- 1.
Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; et al. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.
- 2.
Shen, J.; Zhu, Y.; Yang, X.; et al. Graphenequantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686–3699.
- 3.
Tian, X.T.; Yin, X.B. Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence. Small 2019, 15, 1901803.
- 4.
Barati, F.; Avatefi, M.; Moghadam, N.B.; et al. A review of graphene quantum dots and their potential biomedical applications. J. Biomater. Appl. 2022, 37, 1137–1158.
- 5.
Benítez-Martínez, S.; Valcárcel, M. Graphene quantum dots in analytical science. TrAC-Trend. Anal. Chem. 2015, 72, 93–113.
- 6.
Bressi, V.; Ferlazzo, A.; Iannazzo, D.; et al. Graphene quantum dots by eco-friendly green synthesis for electrochemical sensing: Recent advances and future perspectives. Nanomaterials 2021, 11, 1120.
- 7.
Cayuela, A.; Soriano, M.L.; Carrillo-Carrión, C.; et al. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun. 2016, 52, 1311–1326.
- 8.
Hua, Y.; Li, S.; Cai, Y.; et al. A sensitive and selective electroanalysis strategy for histidine using the wettable well electrodes modified with graphene quantum dot-scaffolded melamine and copper nanocomposite. Nanoscale 2019, 11, 2126–2130.
- 9.
Punrat, E.; Maksuk, C.; Chuanuwatanakul, S.; et al. Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta 2016, 150, 198–205.
- 10.
Hu, T.; Zhang, L.; Wen, W.; et al. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens. Bioelectron. 2016, 77, 451–456.
- 11.
Xu, Q.; Yuan, H.; Dong, X.; et al. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosens. Bioelectron. 2018, 107, 153–162.
- 12.
Dan, X.; Ruiyi, L.; Zaijun, L.; et al. Facile strategy for synthesis of silver-graphene hybrid with controllable size and excellent dispersion for ultrasensitive electrochemical detection of acetamiprid. Appl. Surf. Sci. 2020, 512, 145628.
- 13.
Esmaeili, M.; Ahour, F.; Keshipour, S. Sensitive and selective determination of trace amounts of mercury ions using a dimercaprol functionalized graphene quantum dot modified glassy carbon electrode. Nanoscale 2021, 13, 11403–11413.
- 14.
Bhatnagar, D.; Kaur, I.; Kumar, A. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack. Int. J. Biol. Macromol. 2017, 95, 505–510.
- 15.
Ganganboina, A.B.; Dega, N.K.; Tran, H.L.; et al. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens. Bioelectron. 2021, 181, 113151.
- 16.
Wang, X.; Chen, L.; Su, X.; et al. Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup. J. Biosens. Bioelectron. 2013, 47, 171–177.
- 17.
Khonsari, Y.N.; Sun, S. A novel label free electrochemiluminescent aptasensor for the detection of lysozyme. Mater. Sci. Eng. C 2019, 96, 146–152.
- 18.
Nie, G.; Wang, Y.; Tang, Y.; et al. A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosens. Bioelectron. 2018, 101, 123–128.
- 19.
Long, Y.-M.; Bao, L.; Zhao, J.-Y.; et al. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)32+. Anal. Chem. 2014, 86, 7224–7228.
- 20.
Ahmed, S.R.; Mogus, J.; Chand, R.; et al. Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid. Biosens. Bioelectron. 2018, 103, 45–53.
- 21.
Pang, X.; Bian, H.; Wang, W.; et al. A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV. Biosens. Bioelectron. 2017, 91, 456–464.
- 22.
Chung, S.; Revia, R.A.; Zhang, M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33, 1904362.
- 23.
Rassheed, P.A.; Ankitha, M.; Pillai, V.K.; et al. Graphene quantum dots for biosensing and bioimaging. RSC Adv. 2024, 14, 16001–16023.
- 24.
Kammarchedu, V.; Asgharian, H.; Zhou, K.; et al. Recent advances in graphene-based electroanalytical devices for healthcare applications. Nanoscale 2024, 16, 12857–12882.
- 25.
Durodola, S.S.; Adekunle, A.S.; Olasunkanmi, L.O.; et al. A review on graphene quantum dots for electrochemical detection of emerging pollutants. J. Fluoresc. 2022, 32, 2223–2236.
