2511002165
  • Open Access
  • Review

Recent Progress in Hybrid Microalgae-Electrocatalytic/Photocatalytic Technologies for Enhanced Wastewater Treatment

  • Sili Qing 1,   
  • Xiaoge Wu 2,*

Received: 28 Sep 2025 | Revised: 02 Nov 2025 | Accepted: 04 Nov 2025 | Published: 13 Nov 2025

Abstract

Abstract: Environmental pollution and the freshwater crisis are driving the need for innovative wastewater treatment solutions. Microalgal bioremediation has emerged as a sustainable technology for simultaneous contaminant removal (e.g., COD, nutrients, heavy metals) and biomass production. However, emerging contaminants, refractory pollutants, and complex wastewater matrices often inhibit microalgal growth and degradation efficiency. To address these challenges, this review systematically analyzes three hybrid integration strategies: (i) microalgal microbial fuel cells (MMFCs), (ii) microalgae-electrochemical advanced oxidation processes (EAOPs), and (iii) microalgae-photocatalytic systems. While existing literature extensively covers microalgal biotechnology, comprehensive analyses of its synergistic coupling with nanomaterial-based AOPs (electrochemical/photocatalytic) remain limited. This study elucidates the mechanisms, benchmarking performance, and novel enhancement strategies of these integrated systems, facilitating direct technology comparison. We highlight the multifunctional roles of microalgae in these hybrid systems, including bioelectricity generation (MMFCs), in situ oxygen supply (MMFCs and photocatalysis), and biodegradation to mitigate radical quenching (photocatalysis and EAOPs). The comparative advantages and limitations of each technology are critically evaluated, followed by forward-looking perspectives on system scalability, cost-efficiency, and real-world applicability.

References 

  • 1.

    Deshmukh, M.K.G.; Sameeroddin, M.; Abdul, D.; et al. Renewable energy in the 21st century: A review. Mater. Today Proc. 2023, 80, 1756–1759.

  • 2.

    Shahid, M.K.; Kashif, A.; Fuwad, A.; et al. Current advances in treatment technologies for removal of emerging contaminants from water—A critical review. Coord. Chem. Rev. 2021, 442, 213993.

  • 3.

    Jones, E.R.; van Vliet, M.T.H.; Qadir, M.; et al. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 2021, 13, 237–254.

  • 4.

    Zhao, C.; Chen, H.; Song, Y.; et al. Electricity production performance enhancement of microbial fuel cells with double-layer sodium alginate hydrogel bioanodes driven by high-salinity waste leachate. Water Res. 2023, 242, 120281.

  • 5.

    Goliopoulos, N.; Mamais, D.; Noutsopoulos, C.; et al. Energy consumption and carbon footprint of Greek wastewater treatment plants. Water 2022, 14, 320.

  • 6.

    Liu, R.; Ma, Y.; Zhang, H.; et al. A review-based estimation of GHG emissions of China’s wastewater management system. J. Environ. Manag. 2025, 380, 124869.

  • 7.

    Guo, Y.; Askari, N.; Smets, I.; et al. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. Water Res. 2024, 256, 121598.

  • 8.

    Krzeminski, P.; Tomei, M.C.; Karaolia, P.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081.

  • 9.

    Gasana, Z.; Kayiranga, A.; Nizeyimana, J.C.; et al. Removal of antibiotics and antibiotic resistance genes using microalgae-based wastewater treatment system: A bibliometric review and mechanism analysis. J. Water Process Eng. 2025, 72, 107496.

  • 10.

    Mehariya, S.; Das, P.; Thaher, M.I.; et al. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. Chemosphere 2024, 351, 141245.

  • 11.

    Xiong, Q.; Hu, L.-X.; Liu, Y.-S.; et al. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environ. Int. 2021, 155, 106594.

  • 12.

    Sutherland, D.L.; Ralph, P.J. Microalgal bioremediation of emerging contaminants—Opportunities and challenges. Water Res. 2019, 164, 114921.

  • 13.

    Pandey, S.; Narayanan, I.; Selvaraj, R.; et al. Biodiesel production from microalgae: A comprehensive review on influential factors, transesterification processes, and challenges. Fuel 2024, 367, 131547.

  • 14.

    Kumar, D.; Singh, B.; Sharma, Y.C. Challenges and opportunities in commercialization of algal biofuels. In Algal Biofuels; Gupta, S., Malik, A., Bux, F., Eds.; Springer: Cham, Switzerland, 2017. https://doi.org/10.1007/978-3-319-51010-1_20.

  • 15.

    Xiong, W.; Peng, Y.; Ma, W.; et al. Microalgae–material hybrid for enhanced photosynthetic energy conversion: A promising path towards carbon neutrality. Natl. Sci. Rev. 2023, 10, nwad200.

  • 16.

    Khan, T.A.; Liaquat, R.; Zeshan; et al. Biological carbon capture, growth kinetics and biomass composition of novel microalgal species. Bioresour. Technol. Rep. 2022, 17, 100982.

  • 17.

    Koyande, A.K.; Chew, K.W.; Rambabu, K.; et al. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24.

  • 18.

    You, X.; Yang, L.; Zhou, X.; et al. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. Environ. Res. 2022, 209, 112860.

  • 19.

    Leng, L.; Wei, L.; Xiong, Q.; et al. Use of microalgae based technology for the removal of antibiotics from wastewater: A review. Chemosphere 2020, 238, 124680.

  • 20.

    Zheng, S.; Wang, Y.; Chen, C.; et al. Current progress in natural degradation and enhanced removal techniques of antibiotics in the environment: A review. Int. J. Environ. Res. Public Health 2022, 19, 10919.

  • 21.

