Nonlinear Analysis and Computer Simulations: New Horizons in Theory and Applications
Received: 26 Nov 2025 | Accepted: 05 Dec 2025 | Published: 05 Jan 2026
Adomian, G. Nonlinear Stochastic Operator Equations; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1986.
Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1994.
Jiong, S. Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 2003, 309, 387–396.
Fendzi-Donfack, E.; Temgoua, G.W.K.; Djoufack, Z.I.; et al. Exotical solitons for an intrinsic fractional circuit using the sine–cosine method. Chaos Solitons Fractals 2022, 160, 112253.
Zhu, D.S. Exact solutions for the high-order dispersive cubic-quintic nonlinear Schrödinger equation by the extended hyperbolic auxiliary equation method. Chaos Solitons Fractals 2007, 34, 1608–1612.
Zhang, S.; Xia, T.-C. A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations. J. Phys. A Math. Theor. 2007, 40, 227–248.
Traub, J.F. Iterative Methods for the Solution of Equations; Chelsea Publishing Company: New York, NY, USA, 1982.
He, J.-H. Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlinear Sci. Numer. Simul. 2005, 6, 207–208.
He, J.-H. Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 2005, 26, 695–700.
Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992.
Liao, S. Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 2009, 14, 983–997.
Liao, S. Homotopy Analysis Method in Non-Linear Differential Equations; Springer: Berlin, Germany, 2012.
He, J.-H. Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 2004, 19, 847–851.
He, J.-H. Variational approach to (2+1)-dimensional dispersive long water equations. Phys. Lett. A 2005, 335, 182–184.
Liu, H.-M. Variational approach to nonlinear electrochemical system. Int. J. Nonlinear Sci. Numer. Simul. 2004, 5, 95–96.
Russell, J.S. Report on Waves. In Proceedings of the 14th Meeting of the British Association for the Advancement of Science, New York, NY, USA, 23–28 September 1844; pp. 311–390.
Korteweg, G.; De Vries, D.J.. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1895, 39, 422–443.
Adlam, J.H.; Allen, J.E. The structure of strong collision-free hydromagnetic waves. Philos. Mag. 1958, 3, 448–455.
Adlam, J.H.; Allen, J.E. Collision-free Hydromagnetic Disturbances of Large Amplitude in a Plasma. Proc. Phys. Soc. 1960, 75, 640–648.
Zabusky, N.J.; Kruskal, M.D. Interaction of ‘Solutions’ in a Collisionless Plasms and the Recurrence of Intial States. Phys. Rev. Lett. 1965, 15, 240–243.
Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991.
Wadati, M. Wave propagation in nonlinear lattice. J. Phys. Soc. Jpn. 1975, 38, 673–680.
Matveev, V.B.; Salle, M.A. Darboux Transformation and Solitons; Springer Series in Nonlinear Dynamics; Springer: Berlin, Germany, 1991.
Zait, R.A. Bäcklund transformations, cnoidal wave and travelling wave solutions of the SK and KK equations. Chaos Solitons Fractals 2003, 15, 673–678.
Hirota, R. Exact solution of the korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 1971, 27, 1192–1194.
Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004.
Weiss, J.; Tabor, M.; Carnevale, G. The Painlevé property for partial differential equations. J. Math. Phys. 1982, 24, 522–526.
Wang, M.L.; Li, X.Z.; Zhang, J. The (G′G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423.
Zhang, H. New application of the (G′G)-expansion method. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3220–3225.
Wen-An, L.; Hao, C.; Guo-Cai, Z. The (ω/g)-expansion method and its application to Vakhnenko equation. Chin. Phys. B 2009, 18, 400–404.
Zuo, J.-M.; Zhang, Y.-M. Application of the G′G-expansion method to solve coupled MKdV equations and coupled Hirota–Satsuma coupled KdV equations. Appl. Math. Comput. 2011, 217, 5936–5941.
Zhang, J.; Jiang, F.; Zhao, X. An improved (G’/G)-expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 2010, 87, 1716–1725.
Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253.
Roshid, H.O.; Azizur Rahman, M. The exp(-Φ(η))-expansion method with application in the (1+1)-dimensional classical Boussinesq equations. Results Phys. 2014, 4, 150–155.
Khan, K.; Akbar, M.A. The exp(−Φ(ξ))-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst. Differ. 2014, 5, 72–83.
Chen, H.-T.; Zhang, H.-Q. New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation. Chaos Solitons Fractals 2004, 20, 765–769.
Zhang, D. Doubly periodic solutions of the modified Kawahara equation. Chaos Solitons Fractals 2005, 25, 1155–1160.
Li, W.-W.; Tian, Y.; Zhang, Z. F-expansion method and its application for finding new exact solutions to the sine–Gordon and sinh-Gordon equations. Appl. Math. Comput. 2012, 219, 1135–1143.
He, J.-H.; Wu, X.-H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals, 2006, 30, 700–708.
Xu, F. Application of Exp-function method to Symmetric Regularized Long Wave (SRLW) equation. Phys. Lett. A 2008, 372, 252–257.
Ma, W.; Huang, T.; Zhang, Y. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 2010, 82, 065003.
Fan, E.G. Extended tanh-function method and its application to nonlinear equations. Phys. Lett. A 2000, 277, 212–218.
Liu, S.; Fu, Z.; Liu, S.; et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 2001, 289, 69–74.
Fu, Z.; Liu, S.; Liu, S.; et al. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 2001, 290, 72–76.
Liu, G.-T.; Fan, T.-Y. New applications of developed Jacobi elliptic function expansion methods. Phys. Lett. A 2005, 345, 161–166.
Zhang, H. Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 2007, 12, 627–635.
Wazwaz, A.M. Compactons in a Class of Nonlinear Dispersive Equations. Math. Comput. Model. 2003, 37, 333–341.
Wazwaz, A.M. The sine-cosine method for obtaining solutions with compact and noncompact structures. Appl. Math. Comput. 2004, 159, 559–576.
Baskonus, H.M. New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics. Nonlinear Dyn. 2016, 86, 177–183.

This work is licensed under a Creative Commons Attribution 4.0 International License.