2512002677
  • Open Access
  • Article

Bifurcation and Stability Analysis of Norovirus Disease

  • Muhammad Ibrar 1,   
  • Imtiaz Ahmad 1,2,*,   
  • Nigar Ali 1,2,   
  • Sehra Khan  3,   
  • Dragan Pamucar 4,   
  • Haci Mehmet Baskonus 2,   
  • Zeeshan Ali 5

Received: 10 Nov 2025 | Revised: 17 Dec 2025 | Accepted: 29 Dec 2025 | Published: 16 Jan 2026

Abstract

The Norovirus Disease (NVD) caused by the Norovirus, primarily effects the stomach and intestine. It is highly contagious illness that can quickly spread into an epidemic, specifically when the healthy individuals come into contact with shared utensils or surfaces used by the EVD infected patients. The scientists and governments are rigorously working to keep these epidemic diseases under control. In this paper, we discuss how to eradicate and control NVD in the community. Many researchers have presented different models for NVD, but further extensions are still needed to increase precision, so in this paper we presented a more general mathematical model SEVIHDR, that incorporates the severe case of dehydration caused by NVD. Dehydration is severely affecting individuals and causing mortality if remained untreated timely as been reported. The study of this model include bifurcation, stability, positivity and boundedness. Lastly, the different graphical approaches are presented, which confirm the effectiveness of the proposed model.

References 

  • 1.

    WHO. Norovirus Maps 2016; World Health Organization: Geneva, Switzerland, 2020.

  • 2.

    Center for Disease Control and Prevention. Norovirus Surveillance 2020; CDC: Atlanta, GA, USA, 2024.

  • 3.

    Adler, J.L.; Zickl, R. Winter Vomiting Disease. J. Infect. Dis. 1969, 119, 668–673.

  • 4.

    Gaythorpe, K.A.M.; Caroline, T.L.; Lopman, B.; et al. Norovirus Transmission Dynamics: A Modelling Review. Epidemiol. Infect. 2018, 146, 147–158.

  • 5.

    Jehangir, H.; Ali, N.; Ahmad, I.; et al. Global Dynamics and Numerical Simulation of a Vaccinated Mathematical Model for Rabies Disease. Glob. J. Sci. 2024, 1, 14–27.

  • 6.

    Atmar, R.L.; Estes, M.K. The Epidemiologic and Clinical Importance of Norovirus Infection. Gastroenterology 2006, 131, 1537–1547.

  • 7.

    Khan, T.; Ullah, R.; Zaman, G.; et al. The analysis of hepatitis B virus (HBV) transmission using an epidemic model. Nat. Appl. Sci. Int. J. 2021, 2, 70–79.

  • 8.

    Shah, I.; Ali, I.; Ali, A.; et al. Optimal control and sensitivity analysis of a mathematical model for MDR-TB transmission with advanced treatment strategies. Eur. Phys. J. Plus 2025, 140, 553.

  • 9.

    Ullah, I.; Ahmad, I.; Ali, N.; et al. Mathematical Modeling and Analysis of Dynamics of Neisseria Gonorrhea Disease with Self-Protection, Treatment and Natural Immunity. Glob. J. Sci. 2024, 1, 40–55.

  • 10.

    Jan M.N.; Zaman, G.; Ahmad, I.; et al. Existence theory to a class of fractional order hybrid differential equations. Fractals 2022, 30, 2240022.

  • 11.

    Khan, M.; Khan, T.; Ahmad, I.; et al. Modeling of Hepatitis B virus transmission with fractional analysis. Math. Probl. Eng. 2022, 2022, 6202049.

  • 12.

    Ali, N.; Ullah, I.; Ahmad, I.; et al. COVID-19 Transmission Model: Analysis and Multiple Control Strategies. In Biology and Sustainable Development Goals: Applications of Mathematical Methods; Springer: Singapore, 2025; pp. 353–384.

  • 13.