    Montoya-Vallejo, C.; Quintero Díaz, J.C.; Yepes, Y.A.; et al. Microalgal microbial fuel cells: A comprehensive review of mechanisms and electrochemical performance. Appl. Sci. 2025, 15, 3335.

  • 22.

    Anandapadmanaban, B.H.; Liu, S.-H.; Lin, C.-W. Prospects of microalgae in the cathode chamber of microbial fuel cells: From sequestration to bioproduct production. Biomass Bioenergy 2025, 194, 107616.

  • 23.

    Wang, X.; Hong, Y.; Zhang, Y. Photosynthetic algal microbial fuel cell (PAMFC) for wastewater removal and energy recovery: A review. Curr. Pollution. Rep. 2023, 9, 359–373.

  • 24.

    Jaiswal, K.K.; Kumar, V.; Vlaskin, M.S.; et al. Microalgae fuel cell for wastewater treatment: Recent advances and challenges. J. Water Process Eng. 2020, 38, 101549.

  • 25.

    Khandelwal, A.; Chhabra, M.; Yadav, P. Performance evaluation of algae assisted microbial fuel cell under outdoor conditions. Bioresour. Technol. 2020, 310, 123418.

  • 26.

    Nagendranatha Reddy, C.; Nguyen, H.T.H.; Noori, M.T.; et al. Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives. Bioresour. Technol. 2019, 292, 122010.

  • 27.

    Wang, X.; Xie, J.-F.; Zhao, Q.-B.; et al. Self-supported antimony tin oxide anode with Sb segregation promoted atrazine removal. J. Mater. Chem. A 2024, 12, 27206–27211.

  • 28.

    Isaev, A.B.; Shabanov, N.S.; Magomedova, A.G.; et al. Electrochemical oxidation of azo dyes in water: A review. Environ. Chem. Lett. 2023, 21, 2863–2911.

  • 29.

    Heidari, Z.; Pelalak, R.; Zhou, M. A critical review on the recent progress in application of electro-Fenton process for decontamination of wastewater at near-neutral pH. Chem. Eng. J. 2023, 474, 145741.

  • 30.

    Zhao, N.; Zhang, J.; Cao, F.; et al. Electro-Fenton purification of floodwater with a poly(vinyl alcohol)-treated FeNi3@laser-induced 3D-graphene composite anode from Kraft paper. Chem. Eng. J. 2025, 503, 158206.

  • 31.

    Khader, E.H.; Muslim, S.A.; Saady, N.M.C.; et al. Recent advances in photocatalytic advanced oxidation processes for organic compound degradation: A review. Desalin. Water Treat. 2024, 318, 100384.

  • 32.

    Krishnan, A.; Swarnalal, A.; Das, D.; et al. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J. Environ. Sci. 2024, 139, 389–417.

  • 33.

    Jain, B.; Singh, A.K.; Kim, H.; et al. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ. Chem. Lett. 2018, 16, 947–967.

  • 34.

    Xiangyu, B.; Chao, L.; Shilong, H.; et al. Combining advanced oxidation processes with biological processes in organic wastewater treatment: Recent developments, trends, and advances. Desalin. Water Treat. 2025, 323, 101263.

  • 35.

    Almaguer, M.A.; Cruz, Y.R.; Da Fonseca, F.V. Combination of advanced oxidation processes and microalgae aiming at recalcitrant wastewater treatment and algal biomass production: A review. Environ. Process. 2021, 8, 483–509.

  • 36.

    Arias, D.M.; Olvera Vargas, P.; Vidal Sánchez, A.N.; et al. Integrating electro-Fenton and microalgae for the sustainable management of real food processing wastewater. Chemosphere 2024, 360, 142372.

  • 37.

    Yuan, J.; Chen, M.; Xiang, W.; et al. Rapid and sustainable conversion of phenol to microalgae biomass. ACS Sustain. Chem. Eng. 2021, 9, 16182–16191.

  • 38.

    Huo, S.; Necas, D.; Zhu, F.; et al. Anaerobic digestion wastewater decolorization by H2O2-enhanced electro-Fenton coagulation following nutrients recovery via acid tolerant and protein-rich Chlorella production. Chem. Eng. J. 2021, 406, 127160.

  • 39.

    Li, C.; Tian, Q.; Zhang, Y.; et al. Sequential combination of photocatalysis and microalgae technology for promoting the degradation and detoxification of typical antibiotics. Water Res. 2022, 210, 117985.

  • 40.

    Zuo, W.; Zhang, L.; Zhang, Z.; et al. Degradation of organic pollutants by intimately coupling photocatalytic materials with microbes: A review. Crit. Rev. Biotechnol. 2021, 41, 273–299.

  • 41.

    Costa, I.G.F.; Terra, N.M.; Cardoso, V.L.; et al. Photoreduction of chromium(VI) in microstructured ceramic hollow fibers impregnated with titanium dioxide and coated with green algae Chlorella vulgaris. J. Hazard. Mater. 2019, 379, 120837.

  • 42.

    Mao, J.; Gu, Z.; Zhang, S.; et al. Protonated carbon nitride elicits microalgae for water decontamination. Water Res. 2022, 222, 118955.

  • 43.

    Abdelfattah, A.; Ali, S.S.; Ramadan, H.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205.

  • 44.

    Chen, S.; Yuan, M.; Feng, W.; et al. Catalytic degradation mechanism of sulfamethazine via photosynergy of monoclinic BiVO4 and microalgae under visible-light irradiation. Water Res. 2020, 185, 116220.

  • 45.

    Ji, J.; Li, H.; Liu, S. Current natural degradation and artificial intervention removal techniques for antibiotics in the aquatic environment: A review. Appl. Sci. 2025, 15, 5182.

  • 46.

    Badger, M.R. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. J. Exp. Bot. 2003, 54, 609–622.

  • 47.

