2511002313
  • Open Access
  • Article

Dynamical Behavior and Soliton Solutions of the (2+1)-Dimensional Novikov-Veselov System of Equations

  • Adnan Ahmad Mahmud *,   
  • Kalsum Abdulrahman Muhamad,   
  • Tanfer Tanriverdi

Received: 05 Nov 2025 | Revised: 13 Dec 2025 | Accepted: 28 Dec 2025 | Published: 08 Jan 2026

Abstract

In this study, the third-order nonlinear (2+1)-dimensional Novikov-Veselov system of equations with constant coefficients has been investigated using an appropriate traveling wave transformation. The extended rational sin−cos technique and the modified exponential function method are two reliable and powerful methods that have been used for the specified nonlinear system. The main goal is to get valuable, exact traveling waves, periodic waves, and soliton solutions. The resulting solutions are expressed as a variety of trigonometric functions, including hyperbolic trigonometric functions, exponential functions, and rational functions. In that they provide light on the pertinent facets of the physical phenomenon, the suggested solutions are both innovative and significant. The properties of the solutions have been illustrated in a variety of figures, including two- and three-dimensional ones, to ensure the best visual assessment. Furthermore, two-dimensional graphs demonstrated how temporal development affects solution structures. The most powerful and efficient technologies are the computer software tools we use to create solutions and graphs.

References 

  • 1.

    Baskonus, H.M.; Mahmud, A.A.; Muhamad, K.A.; et al. A study on Caudrey–Dodd–Gibbon–Sawada–Kotera partial differential equation. Math. Methods Appl. Sci. 2022, 45, 8737–8753.

  • 2.

    Baskonus, H.M.; Mahmud, A.A.; Muhamad, K.A.; et al. Studying on Kudryashov-Sinelshchikov dynamical equation arising in mixtures liquid and gas bubbles. Thermal Sci. 2022, 26, 1229–1244.

  • 3.

    Tanriverdi, T.; Baskonus, H.M.; Mahmud, A.A.; et al. Explicit solution of fractional order atmosphere-soil-land plant carbon cycle system. Ecol. Complex. 2021, 48, 100966.

  • 4.

    Alhakim, L.A.; Mahmud, A.A.; Moussa, A.; et al. Bifurcation, optical solutions, and modulation instability analysis of the complex nonlinear (2+1)-dimensional δ-potential schr¨odinger equation. Eur. J. Math. Appl. 2025, 5, 17.

  • 5.

    Mahmud, A.A. Considerable traveling wave solutions of the generalized Hietarinta-type equation. Int. J. Math. Comput. Eng. 2024, 3, 185–200.

  • 6.

    Mahmud, A.A.; Tanriverdi, T.; Muhamad, K.A.; et al. An investigation of the influence of time evolution on the solution structure using hyperbolic trigonometric function methods. Int. J. Appl. Comput. Math. 2024, 10, 137.

  • 7.

    Alam, L.M.B.; Jiang, X. Exact and explicit traveling wave solution to the time-fractional phi-four and (2+1) dimensional CBS equations using the modified extended tanh-function method in mathematical physics. Partial. Differ. Equ. Appl. Math. 2021, 4, 100039.

  • 8.

    Ahmed, K.K.; Badra, N.M.; Ahmed, H.M.; et al. Soliton Solutions and Other Solutions for Kundu–Eckhaus Equation with Quintic Nonlinearity and Raman Effect Using the Improved Modified Extended Tanh-Function Method. Mathematics 2022, 10, 4203.

  • 9.

    Mahmud, A.A.; Muhamad, K.A.; Tanriverdi, T.; et al. An investigation of Fokas system using two new modifications for the trigonometric and hyperbolic trigonometric function methods. Opt. Quantum Electron. 2024, 56, 717.

  • 10.

    Aljahdaly, N.H.; Wazwaz, A.M.; El-Tantawy, S.; et al. New extended (3+1)-dimensional KDV6 equation and other equations derived from the same hierarchy: Painlev´e integrability. Rom. Rep. Phys. 2021, 73, 120.

  • 11.

    Jahan, M.; Ullah, M.; Rahman, Z.; et al. Novel dynamics of the Fokas-Lenells model in Birefringent fibers applying different integration algorithms. Int. J. Math. Comput. Eng. 2025, 3, 1–12.

  • 12.

    Chen, Y.; Feng, B.F.; Ling, L. The robust inverse scattering method for focusing Ablowitz–Ladik equation on the non-vanishing background. Phys. D Nonlinear Phenom. 2021, 424, 132954.

  • 13.