- 26.
Ananthanarayanan, A.; Wang, X.; Routh, P.; et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater. 2014, 24, 3021–3026.
- 27.
Li, Q.; Zhang, S.; Dai, L.; et al. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 18932–18935.
- 28.
Vázquez-Nakagawa, M.; Rodríguez-Pérez, L.; Martín, N.; et al. Supramolecular assembly of edge functionalized top-down chiral graphene quantum dots. Angew. Chem. Int. Ed. 2022, 61, e202211365.
- 29.
Zhao, Y.; Wu, X.; Sun, S.; et al. A facile and high-efficient approach to yellow emissive graphene quantum dots from graphene oxide. Carbon 2017, 124, 342–347.
- 30.
Kalita, H.; Palaparthy, V.S.; Baghini, M.S.; et al. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon 2020, 165, 9–17.
- 31.
He, M.; Guo, X.; Huang, J.; et al. Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation. Carbon 2018, 140, 508–520.
- 32.
Zhang, Y.; Li, K.; Ren, S.; et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(II) detection. ACS Sustain. Chem. Eng. 2019, 7, 9793–9799.
- 33.
Yan, X.; Cui, X.; Li, L.-S. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 2010, 132, 5944–5945.
- 34.
Kalita, H.; Mohapatra, J.; Pradhan, L.; et al. Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Adv. 2016, 6, 23518–23524.
- 35.
Feng, S.; Pan, J.; Li, C.; et al. Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. Nanotechnology 2020, 31, 135701.
- 36.
Ochi, Y.; Otani, A.; Katakami, R.; et al. Open system massive synthesis of narrow-band blue and green fluorescent graphene quantum dots and their application in water sensing. J. Mater. Chem. C 2024, 12, 6548–6558.
- 37.
Zhu, Y.; Dai, C.; Hao, C.; et al. Purification of nitrogen-doped graphene quantum dots and its application in polymer solar cells. Colloid. Surface. A 2022, 648, 129401.
- 38.
Rao, Z.; Geng, F.; Zhou, Y.; et al. N-doped graphene quantum dots as a novel highly-efficient matrix for the analysis of perfluoroalkyl sulfonates and other small molecules by MALDI-TOF MS. Anal. Methods 2017, 9, 2014–2020.
- 39.
Guo, Z.; Cai, B.; Cao, Q.; et al. Facile synthesis of amine-functionalized graphene quantum dots with highly pH-sensitive photoluminescence. Fuller. Nanotube. Car. N. 2017, 25, 704–709.
- 40.
Martins, E.C.; Santana, E.R.; Spinelli, A. Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks. Talanta 2023, 252, 123836.
- 41.
Huang, J.J.; Rong, M.Z.; Zhang, M.Q. Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties. Phys. Chem. Chem. Phys. 2016, 18, 4800–4806.
- 42.
Huang, W.; Li, X.; Sun, X.; et al. Photoluminescence of graphene quantum dots enhanced by microwave post-treatment. Chem. Eng. J. 2021, 405, 126714.
- 43.
Li, R.; Liu, Y.; Li, Z.; et al. Bottom-up fabrication of single-layered nitrogen-doped graphene quantum dots through intermolecular carbonization arrayed in a 2D plane. Chem. Eur. J. 2015, 22, 272–278.
- 44.
Tang, L.; Ji, R.; Li, X.; et al. Size-dependent structural and optical characteristics of glucose-derived graphene quantum dots. Part. Part. Syst. Char. 2013, 30, 523–531.
- 45.
Jin, H.; Huang, H.; He, Y.; et al. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 7588–7591.
- 46.
Zhu, J.; Tang, Y.; Wang, G.; et al. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation. ACS Appl. Mater. Interfaces 2017, 9, 14470–14477.
- 47.
Wang, G.; Guo, Q.; Chen, D.; et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian. ACS Appl. Mater. Interfaces 2018, 10, 5750–5759.
- 48.
Dong, P.; Jiang, B.-P.; Liang, W.-Q.; et al. Synthesis of white-light-emitting graphene quantum dots via a one-step reduction and their interfacial characteristics-dependent luminescence properties. Inorg. Chem. Front. 2017, 4, 712–718.