    Li, D.; Dong, H.; Cao, X.; et al. Enhancing photosynthetic CO2 fixation by assembling metal-organic frameworks on Chlorella pyrenoidosa. Nat. Commun. 2023, 14, 5337.

  • 48.

    Gao, W.; Guan, Y.; Li, Y.; et al. Treatment of nitrogen and phosphorus in wastewater by heterotrophic N- and P-starved microalgal cell. Appl. Microbiol. Biotechnol. 2023, 107, 1477–1490.

  • 49.

    Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; et al. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36.

  • 50.

    Kumar, N.; Banerjee, C.; Chang, J.-S.; et al. Valorization of wastewater through microalgae as a prospect for generation of biofuel and high-value products. J. Clean. Prod. 2022, 362, 132114.

  • 51.

    Hwang, J.-H.; Sadmani, A.; Lee, S.-J.; et al. An eco-friendly tool for the treatment of wastewaters for environmental safety. In Bioremediation of Industrial Waste for Environmental Safety; Bharagava, R., Saxena, G., Eds.; Springer: Singapore, 2020. https://doi.org/10.1007/978-981-13-3426-9_12.

  • 52.

    Suresh Kumar, K.; Dahms, H.-U.; Won, E.-J.; et al. Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352.

  • 53.

    Chakdar, H.; Thapa, S.; Srivastava, A.; et al. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. J. Hazard. Mater. 2022, 424, 127609.

  • 54.

    Gaur, A.; Adholeya, A. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr. Sci. 2004, 86, 528–534.

  • 55.

    Sun, J.; Cheng, J.; Yang, Z.; et al. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation. Bioresour. Technol. 2015, 194, 305–311.

  • 56.

    Ananthi, V.; Raja, R.; Carvalho, I.S.; et al. A realistic scenario on microalgae based biodiesel production: Third generation biofuel. Fuel 2021, 284, 118965.

  • 57.

    Mkpuma, V.O.; Moheimani, N.R.; Ennaceri, H. Effect of light intensity on Chlorella sp. biofilm growth on anaerobically digested food effluents (ADFE). J. Environ. Manag. 2024, 371, 123015.

  • 58.

    Balbuena-Ortega, A.; Flores-Bahena, P.D.; Villa-Calderón, A.; et al. Impact of light spectrum on outdoors tubular photobioreactors used for microalgae-based wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 114884.

  • 59.

    Khandelwal, A.; Chhabra, M.; Lens, P.N.L. Integration of third generation biofuels with bio-electrochemical systems: Current status and future perspective. Front. Plant Sci. 2023, 14. 1081108.

  • 60.

    Wan Mahari, W.A.; Wan Razali, W.A.; Waiho, K.; et al. Light-emitting diodes (LEDs) for culturing microalgae and cyanobacteria. Chem. Eng. J. 2024, 485, 149619.

  • 61.

    Yin, S.; Jin, W.; Xi, T.; et al. Factors affect the oxygen production of Chlorella pyrenoidosa in a bacterial-algal symbiotic system: Light intensity, temperature, pH and static magnetic field. Process Saf. Environ. Prot. 2024, 184, 492–501.

  • 62.

    Sachdeva, N.; Gupta, R.P.; Mathur, A.S.; et al. Enhanced lipid production in thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738. Bioresour. Technol. 2016, 221, 576–587.

  • 63.

    Zhou, W.; Wang, Z.; Xu, J.; et al. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. J. Biosci. Bioeng. 2018, 126, 644–648.

  • 64.

    Abdur Razzak, S.; Bahar, K.; Islam, K.M.O.; et al. Microalgae cultivation in photobioreactors: Sustainable solutions for a greener future. Green Chem. Eng. 2024, 5, 418–439.

  • 65.

    Rosli, S.S.; Amalina Kadir, W.N.; Wong, C.Y.; et al. Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation. Renew. Sustain. Energy Rev. 2020, 134, 110306.

  • 66.

    Sousa, S.A.; Machado, C.A.; Esteves, A.F.; et al. Microalgae-based wastewater remediation: Linking N:P ratio and nitrogen sources to treatment performance by Chlorella vulgaris and biomass valorisation. Chem. Eng. J. 2025, 518, 164701.

  • 67.

    Longo, S.; d’Antoni, B.M.; Bongards, M.; et al. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268.

  • 68.

    Sharma, A.; Chhabra, M. Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. Bioresour. Technol. 2021, 338, 125499.

  • 69.

    Kakarla, R.; Kim, J.R.; Jeon, B.-H.; et al. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor. Bioresour. Technol. 2015, 195, 210–216.

  • 70.

    Ullah, Z.; Sheikh, Z.; Zaman, W.Q.; et al. Performance comparison of a photosynthetic and mechanically aerated microbial fuel cell for wastewater treatment and bioenergy generation using different anolytes. J. Water Process Eng. 2023, 56, 104358.

  • 71.

    Yahampath Arachchige Don, C.D.Y.; Babel, S. Comparing the performance of microbial fuel cell with mechanical aeration and photosynthetic aeration in the cathode chamber. Int. J. Hydrogen Energy 2021, 46, 16751–16761.

  • 72.

    Kakarla, R.; Min, B. Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int. J. Hydrogen Energy 2014, 39, 10275–10283.

  • 73.

    Bazdar, E.; Roshandel, R.; Yaghmaei, S.; et al. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresour. Technol. 2018, 261, 350–360.

  • 74.

    Jang, J.K.; Kan, J.; Bretschger, O.; et al. Electricity generation by microbial fuel cell using microorganisms as catalyst in cathode. J. Microbiol. Biotechnol. 2013, 23, 1765–1773.

  • 75.

    Noori, M.T.; Ghangrekar, M.M.; Mukherjee, C.K.; et al. Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnol. Adv. 2019, 37, 107420.