    Mahmud, A.A.; Tanriverdi, T.; Muhamad, K.A. Exact traveling wave solutions for (2+1)-dimensional Konopelchenko-Dubrovsky equation by using the hyperbolic trigonometric functions methods. Int. J. Math. Comput. Eng. 2023, 1, 11–24.

  • 14.

    Shi, Y.; Zhang, J.M.; Zhao, J.X.; et al. Abundant analytic solutions of the stochastic KdV equation with time-dependent additive white Gaussian noise via Darboux transformation method. Nonlinear Dyn. 2022, 111, 2651–2661.

  • 15.

    Li, B.Q.; Ma, Y.L. Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrodinger equation. Appl. Math. Comput. 2020, 386, 125469.

  • 16.

    Mahmud, A.A.; Baskonus, H.M.; Tanriverdi, T.; et al. Optical solitary waves and soliton solutions of the (3+1)-dimensional generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation. Comput. Math. Math. Phys. 2023, 63, 1085–1102.

  • 17.

    Zhang, J. B? cklund Transformation and Multisoliton-Like Solutions for (2+1)-Dimensional Dispersive Long Wave Equations. Commun. Theor. Phys. 2000, 33, 577.

  • 18.

    Kumar, S.; Rani, S. Lie symmetry analysis, group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii–Schieff equation. Pramana 2021, 95, 1–14.

  • 19.

    Muhamad, K.A.; Tanriverdi, T.; Mahmud, A.A.; et al. Interaction characteristics of the Riemann wave propagation in the (2+1)-dimensional generalized breaking soliton system. Int. J. Comput. Math. 2023, 100, 1340–1355.

  • 20.

    Novikov, S.; Veselov, A. Two-dimensional Schrodinger operator: Inverse scattering transform and evolutional equations. Phys. D Nonlinear Phenom. 1986, 18, 267–273.

  • 21.

    Hu, X.B. Nonlinear superposition formula of the Novikov-Veselov equation. J. Phys. Math. Gen. 1994, 27, 1331.

  • 22.

    Nickel, J.; Schurmann, H. 2-Soliton-solution of the Novikov-Veselov equation. Int. J. Theor. Phys. 2006, 45, 1809–1813.

  • 23.

    Hu, X.B.; Willox, R. Some new exact solutions of the Novikov-Veselov equation. J. Phys. Math. Gen. 1996, 29, 4589.

  • 24.

    Lassas, M.; Mueller, J.L.; Siltanen, S.; et al. The Novikov–Veselov equation and the inverse scattering method, Part I: Analysis. Phys. D Nonlinear Phenom. 2012, 241, 1322–1335.

  • 25.

    Boubir, B.; Triki, H.; Wazwaz, A. Bright solitons of the variants of the Novikov–Veselov equation with constant and variable coefficients. Appl. Math. Model. 2013, 37, 420–431.

  • 26.

    Xu, G.Q. Integrability of a (2+1)-dimensional generalized breaking soliton equation. Appl. Math. Lett. 2015, 50, 16–22.

  • 27.

    Barman, H.K.; Seadawy, A.R.; Akbar, M.A.; et al. Competent closed form soliton solutions to the Riemann wave equation and the Novikov-Veselov equation. Results Phys. 2020, 17, 103131.

  • 28.

    Adams, J.; Gr¨unrock, A. Low regularity local well-posedness for the Novikov-Veselov equation. arXiv 2021, arXiv:2111.04575.

  • 29.

    Wazwaz, A.M. New solitary wave and periodic wave solutions to the (2+ 1)-dimensional Nizhnik–Novikov–Veselov system. Appl. Math. Comput. 2007, 187, 1584–1591.

  • 30.

    Borhanifar, A.; Kabir, M.; Vahdat, L.M. New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system. Chaos Solitons Fractals 2009, 42, 1646–1654.

  • 31.

    Dai, C.; Zhou, G.; Zhang, J. Exotic localized structures based on variable separation solution of (2+1)-dimensional KdV equation via the extended tanh-function method. Chaos Solitons Fractals 2007, 33, 1458–1467.

  • 32.

    Zhang, J.F.; Zheng, C.L. Abundant localized coherent structures of the (2+1)-dimensional generalized Nozhnik-Novikov-Veselov system. Chin. J. Phys. 2003, 41, 242–254.

  • 33.

    Guo, L.; He, J.; Mihalache, D. Rational and semi-rational solutions to the asymmetric Nizhnik–Novikov–Veselov system. J. Phys. Math. Theor. 2021, 54, 095703.

Share this article:
How to Cite
Mahmud, A. A.; Muhamad, K. A.; Tanriverdi, T. Dynamical Behavior and Soliton Solutions of the (2+1)-Dimensional Novikov-Veselov System of Equations. Nonlinear Analysis and Computer Simulations 2026, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.