- 49.
Su, J.; Zhang, X.; Tong, X.; et al. Preparation of graphene quantum dots with high quantum yield by a facile one-step method and applications for cell imaging. Mater. Lett. 2020, 271, 127806.
- 50.
Shin, Y.; Park, J.; Hyun, D.; et al. Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources. Nanoscale 2015, 7, 5633–5637.
- 51.
Tetsuka, H.; Asahi, R.; Nagoya, A.; et al. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.
- 52.
Zhang, A.; Chen, T.; Song, S.; et al. Ultrafast generation of highly crystalline graphene quantum dots from graphite paper via laser writing. J. Colloid Interface Sci. 2021, 594, 460–465.
- 53.
Kang, S.; Ryu, J.H.; Lee, B.; et al. Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Adv. 2019, 9, 13658–13663.
- 54.
Li, L.; Wu, G.; Yang, G.; et al. Focusing on luminescent graphenequantum dots: Current status and future perspectives. Nanoscale 2013, 5, 4015–4039.
- 55.
Bartolomei, B.; Bogo, A.; Amato, F.; et al. Nuclear Magnetic resonance reveals molecular species in carbon nanodot samples disclosing flaws. Angew. Chem. Int. Ed. 2022, 61, e202200038.
- 56.
Bartolomei, B.; Prato, M. The importance of the purification step and the characterization of the products in the synthesis of carbon nanodots. Small 2023, 19, 2206714.
- 57.
Ullal, N.; Mehta, R.; Sunil, D. Separation and purification of fluorescent carbon dots—an unmet challenge. Analyst 2024, 149, 1680–1700.
- 58.
Jiang, Q.-G.; Cao, C.; Lin, T.-C.; et al. Strong and tough glass with self-dispersed nanoparticles via solidification. Adv. Mater. 2019, 31, 1901803.
- 59.
Tian, P.; Tang, L.; Teng, K.S.; et al. Graphene quantum dots from chemistry to applications. Mater. Today Chem. 2018, 10, 221–258.
- 60.
Zhu, S.; Zhang, J.; Tang, S.; et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 2012, 22, 4732–4740.
- 61.
Chowdhury, A.D.; Takemura, K.; Li, T.-C.; et al. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 2019, 10, 3737.
- 62.
Dong, Y.; Dai, R.; Dong, T.; et al. Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots. Nanoscale 2014, 6, 11240–11245.
- 63.
Mirzaie, A.; Hasanzadeh, M.; Jouyban, A. Cross-linked chitosan/thiolated graphene quantum dots as a biocompatible polysaccharide towards aptamer immobilization. Int. J. Biol. Macromol. 2019, 123, 1091–1105.
- 64.
Dong, Y.; Chen, C.; Zheng, X.; et al. One-step and high yield simultaneous preparation of single- and multi-layer graphenequantum dots from CX-72 carbon black. J. Mater. Chem. 2012, 22, 8764–8766.
- 65.
Li, Z.; Bu, F.; Wei, J.; et al. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon. Nanoscale 2018, 10, 22871–22883.
- 66.
Gómez, L.; Martínez, G.; García, S.; et al. Graphene quantum dots: Synthesis and optical properties. J. Phys. Chem. C 2021, 125, 7124–7134.
- 67.
Nguyen, V.T.; Lee, C.; Nguyen, M.; et al. Single-particle spectroscopy of graphene quantum dots: Structure and emission mechanisms. ACS Nano 2020, 14, 2781–2791.
- 68.
Zhang, X.; Li, H.; Zhang, M.; et al. Role of surface oxidation in the optical properties of graphene quantum dots: Implications for sensing and bioimaging. Appl. Surf. Sci. 2022, 566, 155536.
- 69.
Alafeef, M.; Gani, T.; Yang, X.; et al. Fluorescence mechanism of graphene quantum dots: A review on synthesis, emission pathways, and applications. Small 2023, 19, 2303937.
- 70.
Qing, Y.; Jiang, Y.; Lin, H.; et al. Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J. Mater. Chem. 2019, 7, 6021–6027.
- 71.
Sun, H.; Zhao, A.; Gao, N.; et al. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem. Int. Ed. 2015, 54, 7176–7180.