  • 76.

    Li, J.; Chen, Z. Revitalizing microbial fuel cells: A comprehensive review on the transformative role of iron-based materials in electrode design and catalyst development. Chem. Eng. J. 2024, 489, 151323.

  • 77.

    Qiu, S.; Guo, Z.; Naz, F.; et al. An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells. Bioelectrochemistry 2021, 141, 107834.

  • 78.

    Dange, P.; Savla, N.; Pandit, S.; et al. A comprehensive review on oxygen reduction reaction in microbial fuel cells. JRM 2021, 10, 665–697.

  • 79.

    Sun, Y.; Li, H.; Guo, S.; et al. Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chin. Chem. Lett. 2024, 35, 109418.

  • 80.

    Liu, T.; Rao, L.; Yuan, Y.; et al. Bioelectricity generation in a microbial fuel cell with a self-sustainable photocathode. Sci. World J. 2015, 2015, 864568.

  • 81.

    Zhao, C.-X.; Liu, J.-N.; Wang, J.; et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

  • 82.

    Zhao, K.; Shu, Y.; Li, F.; et al. Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: A review. Green Energy Environ. 2023, 8, 1043–1070.

  • 83.

    Wang, H.; Wei, L.; Yang, C.; et al. A pyridine-Fe gel with an ultralow-loading Pt derivative as ORR catalyst in microbial fuel cells with long-term stability and high output voltage. Bioelectrochemistry 2020, 131, 107370.

  • 84.

    Li, M.; Zhou, J.; Bi, Y.-G.; et al. Transition metals (Co, Mn, Cu) based composites as catalyst in microbial fuel cells application: The effect of catalyst composition. Chem. Eng. J. 2020, 383, 123152.

  • 85.

    Kodali, M.; Santoro, C.; Serov, A.; et al. P. Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts. Electrochim. Acta 2017, 231, 115–124.

  • 86.

    Yang, Y.-W.; Li, M.-J.; Tao, W.-Q.; et al. Study of carbon dioxide sequestration and electricity generation by a new hybrid bioenergy system with the novelty catalyst. Appl. Therm. Eng. 2021, 197, 117366.

  • 87.

    Abazarian, E.; Gheshlaghi, R.; Mahdavi, M.A. Impact of light/dark cycle on electrical and electrochemical characteristics of algal cathode sediment microbial fuel cells. J. Power Sources 2020, 475, 228686.

  • 88.

    Zhang, Y.; He, Q.; Xia, L.; et al. Algae cathode microbial fuel cells for cadmium removal with simultaneous electricity production using nickel foam/graphene electrode. Biochem. Eng. J. 2018, 138, 179–187.

  • 89.

    Dumas, C.; Mollica, A.; Féron, D.; et al. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochim. Acta 2007, 53, 468–473.

  • 90.

    Neethu, B.; Ihjas, K.; Chakraborty, I.; et al. Nickel adsorbed algae biochar based oxygen reduction reaction catalyst. Bioelectrochemistry 2024, 159, 108747.

  • 91.

    Elmaadawy, K.; Liu, B.; Hassan, G.; et al. Microalgae-assisted fixed-film activated sludge MFC for landfill leachate treatment and energy recovery. Process Saf. Environ. Prot. 2022, 160, 221–231.

  • 92.

    Wu, X.; Song, T.; Zhu, X.; et al. Construction and operation of microbial fuel cell with Chlorella Vulgaris biocathode for electricity generation. Appl. Biochem. Biotechnol. 2013, 171, 2082–2092.

  • 93.

    Altın, N.; Uyar, B. Increasing power generation and energy efficiency with modified anodes in algae-supported microbial fuel cells. Biomass Conv. Bioref. 2025, 15, 17203–17215.

  • 94.

    Ling, J.; Xu, Y.; Lu, C.; et al. Enhancing stability of microalgae biocathode by a partially submerged carbon cloth electrode for bioenergy production from wastewater. Energies 2019, 12, 3229.

  • 95.

    Xin, S.; Shen, J.; Liu, G.; et al. High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst. Energy 2020, 196, 117123.

  • 96.

    Wang, Y.; Zhong, K.; Li, H.; et al. Bimetallic hybrids modified with carbon nanotubes as cathode catalysts for microbial fuel cell: Effective oxygen reduction catalysis and inhibition of biofilm formation. J. Power Sources 2021, 485, 229273.

  • 97.

    Du, Y.; Ma, F.-X.; Xu, C.-Y.; et al. Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells. Nano Energy 2019, 61, 533–539.

  • 98.

    Parsa, S.M.; Chen, Z.; Feng, S.; et al. Metal-free nitrogen-doped carbon-based electrocatalysts for oxygen reduction reaction in microbial fuel cells: Advances, challenges, and future directions. Nano Energy 2025, 134, 110537.

  • 99.

    Guo, B.; Jiang, Q.; Mao, Z.; et al. B–F dual-doped carbon nanotubes for multi-site and high-rate two-electron oxygen reduction reaction electrocatalysis. Carbon 2024, 222, 118997.

  • 100.

    Lv, Q.; Si, W.; He, J.; Sun, L.; et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 2018, 9, 3376.

  • 101.

    Qin, L.; Liu, Y.; Qin, Y.; et al. Gd-Co nanosheet arrays coated on N-doped carbon spheres as cathode catalyst in photosynthetic microalgae microbial fuel cells. Sci. Total Environ. 2022, 849, 157711.

  • 102.

    Yin, S.-H.; Yang, J.; Han, Y.; et al. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 21976–21979.

  • 103.

    Zhang, S.; Zhang, S.; Liu, H.; et al. Fe-N-C-based cathode catalyst enhances redox reaction performance of microbial fuel cells: Azo dyes degradation accompanied by electricity generation. J. Environ. Chem. Eng. 2023, 11, 109264.

