- 1.
Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. https://doi.org/10.1038/532435a.
- 2.
Yamaki, T.; Yoshimune, M.; Hara, N.; et al. Heat-integrated hybrid membrane separation-distillation process for energy-efficient isopropyl alcohol dehydration. J. Chem. Eng. J. 2018, 51, 890–897. https://doi.org/10.1252/jcej.18we039.
- 3.
Amedi, H.R.; Aghajani, M. Economic Estimation of Various Membranes and Distillation for Propylene and Propane Separation. Ind. Eng. Chem. Res. 2018, 57, 4366–4376. https://doi.org/10.1021/acs.iecr.7b04169.
- 4.
Zhang, Y.; Chen, S.; Shi, R.; et al. Pervaporation dehydration of acetic acid through hollow fiber supported DD3R zeolite membrane. Sep. Purif. Technol. 2018, 204, 234–242. https://doi.org/10.1016/j.seppur.2018.04.066.
- 5.
Sun, W.; Wang, X.; Yang, J.; et al. Pervaporation separation of acetic acid–water mixtures through Sn-substituted ZSM-5 zeolite membranes. J. Membr. Sci. 2009, 335, 83–88. https://doi.org/10.1016/j.memsci.2009.02.037.
- 6.
Hasegawa, Y.; Abe, C.; Ikeda, A. Pervaporative Dehydration of Organic Solvents Using High-Silica CHA-Type Zeolite Membrane. Membranes 2021, 11, 229. https://doi.org/10.3390/membranes11030229.
- 7.
Nagase, T.; Kiyozumi, Y.; Hasegawa, Y.; et al. Dehydration of Concentrated Acetic Acid Solutions by Pervaporation Using Novel MER Zeolite Membranes. Chem. Lett. 2007, 36, 594–595. https://doi.org/10.1246/cl.2007.594.
- 8.
Sato, K.; Sugimoto, K.; Kyotani, T.; et al. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution. J. Membr. Sci. 2011, 385, 20–29. https://doi.org/10.1016/j.memsci.2011.09.001.
- 9.
Li, Y.; Zhu, M.; Hu, N.; et al. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures. J. Membr. Sci. 2018, 564, 174–183. https://doi.org/10.1016/j.memsci.2018.07.024.
- 10.
Matsukata, M.; Sawamura, K.; Shirai, T.; et al. Controlled growth for synthesizing a compact mordenite membrane. J. Membr. Sci. 2008, 316, 18–27. https://doi.org/10.1016/j.memsci.2007.11.037.
- 11.
Li, G.; Kikuchi, E.; Matsukata, M. The control of phase and orientation in zeolite membranes by the secondary growth method. Micropor. Mesopor. Mater. 2003, 62, 211–220. https://doi.org/10.1016/S1387-1811(03)00407-4.
- 12.
Lai, Z.; Bonilla, G.; Diaz, I.; et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation. Science 2003, 300, 456–460. https://doi.org/10.1126/science.1082169.
- 13.
Cao, T.; Pham, T.; Kim, H.S.; et al. Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science 2011, 334, 1533–1538. https://doi.org/10.1126/science.1212472.
- 14.
Kim, D.; Shete, M.; Tsapatsis, M. Large-Grain, Oriented, and Thin Zeolite MFI Films from Directly Synthesized Nanosheet Coatings. Chem. Mater. 2018, 30, 3545–3551. https://doi.org/10.1021/acs.chemmater.8b01346.
- 15.
Sakai, M.; Kaneko, T.; Sasaki, Y.; et al. Formation Process of Columnar Grown (101)-Oriented Silicalite-1 Membrane and Its Separation Property for Xylene Isomer. Crystals 2020, 10, 949. https://doi.org/10.3390/cryst10100949.
- 16.
Lu, X.; Wang, H.; Yang, Y.; et al. Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives. J. Membr. Sci. 2022, 662, 120931. https://doi.org/10.1016/j.memsci.2022.120931.
- 17.
Banihashemi, F.; Lin, J.Y.S. b-Oriented MFI zeolite membranes for xylene isomer separation—Effect of xylene activity on separation performance. J. Membr. Sci. 2022, 652, 120492. https://doi.org/10.1016/j.memsci.2022.120492.
- 18.
Wei, R.; Liu, X.; Zhou, Z.; et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Sci. Adv. 2022, 8, eabm6741. https://doi.org/10.1126/sciadv.abm6741.
- 19.
Sun, Y.; Hu, S.; Yan, J.; et al. Oriented ultrathin p-complexation MOF membrane for ethylene/ethane and flue gas separations. Angew. Chem. Int. Ed. 2023, 62, e202311336. https://doi.org/10.1002/anie.202311336.
- 20.
Meier, W. The crystal structure of mordenite (clinoptilolite). Cryst. Mater. 1961, 115, 439–450. https://doi.org/10.1524/zkri.1961.115.16.439.
- 21.
Santos, B.P.S.; Almeida, N.C.; Santos, I.S.; et al. Synthesis and Characterization of Mesoporous Mordenite Zeolite Using Soft Templates. Cat. Lett. 2018, 148, 1870–1878. https://doi.org/10.1007/s10562-018-2393-5.
- 22.
Leeuwen, M.E. Derivation of Stockmayer potential parameters for polar fluids. Fluid Ph. Equilib. 1994, 99, 1–18. https://doi.org/10.1016/0378-3812(94)80018-9.
- 23.
Sakai, M.; Sasaki, Y.; Kaneko, T.; et al. Contribution of Pore-Connectivity to Permeation Performance of Silicalite-1 Membrane; Part I, Pore Volume and Effective Pore Size. Membranes 2021, 11, 382. https://doi.org/10.3390/membranes11060382.
- 24.
Sakai, M.; Sasaki, Y.; Kaneko, T.; et al. Contribution of Pore-Connectivity to Permeation Performance of Silicalite-1 Membrane; Part II, Diffusivity of C6 Hydrocarbon in Micropore. Membranes 2021, 11, 399. https://doi.org/10.3390/membranes11060399.
- 25.
Liu, Y.; Chen, S.; Ji, T.; et al. Room-Temperature Synthesis of Zeolite Membranes toward Optimized Microstructure and Enhanced Butane Isomer Separation Performance. J. Am. Chem. Soc. 2003, 145, 7718–7723. https://doi.org/10.1021/jacs.3c00009.
- 26.
Bakker, W.J.W.; Van Den Broeke, L.J.P.; Kapteijn, F.; et al. Temperature Dependence of One-Component Permeation through a Silicalite-1 Membrane. AIChE J. 1997, 43, 2203–2214. https://doi.org/10.1002/aic.690430907.
- 27.
Shindo, Y.; Hakuta, T.; Yoshitome, H.; et al. Gas Diffusion in Microporous Media in Knudsen’s Regime. J. Chem. Eng. J. 1983, 16, 120–126. https://doi.org/10.1252/jcej.16.120.
- 28.
Mao, Y.; Zhou, Y.; Wen, H.; et al. Morphology-controlled synthesis of large mordenite crystals. New J. Chem. 2014, 38, 3295–3301. https://doi.org/10.1039/C3NJ01601C.