- 72.
Zhou, X.; Tian, Z.; Li, J.; et al. Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 2014, 6, 2603–2607.
- 73.
Wu, J.; Ma, S.; Sun, J.; et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.
- 74.
Arumugasamy, S.K.; Govindaraju, S.; Yun, K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl. Surf. Sci. 2020, 508, 145294.
- 75.
Baluta, S.; Lesiak, A.; Cabaj, J. Graphene quantum dots-based electrochemical biosensor for catecholamine neurotransmitters detection. Electroanalysis 2018, 30, 1781–1790.
- 76.
Al-Azmi, A.; Keshipour, S. New bidental sulfur-doped graphene quantum dots modified with gold as a catalyst for hydrogen generation. J. Colloid Interface Sci. 2022, 612, 701–709.
- 77.
Yue, Z.; Lisdat, F.; Parak, W.J.; et al. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 2013, 5, 2800–2814.
- 78.
Li, L.-L.; Li, J.; Fei, R.; et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 2012, 22, 2971–2979.
- 79.
Kim, S.; Hwang, S.W.; Kim, M.-K.; et al. Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape. ACS Nano 2012, 6, 8203–8208.
- 80.
Lee, S.H.; Kim, D.Y.; Lee, J.; et al. Synthesis of single-crystalline hexagonal graphene quantum dots from solution chemistry. Nano Lett. 2019, 19, 5437–5442.
- 81.
Shinde, D.B.; Vishal, V.M.; Kurungot, S.; et al. Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction. Bull. Mater. Sci. 2015, 38, 435–442.
- 82.
Kwon, W.; Kim, Y.-H.; Lee, C.-L.; et al. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett. 2014, 14, 1306–1311.
- 83.
Oh, S.D.; Kim, J.; Lee, D.H.; et al. Structural and optical characteristics of graphene quantum dots size-controlled and well-aligned on a large scale by polystyrene-nanosphere lithography. J. Phys. D Appl. Phys. 2016, 49, 025308.
- 84.
Yeh, T.-F.; Huang, W.-L.; Chung, C.-J.; et al. Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. J. Phys. Chem. Lett. 2016, 7, 2087–2092.
- 85.
Jin, L.; Ki, L.; Xu, F.; et al. The synthesis and application of l-cysteine graphene quantum dots for quantitative analysis of nitrite content in water. Phys. Scr. 2024, 99, 065124.
- 86.
Tetsuka, H.; Nagoya, A.; Fukusumi, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 2016, 28, 4632–4638.
- 87.
Deka, M.J.; Dutta, A.; Chowdhury, D. Tuning the wettability and photoluminescence of graphene quantum dots via covalent modification. New J. Chem. 2018, 42, 355–362.
- 88.
Li, R.; Jia, H.; Li, N.; et al. Electrochemical detection of chlorpyrifos in fruits with gold-histidine functionalized graphene quantum dot-graphene hybrid and target-induced DNA cycle amplification. Sensor. Actuat. B Chem. 2022, 355, 131314.
- 89.
Chen, L.C.; Teng, C.Y.; Lin, C.Y.; et al. Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process. Adv. Energy Mater. 2016, 6, 1600719.
- 90.
Li, F.; Yang, D. Non-metal-heteroatom-doped carbon dots: synthesis and properties. Chem. Eur. J. 2018, 25, 1165–1176.
- 91.
Budak, E.; Ünlü, C. Boron regulated dual emission in B, N doped graphene quantum dots. Opt. Mater. 2021, 111, 110577.
- 92.
Guo, Z.; Ni, S.; Wu, H.; et al. Designing nitrogen and phosphorus co-doped graphene quantum dots/g-C3N4 heterojunction composites to enhance visible and ultraviolet photocatalytic activity. Appl. Surf. Sci. 2021, 548, 149211.
- 93.
Gong, P.; Wang, J.; Hou, K.; et al. Yang. Small but strong: The influence of fluorine atoms on formation and performance of graphene quantum dots using a gradient F-sacrifice strategy. Carbon 2017, 112, 63–71.
- 94.