  • 104.

    Cheng, S.; Wu, J. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry 2013, 92, 22–26.

  • 105.

    Li, X.; Hu, B.; Suib, S.; et al. Manganese dioxide as a new cathode catalyst in microbial fuel cells. J. Power Sources 2010, 195, 2586–2591.

  • 106.

    Zhang, X.; Lin, Z.; Liang, B.; et al. Highly efficient improvement of power generation and novel porous iron-nitrogen-doped carbon nanosphere. J. Power Sources 2021, 498, 229883.

  • 107.

    Ortiz-Martínez, V.M.; Salar-García, M.J.; Touati, K.; et al. Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells. Energy 2016, 113, 1241–1249.

  • 108.

    Wang, J.; Zhang, P.; Yang, B.; et al. Cu/TiO2 Nanoparticles: Enhancing microbial fuel cell performance as photocathode catalysts. Bioresour. Technol. 2025, 430, 132586.

  • 109.

    Yan, Y.; Hou, Y.; Yu, Z.; et al. Bimetallic organic framework-derived, oxygen-defect-rich FexCo3−xS4/FeyCo9−yS8 heterostructure microsphere as a highly efficient and robust cathodic catalyst in the microbial fuel cell. J. Power Sources 2020, 472, 228582.

  • 110.

    Wang, H.; Wei, L.; Shen, J. Iron-gelatin aerogel derivative as high-performance oxygen reduction reaction electrocatalysts in microbial fuel cells. Int. J. Hydrogen Energy 2022, 47, 17982–17991.

  • 111.

    Yang, W.; Wang, X.; Rossi, R.; et al. Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chem. Eng. J. 2020, 380, 122522.

  • 112.

    Song, Y.; Zhen, F.; Qi, Y.; et al. One-step annealing in situ synthesis of low tortuosity corn straw cellulose biochar/Fe3C: Application for cathode catalyst in microbial fuel cell. Int. J. Biol. Macromol. 2025, 289, 138750.

  • 113.

    Peera, S.G.; Maiyalagan, T.; Liu, C.; et al. A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. Int. J. Hydrogen Energy 2021, 46, 3056–3089.

  • 114.

    Sun, Y.; Duan, Y.; Hao, L.; et al. Cornstalk-derived nitrogen-doped partly graphitized carbon as efficient metal-free catalyst for oxygen reduction reaction in microbial fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 25923–25932.

  • 115.

    Ma, Y.; You, S.; Jing, B.; et al. Biomass pectin-derived N, S-enriched carbon with hierarchical porous structure as a metal-free catalyst for enhancing bio-electricity generation. Int. J. Hydrogen Energy 2019, 44, 16624–16638.

  • 116.

    Liang, B.; Li, K.; Liu, Y.; et al. Nitrogen and phosphorus dual-doped carbon derived from chitosan: An excellent cathode catalyst in microbial fuel cell. Chem. Eng. J. 2019, 358, 1002–1011.

  • 117.

    Chang, H.-C.; Gustave, W.; Yuan, Z.-F.; et al. One-step fabrication of binder-free air cathode for microbial fuel cells by using balsa wood biochar. Environ. Technol. Innov. 2020, 18, 100615.

  • 118.

    Chakraborty, I.; Sathe, S.M.; Dubey, B.K.; et al. Waste-derived biochar: Applications and future perspective in microbial fuel cells. Bioresour. Technol. 2020, 312, 123587.

  • 119.

    Zhao, S.; Liu, S.; Sumpradit, T.; et al. Magnetic nanoparticles doped biochar cathode in a two-chamber microbial fuel cell for the adsorption-reduction of hexavalent chromium. Int. J. Hydrogen Energy 2024, 63, 163–172.

  • 120.

    Zhang, K.; Zhao, Z.; Luo, H.; et al. Enhanced the treatment of antibiotic wastewater and antibiotic resistance genes control by Fe0-catalyzed microalgal MFCs in continuous flow mode. J. Water Process Eng. 2023, 53, 103701.

  • 121.

    Sun, J.; Li, N.; Yang, P.; et al. Simultaneous antibiotic degradation, simultaneous antibiotic degradation, nitrogen removal and power generation in a microalgae-bacteria powered biofuel cell designed for aquaculture wastewater treatment and energy recovery. Int. J. Hydrogen Energy 2020, 45, 10871–10881.

  • 122.

    Wang, Y.; Lin, Z.; Su, X.; et al. Cost-effective domestic wastewater treatment and bioenergy recovery in an immobilized microalgal-based photoautotrophic microbial fuel cell (PMFC). Chem. Eng. J. 2019, 372, 956–965.

  • 123.

    Elmaadawy, K.; Hu, J.; Guo, S.; et al. Enhanced treatment of landfill leachate with cathodic algal biofilm and oxygen-consuming unit in a hybrid microbial fuel cell system. Bioresour. Technol. 2020, 310, 123420.

  • 124.

    Jiang, Q.; Song, X.; Liu, J.; et al. Enhanced nutrients enrichment and removal from eutrophic water using a self-sustaining in situ photomicrobial nutrients recovery cell (PNRC). Water Res. 2019, 167, 115097.

  • 125.

    Logroño, W.; Pérez, M.; Urquizo, G.; et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere 2017, 176, 378–388.

  • 126.

    Zieliński, M.; Rusanowska, P.; Dudek, M.; et al. Efficiency of photosynthetic microbial fuel cells (pMFC) depending on the type of microorganisms inhabiting the cathode chamber. Energies 2024, 17, 2296.

  • 127.

    Deka, R.; Shreya, S.; Mourya, M.; et al. A techno-economic approach for eliminating dye pollutants from industrial effluent employing microalgae through microbial fuel cells: Barriers and perspectives. Environ. Res. 2022, 212, 113454.

