2512002675
  • Open Access
  • Article

From Correlations to Manifolds: A Geometric Approach to Classifications

  • İnan Ünal  1,*,   
  • Özal Yıldırım  2

Received: 09 Nov 2025 | Revised: 17 Dec 2025 | Accepted: 29 Dec 2025 | Published: 13 Jan 2026

Abstract

This study addresses a machine learning application based on Riemannian geometry. The main objective is to demonstrate how classical learning algorithms, particularly Support Vector Machine (SVM), can be adapted for non-Euclidean data structures. The UCI Wine dataset is used as a real dataset. Instead of directly applying the algorithm to raw feature vectors, correlation matrices are obtained from these vectors through class-consistent windows, defining points on the SPD manifold. These matrices are then projected onto the tangent space around the Fréchet mean using the Riemannian logarithm map and provided as input to a Euclidean-form SVM classifier. Thus, the integration of manifold-based representation with classical methods is achieved, and its contribution to classification performance is examined.

References 

  • 1.

    Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.

  • 2.

    Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167.

  • 3.

    Pennec, X.; Fillard, P.; Ayache, N. A Riemannian framework for tensor computing. Int. J. Comput. Vis. 2006, 66, 41–66.

  • 4.

    Arsigny, V.; Fillard, P.; Pennec, X.; et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 2007, 29, 328–347.

  • 5.

    Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2009.

  • 6.

    Amari, S.; Nagaoka, H. Methods of Information Geometry; AMS and Oxford University Press: Oxford, UK, 2007.

  • 7.

    Congedo, M.; Barachant, A.; Bhatia, R. Riemannian geometry for EEG-based brain–computer interfaces; a primer and a review. Brain-Comput. Interfaces 2017, 4, 155–174.

  • 8.

    Barachant, A.; Bonnet, S.; Congedo, M.; et al. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 2012, 59, 920–928.

  • 9.

    Dryden, I.L.; Koloydenko, A.; Zhou, D. Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 2009, 3, 1102–1123.

  • 10.

    Barachant, A.; Bonnet, S.; Congedo, M.; et al. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 2013, 112, 172–178.

  • 11.

    Tuzel, O.; Porikli, F.; Meer, P. Region Covariance: A Fast Descriptor for Detection and Classification. In Proceedings of the European Conference on Computer Vision (ECCV), Graz, Austria, 7–13 May 2006; pp. 589–600.

  • 12.

    Harandi, M.T.; Salzmann, M.; Hartley, R. From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices. In Proceedings of the European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012; pp. 17–32.

  • 13.

    Yger, F.; Berar, M.; Lotte, F. Riemannian Approaches in Brain-Computer Interfaces: A Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1753–1762.

  • 14.

    Moakher, M.; Batchelor, P.G. Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization. In Visualization and Processing of Tensor Fields; Springer: Berlin/Heidelberg, Germany, 2006; pp. 285–298.

  • 15.

    Schiavon, J. Differential Geometry of Symmetric and Positive Definite Matrices for Statistical Applications. Ph.D. Thesis, Università degli Studi di Padova, Padua, Italy, 2022.

  • 16.

    Congedo, M.; Rodrigues, P.L.C.; Jutten, C. The Riemannian Minimum Distance to Means Field Classifier. In Proceedings of the BCI 2019—8th International Brain-Computer Interface Conference, Graz, Austria, 16–20 September 2019.

  • 17.

    Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, Irvine, School of Information and Computer Sciences: Irvine, CA, USA, 2019.

  • 18.

    Miolane, N.; Guigui, N.; Le Brigant, A.; et al. Geomstats: A Python package for Riemannian geometry in machine learning. J. Mach. Learn. Res. 2020, 21, 1–9.

Share this article:
How to Cite
Ünal , İ.; Yıldırım , Ö. From Correlations to Manifolds: A Geometric Approach to Classifications. Nonlinear Analysis and Computer Simulations 2026, 1 (1), 4.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.