Arab, H.; MohammadNejad, S.; MohammadNejad, P. Se-doped NH2-functionalized graphene quantum dot for single-photon emission at free-space quantum communication wavelength. Quantum Inf. Process. 2021, 20, 184.
- 95.
Hasan, M.T.; Gonzalez-Rodriguez, R.; Ryan, C.; et al. Photo-and electroluminescence from nitrogen-doped and nitrogen-sulfur codoped graphene quantum dots. Adv. Funct. Mater. 2018, 28, 1804337.
- 96.
Lima, A.R.S.; Mikhraliieva, A.; Vanoni, C.R.; et al. 2D-network of boron-functionalized N-doped graphene quantum dots for electrochemical sensing of dopamine. Diam. Relat. Mater. 2024, 146, 111259.
- 97.
Cheng, H.; Zhao, Y.; Fan, Y.; et al. Graphene-quantum-dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano 2012, 6, 2237–2244.
- 98.
Wang, D.; Liang, Y.; Su, Y.; et al. Sensitivity enhancement of cloth-based closed bipolar electrochemiluminescence glucose sensor via electrode decoration with chitosan/multi-walled carbon nanotubes/graphene quantum dots-gold nanoparticles. Biosens. Bioelectron. 2019, 130, 55–64.
- 99.
Du, F.-P.; Cao, N.-N.; Zhang, Y.-F.; et al. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci. Rep. 2018, 8, 6441.
- 100.
Jiang, D.; Yang, C.; Fan, Y.; et al. Ultra-sensitive photoelectrochemical aptamer biosensor for detecting E. coli O157:H7 based on nonmetallic plasmonic two-dimensional hydrated defective tungsten oxide nanosheets coupling with nitrogen-doped graphene quantum dots (dWO3•H2O@N-GQDs). Biosens. Bioelectron. 2021, 183, 113214.
- 101.
Yan, Y.; Liu, Q.; Mao, H.; et al. The immobilization of graphene quantum dots by one-step electrodeposition and its application in peroxydisulfate electrochemiluminescence. J. Electroanal. Chem. 2016, 775, 1–7.
- 102.
Dong, Y.; Tian, W.; Ren, S.; et al. Graphene quantum dots/L-Cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl. Mater. Interfaces 2014, 6, 1646–1651.
- 103.
Ou, J.; Tao, Y.; Ma, J.; Kong, Y. Well-dispersed chitosan-graphene quantum dots nanocomposites for electrochemical sensing platform. J. Electrochem. Soc. 2015, 162, H884–H889.
- 104.
Zhao, Q.; Zhou, L.; Li, X.; et al. Au-nitrogen-doped graphene quantum dot composites as “on-off” nanosensors for sensitive photo-electrochemical detection of caffeic acid. Nanomaterials 2020, 10, 1972.
- 105.
Monisha, S.; Subhashri, M.; Devi, K.S.S.; et al. Defective graphene-nanomaterials derived from banana-biomass for simultaneous electrochemical detection of xanthine, hypoxanthine, and uric acid: Insights from scanning electrochemical microscopy on edge and basal planes. Electrochim. Acta 2024, 497, 144515.
- 106.
Arumugasamy, S.K.; Chellasamy, G.; Yun, K.; et al. Bio-quantum dots for electrochemical sensing of cardiac biomarkers of acute myocardial infarction. J. Ind. Eng. Chem. 2024, 129, 488–498.
- 107.
Li, R.; Wei, M.; Zhou, X.; et al. Self-powered sensing platform for monitoring uric acid in sweat using cobalt nanocrystal-graphene quantum dot-Ti3C2TX monolithic film electrode with excellent supercapacitor and sensing behavior. Microchim. Acta 2024, 191, 530.
- 108.
Cotchim, S.; Kongkaew, S.; Thavarungkul, P.; et al. An unlabeled electrochemical immunosensor uses poly(thionine) and graphene quantum dot-modified activated marigold flower carbon for early prostate cancer detection. Biosensors 2024, 14, 589.
- 109.
Zahed, F.M.; Hatamluyi, B.; Bojdi, M.K. A sensitive electrochemical sensor based on graphene quantum dots/hierarchical flower-like gold nanostructures for determination of cytostatic drug flutamide. Mater. Sci. Eng. B 2024, 300, 117109.
- 110.