  • 128.

    Iniesta-López, E.; Fernández, A.H.; Gómez, J.M.; et al. Transforming waste management: Converting pig slurry into clean energy and biomass through integrated MFC-microalgae systems. J. Water Process Eng. 2025, 69, 106815.

  • 129.

    Bora, A.; Gurusamy, S.; Veleeswaran, A.; et al. Simultaneous biodiesel and bioelectricity generation utilizing dairy and rice mill wastewater by freshwater microalgal isolate: An integrated energy-efficient approach. Process Saf. Environ. Prot. 2024, 190, 149–161.

  • 130.

    Yang, Z.; Nie, C.; Hou, Q.; et al. Coupling a photosynthetic microbial fuel cell (PMFC) with photobioreactors (PBRs) for pollutant removal and bioenergy recovery from anaerobically digested effluent. Chem. Eng. J. 2019, 359, 402–408.

  • 131.

    Pengadeth, D.; Prakash Naik, S.; Sasi, A.; et al. Revisiting the role of algal biocathodes in microbial fuel cells for bioremediation and value-addition. Chem. Eng. J. 2024, 496, 154144.

  • 132.

    Yang, Z.; Pei, H.; Hou, Q.; et al. Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chem. Eng. J. 2018, 332, 277–285.

  • 133.

    Yang, Z.; Li, J.; Chen, F.; et al. Bioelectrochemical process for simultaneous removal of copper, ammonium and organic matter using an algae-assisted triple-chamber microbial fuel cell. Sci. Total Environ. 2021, 798, 149327.

  • 134.

    Verma, M.; Singh, V.; Mishra, V. Bioelectricity generation by using cellulosic waste and spent engine oil in a concentric photobioreactor-microbial fuel cell. J. Environ. Chem. Eng. 2023, 11, 110566.

  • 135.

    Nguyen, H.T.H.; Min, B. Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series. Sci. Total Environ. 2020, 723, 138054.

  • 136.

    Pannell, T.C.; Goud, R.K.; Schell, D.J.; et al. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater. Biochem. Eng. J. 2016, 116, 85–94.

  • 137.

    Sharma, M.; Jalalah, M.; Alsareii, S.A.; et al. Microalgal cycling in the cathode of microbial fuel cells (MFCs) induced oxygen reduction reaction (ORR) and electricity: A biocatalytic process for clean energy. Chem. Eng. J. 2024, 479, 147431.

  • 138.

    Qin, L.; Qin, Y.; Cui, N.; et al. Photosynthetic microalgae microbial fuel cells for bioelectricity generation and microalgae lipid recovery using Gd-Co@N-CSs/NF as cathode. Chem. Eng. J. 2024, 490, 151647.

  • 139.

    You, J.; Guo, Y.; Guo, R.; et al. A review of visible light-active photocatalysts for water disinfection: Features and prospects. Chem. Eng. J. 2019, 373, 624–641.

  • 140.

    Hao, A.; Ning, X.; Liu, X.; et al. Phosphorus heteroatom doped BiOCl as efficient catalyst for photo-piezocatalytic degradation of organic pollutant and unveiling the mechanism: Experiment and DFT calculation. Chem. Eng. J. 2024, 499, 155823.

  • 141.

    Zhu, X.; Zhang, Y.; Wang, Y.; et al. Oxygen-deficient WO3 for stable visible-light photocatalytic degradation of acetaldehyde within a wide humidity range. Chem. Eng. J. 2024, 491, 152193.

  • 142.

    Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

  • 143.

    Lan, Y.; Li, Z.; Li, D.; et al. Visible-light responsive Z-scheme Bi@β-Bi2O3/g-C3N4 heterojunction for efficient photocatalytic degradation of 2,3-dihydroxynaphthalene. Chem. Eng. J. 2020, 392, 123686.

  • 144.

    Yuan, C.; Tian, N.; Gao, L.; et al. Efficient dual functional hydrogen production synergistic degradation of organic pollutants by hydroxyl and cyano group modified crystalline g-C3N4 under visible light. Chem. Eng. J. 2025, 503, 158645.

  • 145.

    Shi, K.; Wang, J.; Yin, L.; et al. Efficient synergistic degradation of tetracycline hydrochloride by protonated g-C3N4 and Chlorella pyrenoidosa: Kinetics and mechanism. Chem. Eng. J. 2023, 462, 142331.

  • 146.

    Li, Z.; Chen, G.; Cheng, P.; et al. Phototactic photocatalysis enabled by functionalizing active microorganisms with photocatalyst. Adv. Sustain. Syst. 2024, 8, 2300302.

  • 147.

    Wang, L.; Zhang, C.; Gao, F.; et al. Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light. Chem. Eng. J. 2017, 314, 622–630.

  • 148.

    Lu, Z.; Xu, Y.; Peng, L.; et al. A two-stage degradation coupling photocatalysis to microalgae enhances the mineralization of enrofloxacin. Chemosphere 2022, 293, 133523.

  • 149.

    Gao, W.; Pan, X.; Wu, J.; et al. Synergistic degradation mechanism of roxithromycin by the combination of TiO2/graphene oxide/polypropylene fiber photocatalytic network and microalgae. Chem. Eng. J. 2025, 519, 165218.

  • 150.

    Zhang, D.; Yang, H.; Guo, X.; et al. Visible-light-driven synergistic photocatalysis-microbial metabolism by Chlorella ellipsoidea@TiO2-Ag-AgCl nano-biohybrid: Enhanced o-cresol biodegradation and mechanistic insights. J. Hazard. Mater. 2025, 495, 138771.

  • 151.

