films from Directly Synthesized Nanosheet Coatings. Chem. Mater. 2018, 30, 3545–3551. https://doi.org/10.1021/acs.chemmater.8b01346.
  • 15.
    Sakai, M.; Kaneko, T.; Sasaki, Y.; et al. Formation Process of Columnar Grown (101)-Oriented Silicalite-1 Membrane and Its Separation Property for Xylene Isomer. Crystals 2020, 10, 949. https://doi.org/10.3390/cryst10100949.
  • 16.
    Lu, X.; Wang, H.; Yang, Y.; et al. Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives. J. Membr. Sci. 2022, 662, 120931. https://doi.org/10.1016/j.memsci.2022.120931.
  • 17.
    Banihashemi, F.; Lin, J.Y.S. b-Oriented MFI zeolite membranes for xylene isomer separation—Effect of xylene activity on separation performance. J. Membr. Sci. 2022, 652, 120492. https://doi.org/10.1016/j.memsci.2022.120492.
  • 18.
    Wei, R.; Liu, X.; Zhou, Z.; et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Sci. Adv. 2022, 8, eabm6741. https://doi.org/10.1126/sciadv.abm6741.
  • 19.
    Sun, Y.; Hu, S.; Yan, J.; et al. Oriented ultrathin p-complexation MOF membrane for ethylene/ethane and flue gas separations. Angew. Chem. Int. Ed. 2023, 62, e202311336. https://doi.org/10.1002/anie.202311336.
  • 20.

    Meier, W. The crystal structure of mordenite (clinoptilolite). Cryst. Mater. 1961, 115, 439–450. https://doi.org/10.1524/zkri.1961.115.16.439.

  • 21.
    Santos, B.P.S.; Almeida, N.C.; Santos, I.S.; et al. Synthesis and Characterization of Mesoporous Mordenite Zeolite Using Soft Templates. Cat. Lett. 2018, 148, 1870–1878. https://doi.org/10.1007/s10562-018-2393-5.
  • 22.

    Leeuwen, M.E. Derivation of Stockmayer potential parameters for polar fluids. Fluid Ph. Equilib. 1994, 99, 1–18. https://doi.org/10.1016/0378-3812(94)80018-9.

  • 23.

    Sakai, M.; Sasaki, Y.; Kaneko, T.; et al. Contribution of Pore-Connectivity to Permeation Performance of Silicalite-1 Membrane; Part I, Pore Volume and Effective Pore Size. Membranes 2021, 11, 382. https://doi.org/10.3390/membranes11060382.

  • 24.
    Sakai, M.; Sasaki, Y.; Kaneko, T.; et al. Contribution of Pore-Connectivity to Permeation Performance of Silicalite-1 Membrane; Part II, Diffusivity of C6 Hydrocarbon in Micropore. Membranes 2021, 11, 399. https://doi.org/10.3390/membranes11060399.
  • 25.
    Liu, Y.; Chen, S.; Ji, T.; et al. Room-Temperature Synthesis of Zeolite Membranes toward Optimized Microstructure and Enhanced Butane Isomer Separation Performance. J. Am. Chem. Soc. 2003, 145, 7718–7723. https://doi.org/10.1021/jacs.3c00009.
  • 26.

    Bakker, W.J.W.; Van Den Broeke, L.J.P.; Kapteijn, F.; et al. Temperature Dependence of One-Component Permeation through a Silicalite-1 Membrane. AIChE J. 1997, 43, 2203–2214. https://doi.org/10.1002/aic.690430907.

  • 27.

    Shindo, Y.; Hakuta, T.; Yoshitome, H.; et al. Gas Diffusion in Microporous Media in Knudsen’s Regime. J. Chem. Eng. J. 1983, 16, 120–126. https://doi.org/10.1252/jcej.16.120.

  • 28.

    Mao, Y.; Zhou, Y.; Wen, H.; et al. Morphology-controlled synthesis of large mordenite crystals. New J. Chem. 2014, 38, 3295–3301. https://doi.org/10.1039/C3NJ01601C.

Share this article:
How to Cite
Sakai, M.; Imanishi, Y.; Narashima, M.; Seshimo, M.; Matsukata, M. Effect of Microstructure in MOR Membrane on its Adsorption and Permeation Properties for Water and Acetic Acid. Membrane Technologies Research 2025, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.