Yang, Y.; Yan, Q.; Liu, Q.; et al. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens. Bioelectron. 2018, 99, 450–457.
- 111.
Prasad, B.B.; Kumar, A.; Singh, R. Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosens. Bioelectron. 2017, 94, 1–9.
- 112.
Gu, S.; Hsieh, C.-T.; Mallick, B.C.; et al. Non-enzymatic electrochemical detection of hydrogen peroxide on highly amidized graphene quantum dot electrodes. Appl. Surf. Sci. 2020, 528, 146936.
- 113.
Ma, C.; Cao, Y.; Gou, X.; et al. Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 2019, 92, 431–454.
- 114.
Fan, X.; Wang, S.; Liu, H.; et al. A sensitive electrochemiluminescence biosensor for assay of cancer biomarker (MMP-2) based on NGQDs-Ru@SiO2 luminophore. Talanta 2022, 236, 122830.
- 115.
Bae, G.; Cho, H.; Hong, B.H. A review on synthesis, properties, and biomedical applications of graphene quantum dots (GQDs). Nanotechnology 2024, 35, 372001.
- 116.
Huang, Y.; Hu, X.; Zhang, W.; et al. Multiwalled carbon nanorings found in raw single-walled carbon nanotubes and applied for electrochemiluminescent immunoassay. ACS Sens. 2025, 10, 4589–4599.
- 117.
Zhi, S.; Zhu, Z.; Li, Y.; et al. Electrochemiluminescence detection of catechol and tryptophol using nitrogen, sulfur co-doped graphene quantum dots based on a paper-based sensor. Microchem. J. 2024, 200, 110408.
- 118.
Ma, L.; Kang, L.; Sun, Y.; et al. Nitrogen-doped graphene quantum dots as electrochemiluminescence-emitting species for sensitive detection of KRAS G12C mutation via PET-RAFT. Chem. Eur. J. 2023, 29, e202301602.
- 119.
Zhu, Z.; Li, R.; Li, Y.; et al. Paper-based electrodes with nitrogen-doped graphene quantum dots for detection of copper ions via electrochemiluminescence. Mater. Chem. Phys. 2023, 296, 127300.
- 120.
Liu, M.; Jiang, R.; Zheng, M.; et al. A sensitive ratiometric biosensor for determination cardiac troponin I of myocardial infarction markers based on N, Zn-GQDs. Talanta 2022, 249, 123577.
- 121.
Wang, B.; Wang, C.; Li, Y.; et al. Electrochemiluminescence biosensor for cardiac troponin I with signal amplification based on a MoS2@Cu2O-Ag-modified electrode and Ce:ZnO-NGQDs. Analyst 2022, 147, 4768–4776.
- 122.
Liang, X.; Zhang, W.; Zhang, M.; et al. Facile synthesis of nitrogen-doped graphene quantum dots as nanocarbon emitters for sensitive detection of catechol. RSC Adv. 2022, 12, 25778–25785.
- 123.
Wu, Z.; Dai, C.; Wang, Y.; et al. A novel sensor for visual and selective detection of Hg2+ based on functionalized doped quantum dots. Anal. Methods 2022, 14, 2368–2375.
- 124.
Yuan, R.; Liu, Q.; Hong, H.; et al. Wang. Enhanced cathodic electrochemiluminescent microcystin-LR aptasensor based on surface plasmon resonance of Bi nanoparticles. J. Hazard. Mater. 2022, 434, 128877.
- 125.
Sun, Y.; Huang, C.; Sun, X.; et al. Electrochemiluminescence biosensor based on molybdenum disulfide-graphene quantum dots nanocomposites and DNA walker signal amplification for DNA detection. Microchim. Acta 2021, 188, 353.
- 126.
Zheng, Y.; Lin, J.; Xie, L.; et al. One-step preparation of nitrogen-doped graphene quantum dots with anodic electrochemiluminescence for sensitive detection of hydrogen peroxide and glucose. Front. Chem. 2021, 9, 688358.
- 127.
Liu, P.; Meng, H.; Han, Q.; et al. Determination of ascorbic acid using electrochemiluminescence sensor based on nitrogen and sulfur doping graphene quantum dots with luminol as internal standard. Microchim. Acta 2021, 188, 120.