    Xiao, C.; Yuan, J.; Li, L.; et al. Photocatalytic synergistic biofilms enhance tetracycline degradation and conversion. Environ. Sci. Ecotechnol. 2023, 14, 100234.

  • 152.

    Lee H, Hyun J. Biophotovoltaic living hydrogel of an ion-crosslinked carboxymethylated cellulose nanofiber/alginate. Carbohydr. Polym. 2023, 321, 121299.

  • 153.

    Liu, S.; Ma, L.; Liu, Y.; et al. Impact of photocatalysis, carriers and environmental factors on microorganisms in the intimate coupling of photocatalysis and biodegradation system: A review. J. Environ. Chem. Eng. 2024, 12, 113136.

  • 154.

    Singh, R.; Sinha, A. A critical review of recent advancements in the photocatalysis process, mechanism, and degradation pathways for the removal of phthalates from the contaminated water matrix. J. Environ. Manag. 2025, 377, 124663.

  • 155.

    Zhong, N.; Yuan, J.; Luo, Y.; et al. Intimately coupling photocatalysis with phenolics biodegradation and photosynthesis. Chem. Eng. J. 2021, 425, 130666.

  • 156.

    Ding, X.; Yu, Q.; Ren, H.; et al. Degradation of conjugated estrogen in visible light-driven intimately coupled photocatalysis and biodegradation system. Bioresour. Technol. 2024, 406, 131045.

  • 157.

    Zhang, H.; Yu, Y.; Li, Y.; et al. A novel BC/g-C3N4 porous hydrogel carrier used in intimately coupled photocatalysis and biodegradation system for efficient removal of tetracycline hydrochloride in water. Chemosphere 2023, 317, 137888.

  • 158.

    Dong, Y.; Xu, D.; Zhang, J.; et al. Enhanced antibiotic wastewater degradation by intimately coupled B-Bi3O4Cl photocatalysis and biodegradation reactor: Elucidating degradation principle systematically. J. Hazard. Mater. 2023, 445, 130364.

  • 159.

    Wang, J.; Xiong, J.; Feng, Q.; et al. Intimately coupled photocatalysis and functional bacterial system enhance degradation of 1,2,3- and 1,3,5-trichlorobenzene. J. Environ. Manag. 2022, 318, 115595.

  • 160.

    Zhu, C.; Huang, Y.; Ding, Z.; et al. Development and mechanistic insights of a photocatalytic-algae-bacteria degradation coupling system for treating toxic coking wastewater. J. Environ. Sci. 2025, 157, 296–308.

  • 161.

    Wen, D.; Li, G.; Xing, R.; et al. 2,4-DNT removal in intimately coupled photobiocatalysis: The roles of adsorption, photolysis, photocatalysis, and biotransformation. Appl. Microbiol. Biotechnol. 2012, 95, 263–272.

  • 162.

    Cai, H.; Sun, L.; Wang, Y.; et al. Unprecedented efficient degradation of phenanthrene in water by intimately coupling novel ternary composite Mn3O4/MnO2-Ag3PO4 and functional bacteria under visible light irradiation. Chem. Eng. J. 2019, 369, 1078–1092.

  • 163.

    Peng, L.; Long, Q.; Liang, C.; et al. Efficient degradation of sulfamonomethoxine in wastewater using a novel intimately coupled photocatalysis and biodegradation system prepared with the calcium alginate hydrogel. Biochem. Eng. J. 2025, 219, 109731.

  • 164.

    Guo, J.; Guo, X.; Yang, H.; et al. Construction of Bio-TiO2/Algae complex and synergetic mechanism of the acceleration of phenol biodegradation. Materials 2023, 16, 3882.

  • 165.

    Xiong, J.-Q.; Kurade, M.B.; Jeon, B.-H. Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol. 2018, 36, 30–44.

  • 166.

    Guo, J.; Song, G.; Zhou, M. Highly dispersed FeN-CNTs heterogeneous electro-Fenton catalyst for carbamazepine removal with low Fe leaching at wide pH. Chem. Eng. J. 2023, 474, 145681.

  • 167.

    Deng, Z.; Gong, Z.; Gong, M.; et al. Defect engineering on commercial carbon for economical H2O2 electrosynthesis under industrial-relevant conditions. Adv. Funct. Mater. 2025, e12847.

  • 168.

    Xue, S.; Li, X.; Sun, Y.; et al. Hydrogen radical enabling industrial-level oxygen electroreduction to hydrogen peroxide. Angew. Chem. Int. Ed. 2025, 64, e202420063.

  • 169.

    Deng, F.; Olvera-Vargas, H.; Zhou, M.; et al. Critical review on the mechanisms of Fe2+ regeneration in the electro-Fenton process: Fundamentals and boosting strategies. Chem. Rev. 2023, 123, 4635–4662.

  • 170.

    Monteil, H.; Péchaud, Y.; Oturan, N.; et al. A review on efficiency and cost effectiveness of electro- and bio-electro-Fenton processes: Application to the treatment of pharmaceutical pollutants in water. Chem. Eng. J. 2019, 376, 119577.

  • 171.

    Nidheesh, P.V.; Ganiyu, S.O.; Martínez-Huitle, C.A.; et al. Recent advances in electro-Fenton process and its emerging applications. Crit. Rev. Environ. Sci. Technol. 2023, 53, 887–913.

  • 172.

    Jiménez-Bambague, E.M.; Villarreal-Arias, D.S.; Ramírez-Vanegas, O.D.; et al. Removal of pharmaceutical compounds from real urban wastewater by a continuous bio-electrochemical process at pilot scale. J. Environ. Chem. Eng. 2023, 11, 110130.

  • 173.

    Mousset, E.; Trellu, C.; Olvera-Vargas, H.; et al. A. Electrochemical technologies coupled with biological treatments. Curr. Opin. Electrochem. 2021, 26, 100668.