    Diyar, R.; Ahmad, I.; Ali, N.; et al. A fractional order mathematical model for the omicron: a new variant of COVID-19. Phys. Scr. 2024, 99, 115255. https://doi.org/10.1088/1402-4896/ad8490.

  • 14.

    Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; et al. The COVID-19 Pandemic. Crit. Rev. Clin. Lab. Sci. 2020, 57, 365–388.

  • 15.

    Ahmed, I.; Tariboon, J.; Muhammad, M.; et al. A mathematical and sensitivity analysis of an HIV/AIDS infection model. Int. J. Math. Comput. Eng. 2024, 3, 35–46. https://doi.org/10.2478/ijmce-2025-0004.

  • 16.

    Becker, N.; Glass, G.K. Estimating the Population Impact of a New Gastrointestinal Infection in the Community. Epidemiol. Infect. 1987, 99, 619–634.

  • 17.

    Gaythorpe, K.A.M.; Trotter, C.L.; Conlan, A.J.K. Modelling Norovirus Transmission and Vaccination. Vaccine 2018, 36, 5565–5571.

  • 18.

    Xue, L.X.; Zuo, J.; Chen, M. An Optimization Model for Controlling Norovirus Outbreaks in Semi-Closed Settings. J. Theor. Biol. 2013, 335, 9–17.

  • 19.

    Lopman, B.; Simmons, K.; Gambhir, M.; et al. Epidemiologic Implications of Asymptomatic Reinfection: A Mathematical Modeling Study of Norovirus. Am. J. Epidemiol. 2014, 179, 507–512.

  • 20.

    Ahmed, F.; Christley, R.; Robinson, S.; et al. Using Agent-Based Modelling to Understand the Role of Environment and Individual Susceptibility in School Norovirus Outbreaks. PLoS ONE 2019, 14, 212–290.

  • 21.

    Patel, M.M.; Hall, A.J.; Vinje, J.; et al. Noroviruses: A Comprehensive Review. J. Clin. Virol. 2009, 44, 1–8.

  • 22.

    Ndendya, J.Z.; Mwasunda, J.A.; Mbare, N.S. Modeling the Effect of Vaccination, Treatment and Public Health Education on the Dynamics of Norovirus Disease. Model. Earth Syst. Environ. 2025, 11, 150.

  • 23.

    Li, J.; Yang, Y.; Zhou, Y. Global Stability of an Epidemic Model with Latent Stage and Vaccination. Nonlinear Anal. Real World Appl. 2011, 12, 2163–2173.

  • 24.

    Lou, J.; Cheng, J.; Li, Y.; et al. Comparison of Different Strategies for Controlling HIV/AIDS Spreading in MSM. Infect. Dis. Model. 2018, 3, 293–300.

  • 25.

    Pontryagin, L.S. The Mathematical Theory of Optimal Processes and Differential Games. J. Oper. Res. Soc. 1985, 16, 493–494.

  • 26.

    Rachah, A.; Torres, D.F.M. Mathematical Modelling, Simulation, and Optimal Control of the 2014 Ebola Outbreak in West Africa. Discret. Dyn. Nat. Soc. 2015, 2015, 842792.

  • 27.

    Rodrigues, H.S.; Monteiro, M.T.T.; Torres, D.F.M. Vaccination Models and Optimal Control Strategies to Dengue. Math. Biosci. 2014, 247, 1–12.

  • 28.

    Roy, P.K.; Chowdhury, S.; Chatterjee, A.N.; et al. A Mathematical Model on CTL Mediated Control of HIV Infection in a Long-Term Drug Therapy. J. Biol. Syst. 2013, 21, 7–9.

Share this article:
How to Cite
Ibrar, M.; Ahmad, I.; Ali, N.; Khan , S.; Pamucar, D.; Baskonus, H. M.; Ali, Z. Bifurcation and Stability Analysis of Norovirus Disease. Nonlinear Analysis and Computer Simulations 2026, 1 (1), 5.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.