- 128.
Li, L.; Chen, B.; Luo, L.; et al. Sensitive and selective detection of Hg2+ in tap and canal water via self-enhanced ECL aptasensor based on NH2-Ru@SiO2-NGQDs. Talanta 2021, 222, 121579.
- 129.
Hou, X.; Suo, Z.; Hu, Z.; et al. Label-free tri-luminophores electrochemiluminescence sensor for microRNAs detection based on three-way DNA junction structure. J. Electroanal. Chem. 2021, 880, 114935.
- 130.
Jiao, M.; Fan, X.; Wang, Z.; et al. Electrochemiluminescence resonance energy transfer system based on ox-MWCNTs-IGQDs and PdAg nanosheets for the detection of 5-fluorouracil in serum. Microchem. J. 2022, 183, 108066.
- 131.
Hu, L.; Song, C.; Shi, T.; et al. Dual-quenching electrochemiluminescence resonance energy transfer system from IRMOF-3 coreaction accelerator enriched nitrogen-doped GQDs to ZnO@Au for sensitive detection of procalcitonin. Sensor. Actuat. B Chem. 2021, 346, 130495.
- 132.
Wu, Z.; Liu, S.; Li, Y.; et al. Electrochemiluminescence resonance energy transfer system fabricated by quantum state complexes for cardiac troponin I detection. Sensor. Actuat. B Chem. 2021, 336, 129733.
- 133.
Liu, Y.; Sun, Y.; Yang, M. A double-potential ratiometric electrochemiluminescence platform based on g-C3N4 nanosheets (g-C3N4 NSs) and graphene quantum dots for Cu2+ detection. Anal. Methods 2021, 13, 903–909.
- 134.
Guo, L.; Li, L.; Luo, L.; et al. Amplified electrochemiluminescence of Ru(dcbpy)32+ via coreactant active sites on nitrogen-doped graphene quantum dots. Talanta 2025, 286, 127554.
- 135.
Li, S.; Peng, J.; Lin, X.; et al. RuSiNPs@ N, S-GQDs as self-enhanced anodic electrochemiluminescent immunobeacons for the highly sensitive quantitation of okadaic acid in shellfish. Microchim. Acta 2024, 191, 737.
- 136.
Cheng, L.-Y.; Qin, L.-L.; Liu, F.-J.; et al. Electrochemiluminescent (ECL) aptasensor for lysozyme using a graphene quantum dot (GQD)-ruthenium bipyridine-silica nanocomposite. Anal. Lett. 2025, 58, 1204–1213.
- 137.
Luo, L.; Liu, X.; Bi, X.; et al. Dual-quenching effects of methylene blue on the luminophore and co-reactant: Application for electrochemiluminescent-electrochemical ratiometric zearalenone detection. Biosens. Bioelectron. 2023, 222, 114991.
- 138.
Wei, J.; Chen, L.; Cai, X.; et al. 2D mesoporous silica-confined CsPbBr3 nanocrystals and N-doped graphene quantum dot: A self-enhanced quaternary composite structures for electrochemiluminescence analysis. Biosens. Bioelectron. 2022, 216, 114664.
- 139.
Li, L.; Chen, B.; Liu, X.; et al. ‘On-off-on’ electrochemiluminescent aptasensor for Hg2+ based on dual signal amplification enabled by a self-enhanced luminophore and resonance energy transfer. J. Electroanal. Chem. 2022, 907, 116063.
- 140.
Li, Y.; Liu, D.; Meng, S.; et al. Regulation of Ru(bpy)32+ electrochemiluminescence based on distance-dependent electron transfer of ferrocene for dual-signal readout detection of aflatoxin B1 with high sensitivity. Anal. Chem. 2022, 94, 1294–1301.
- 141.
Zhou, Y.; Zhang, C.; Liu, J.; et al. Nanochannel confined graphene quantum dots/platinum nanoparticles boosts electrochemiluminescence of luminal-O2 system for sensitive immunoassay. Talanta 2025, 285, 127223.
- 142.
Zhang, S.; Jiang, M.; Lai, W.; et al. Quenching study of Cu2S-MPA/NGODs composites in electrochemiluminescence detection by modulating resonance energy transfer and adsorption process. Bioelectrochemistry 2024, 159, 108729.