  • 174.

    Zhu, M.; Liu, X.; Liu, L.; et al. MFC based in situ electrocatalytic persulfate activation for degradation of 2,4-dichlorophenol: Process and mechanism. J. Environ. Chem. Eng. 2022, 10, 108803.

  • 175.

    Xie, Z.; Yang, C.; Yu, X.-Y.; et al. Direct extracellular electron transfer for high electricity production by a new type of marine microalgae Nannochloropsis sp. HDY2. Chem. Eng. J. 2024, 481, 148636.

  • 176.

    Deng, Z.; Ma, Y.; Zhu, J.; et al. In situ activation of peroxymonosulfate with bioelectricity for sulfamethoxazole sustainable removal. Environ. Res. 2024, 257, 119294.

  • 177.

    Miranda, D.E.E.; Paricahua, R.M.A.; Quispe, E.N.G.; et al. Sequential treatment of tannery wastewater using microalgae and microwave-prepared anodes. Chemosphere 2025, 386, 144619.

  • 178.

    Chen, Y.; Lv, Z.; Xu, J.; et al. Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials. J. Power Sources 2012, 201, 136–141.

  • 179.

    Bhaduri, S.; Behera, M. From single-chamber to multi-anodic microbial fuel cells: A review. J. Environ. Manag. 2024, 355, 120465.

  • 180.

    Sayed, E.T.; Rezk, H.; Abdelkareem, M.A.; et al. Artificial neural network based modelling and optimization of microalgae microbial fuel cell. Int. J. Hydrogen Energy 2024, 52, 1015–1025.

  • 181.

    Ren, Z.; Li, H.; Sun, P.; et al. Development and challenges of emerging biological technologies for algal-bacterial symbiosis systems: A review. Bioresour. Technol. 2024, 413, 131459.

  • 182.

    He, Q.; Zhang, Q.; Li, M.; et al. Harnessing diurnal dynamics: Understanding the influence of light–dark cycle on algal-bacterial symbiotic system under aniline stress. Bioresour. Technol. 2025, 416, 131796.

  • 183.

    Ewusi-Mensah, D.; Huang, J.; Chaparro, L.K.; et al. Algae-assisted microbial desalination cell: Analysis of cathode performance and desalination efficiency assessment. Processes 2021, 9, 2011.

  • 184.

    Qing, S.; Lu, X.; Jiang, Y.; et al. ZIF-8 confined carbon dots/bilirubin oxidase on microalgal cells to boost oxygen reduction reaction in photo-biocatalytic fuel cells for pollutants removal. Chin. Chem. Lett. 2024, 110576. https://doi.org/10.1016/j.cclet.2024.110576.

  • 185.

    Wang, X.; Hu, J.; Chen, Q.; et al. Synergic degradation of 2,4,6-trichlorophenol in microbial fuel cells with intimately coupled photocatalytic-electrogenic anode. Water Res. 2019, 156, 125–135.

  • 186.

    Xu, Z.; Chen, S.; Guo, S.; et al. New insights in light-assisted microbial fuel cells for wastewater treatment and power generation: A win-win cooperation. J. Power Sources 2021, 501, 230000.

  • 187.

    Si, Q.; Feng, X.; Teng, Y.; et al. C Constructing effective and low-toxic removal of combined contaminants by intimately coupled Z-scheme heterojunction photocatalysis and biodegradation system. Appl. Catal. B Environ. 2025, 365, 124909.

  • 188.

    Ranade, A.K.; Yamaguchi, A.; Miyauchi, M.; et al. Interface dependent electron shunting in graphene-integrated intimately coupled photocatalytic biodegradation. Water Res. 2025, 273, 123064.

  • 189.

    Mishra, A.; Medhi, K.; Malaviya, P.; et al. Omics approaches for microalgal applications: Prospects and challenges. Bioresour. Technol. 2019, 291, 121890.

  • 190.

    Li, X.; Jia, X.; Zhang, C.; et al. A comprehensive overview of advances in heterogeneous electro-Fenton processes for effective water treatment. Sep. Purif. Technol. 2025, 361, 131470.

  • 191.

    Qin, X.; Cao, P.; Quan, X.; et al. Highly efficient hydroxyl radicals production boosted by the atomically dispersed Fe and Co sites for heterogeneous electro-Fenton oxidation. Environ. Sci. Technol. 2023, 57, 2907–2917.

  • 192.

    Su, P.; Fu, W.; Hu, Z.; et al. Insights into transition metal encapsulated N-doped CNTs cathode for self-sufficient electrocatalytic degradation. Appl. Catal. B Environ. 2022, 313, 121457.

  • 193.

    Cao, S.; Teng, F.; Lv, J.; et al. Performance of an immobilized microalgae-based process for wastewater treatment and biomass production: Nutrients removal, lipid induction, microalgae harvesting and dewatering. Bioresour. Technol. 2022, 356, 127298.

  • 194.

    Liu, Y.; Zhang, G.; Li, Y.; et al. Enhancing immobilized Chlorella vulgaris growth with novel buoyant barium alginate bubble beads. Bioresour. Technol. 2024, 406, 130996.

  • 195.

    Chen, Z.; McCuskey, S.R.; Zhang, W.; et al. Three-dimensional conductive conjugated polyelectrolyte gels facilitate interfacial electron transfer for improved biophotovoltaic performance. Nat. Commun. 2025, 16, 5955.

Share this article:
How to Cite
Qing, S.; Wu, X. Recent Progress in Hybrid Microalgae-Electrocatalytic/Photocatalytic Technologies for Enhanced Wastewater Treatment. Nano-electrochemistry & Nano-photochemistry 2025, 1 (1), 4. https://doi.org/10.53941/nenp.2025.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.