- 143.
Zheng, L.; Zhang, H.; Won, M.; et al. Codoping g-C3N4 with boron and graphene quantum dots: Enhancement of charge transfer for ultrasensitive and selective photoelectrochemical detection of dopamine. Biosens. Bioelectron. 2023, 224, 115050.
- 144.
Meng, L.; Xiao, K.; Zhang, X.; et al. A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens. Bioelectron. 2020, 150, 111861.
- 145.
Deng, Y.; Yan, W.; Guo, Y.; et al. Highly sensitive and selective photoelectrochemical aptasensing of di-2-ethylhexyl phthalate based on graphene quantum dots decorated TiO2 nanotube arrays. J. Hazard. Mater. 2022, 426, 128107.
- 146.
Bakhshandeh, F.; Saha, S.; Sakib, S.; et al. TiO2 nanoparticles Co-sensitized with graphene quantum dots and pyrocatechol violet for photoelectrochemical detection of Cr(VI). J. Electrochem. Soc. 2022, 169, 057520.
- 147.
Liao, D.; Zhi, J.; Wang, Q.; et al. Efficient photoelectrochemical aptasensing of di-2-ethylhexyl phthalate in environmental samples based on N, S co-doped graphene quantum dots/TiO2 nanorods. Anal. Chim. Acta 2023, 1271, 341477.
- 148.
Chen, Q.; Yuan, C.; He, Z.; et al. A label-free photoelectrochemical sensor of S, N co-doped graphene quantum dot (S, N-GQD)-modified electrode for ultrasensitive detection of bisphenol A. Microchim. Acta 2022, 189, 208.
- 149.
Wu, Z.; Liang, Z.; He, Z.; et al. A label-free photoelectrochemical sensor based on Bi2S3@nitrogen doped graphene quantum dots for ascorbic acid determination. Chem. Res. Chin. Univ. 2022, 38, 1387–1393.
- 150.
Zhang, T.; Gu, Y.; Li, C.; et al. Fabrication of novel electrochemical biosensor based on graphene nanohybrid to detect H2O2 released from living cells with ultrahigh performance. ACS Appl. Mater. Interfaces 2017, 9, 37991–37999.
- 151.
Xi, J.; Xie, C.; Zhang, Y.; et al. Pd nanoparticles decorated N‑doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Appl. Mater. Interfaces 2016, 8, 22563–22573.
- 152.
Ju, J.; Chen, W. In situ growth of surfactant-free gold nanoparticles on nitrogen doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 2015, 87, 1903–1910.
- 153.
Panda, A.K.; Murugan, K.; Sakthivel, R.; et al. A non-enzymatic, biocompatible electrochemical sensor based on N-doped graphene quantum dot-incorporated SnS2 nanosheets for in situ monitoring of hydrogen peroxide in breast cancer cells. Colloid. Surface. B 2023, 222, 113033.
- 154.
Zhou, C.; Chen, Y.; You, X.; et al. An electrochemiluminescent biosensor based on interactions between a graphene quantum dot-sulfite co-reactant system and hydrogen peroxide. ChemElectroChem 2017, 4, 1783–1789.
- 155.
Tian, K.; Li, D.; Tang, T.; et al. A novel electrochemiluminescence resonance energy transfer system of luminol-graphene quantum dot composite and its application in H2O2 detection. Talanta 2018, 185, 446–452.
- 156.
Chang, L.-Y.; Rinawati, M.; Guo, Y.-T.; et al. Nitrogen-Doped graphene quantum dots incorporated into MOF-derived NiCo layered double hydroxides for nonenzymatic lactate detection in noninvasive biosensors. ACS Appl. Nano Mater. 2024, 7, 14431–14442.
- 157.
Zhang, H.; Qu, H.; Cui, J.; et al. A simple electrochemical immunosensor based on a chitosan/reduced graphene oxide nanocomposite for sensitive detection of biomarkers of malignant melanoma. RSC Adv. 2022, 12, 25844–25851.
- 158.
Sapkota, B.; Benabbas, A.; Lin, H.G.; et al. Peptide-decorated tunable-fluorescence graphene quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 9378–9387.