2511002197
  • Open Access
  • Review

Graphene Quantum Dots: Synthesis, Properties, and Applications in Electroanalysis

  • Yuqian Geng 1,   
  • Yue Cao 2,   
  • Junjie Zhu 1, *

Received: 09 Jul 2025 | Revised: 31 Oct 2025 | Accepted: 06 Nov 2025 | Published: 13 Nov 2025

Abstract

Graphene quantum dots (GQDs) are zero-dimensional carbon nanomaterials that integrate the π-conjugated structure of graphene with size-dependent and quantum-confined optical properties. Owing to their tunable electronic band gaps, excellent electrical conductivity, chemical versatility, and good biocompatibility, GQDs have emerged as promising materials for electroanalytical applications. This review summarizes recent advances in the synthesis, properties, modifications, and electroanalytical applications of GQDs, with an emphasis on the structure–function relationships of GQDs in electrochemical, electrochemiluminescence (ECL), and photoelectrochemical (PEC) sensing systems, thereby providing useful insights into future research directions in this field.

References 

  • 1.
    Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; et al. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.
  • 2.
    Shen, J.; Zhu, Y.; Yang, X.; et al. Graphenequantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686–3699.
  • 3.
    Tian, X.T.; Yin, X.B. Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence. Small 2019, 15, 1901803.
  • 4.
    Barati, F.; Avatefi, M.; Moghadam, N.B.; et al. A review of graphene quantum dots and their potential biomedical applications. J. Biomater. Appl. 2022, 37, 1137–1158.
  • 5.
    Benítez-Martínez, S.; Valcárcel, M. Graphene quantum dots in analytical science. TrAC-Trend. Anal. Chem. 2015, 72, 93–113.
  • 6.
    Bressi, V.; Ferlazzo, A.; Iannazzo, D.; et al. Graphene quantum dots by eco-friendly green synthesis for electrochemical sensing: Recent advances and future perspectives. Nanomaterials 2021, 11, 1120.
  • 7.
    Cayuela, A.; Soriano, M.L.; Carrillo-Carrión, C.; et al. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun. 2016, 52, 1311–1326.
  • 8.
    Hua, Y.; Li, S.; Cai, Y.; et al. A sensitive and selective electroanalysis strategy for histidine using the wettable well electrodes modified with graphene quantum dot-scaffolded melamine and copper nanocomposite. Nanoscale 2019, 11, 2126–2130.
  • 9.
    Punrat, E.; Maksuk, C.; Chuanuwatanakul, S.; et al. Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta 2016, 150, 198–205.
  • 10.
    Hu, T.; Zhang, L.; Wen, W.; et al. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens. Bioelectron. 2016, 77, 451–456.
  • 11.
    Xu, Q.; Yuan, H.; Dong, X.; et al. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosens. Bioelectron. 2018, 107, 153–162.
  • 12.
    Dan, X.; Ruiyi, L.; Zaijun, L.; et al. Facile strategy for synthesis of silver-graphene hybrid with controllable size and excellent dispersion for ultrasensitive electrochemical detection of acetamiprid. Appl. Surf. Sci. 2020, 512, 145628.
  • 13.
    Esmaeili, M.; Ahour, F.; Keshipour, S. Sensitive and selective determination of trace amounts of mercury ions using a dimercaprol functionalized graphene quantum dot modified glassy carbon electrode. Nanoscale 2021, 13, 11403–11413.
  • 14.
    Bhatnagar, D.; Kaur, I.; Kumar, A. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack. Int. J. Biol. Macromol. 2017, 95, 505–510.
  • 15.
    Ganganboina, A.B.; Dega, N.K.; Tran, H.L.; et al. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens. Bioelectron. 2021, 181, 113151.
  • 16.
    Wang, X.; Chen, L.; Su, X.; et al. Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup. J. Biosens. Bioelectron. 2013, 47, 171–177.
  • 17.
    Khonsari, Y.N.; Sun, S. A novel label free electrochemiluminescent aptasensor for the detection of lysozyme. Mater. Sci. Eng. C 2019, 96, 146–152.
  • 18.
    Nie, G.; Wang, Y.; Tang, Y.; et al. A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosens. Bioelectron. 2018, 101, 123–128.
  • 19.

    Long, Y.-M.; Bao, L.; Zhao, J.-Y.; et al. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)32+. Anal. Chem. 2014, 86, 7224–7228.

  • 20.
    Ahmed, S.R.; Mogus, J.; Chand, R.; et al. Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid. Biosens. Bioelectron. 2018, 103, 45–53.
  • 21.

    Pang, X.; Bian, H.; Wang, W.; et al. A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV. Biosens. Bioelectron. 2017, 91, 456–464.

  • 22.
    Chung, S.; Revia, R.A.; Zhang, M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33, 1904362.
  • 23.
    Rassheed, P.A.; Ankitha, M.; Pillai, V.K.; et al. Graphene quantum dots for biosensing and bioimaging. RSC Adv. 2024, 14, 16001–16023.
  • 24.
    Kammarchedu, V.; Asgharian, H.; Zhou, K.; et al. Recent advances in graphene-based electroanalytical devices for healthcare applications. Nanoscale 2024, 16, 12857–12882.
  • 25.
    Durodola, S.S.; Adekunle, A.S.; Olasunkanmi, L.O.; et al. A review on graphene quantum dots for electrochemical detection of emerging pollutants. J. Fluoresc. 2022, 32, 2223–2236.
  • 26.

    Ananthanarayanan, A.; Wang, X.; Routh, P.; et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater. 2014, 24, 3021–3026.

  • 27.
    Li, Q.; Zhang, S.; Dai, L.; et al. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 18932–18935.
  • 28.
    Vázquez-Nakagawa, M.; Rodríguez-Pérez, L.; Martín, N.; et al. Supramolecular assembly of edge functionalized top-down chiral graphene quantum dots. Angew. Chem. Int. Ed. 2022, 61, e202211365.
  • 29.
    Zhao, Y.; Wu, X.; Sun, S.; et al. A facile and high-efficient approach to yellow emissive graphene quantum dots from graphene oxide. Carbon 2017, 124, 342–347.
  • 30.
    Kalita, H.; Palaparthy, V.S.; Baghini, M.S.; et al. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon 2020, 165, 9–17.
  • 31.
    He, M.; Guo, X.; Huang, J.; et al. Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation. Carbon 2018, 140, 508–520.
  • 32.
    Zhang, Y.; Li, K.; Ren, S.; et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(II) detection. ACS Sustain. Chem. Eng. 2019, 7, 9793–9799.
  • 33.
    Yan, X.; Cui, X.; Li, L.-S. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 2010, 132, 5944–5945.
  • 34.
    Kalita, H.; Mohapatra, J.; Pradhan, L.; et al. Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Adv. 2016, 6, 23518–23524.
  • 35.
    Feng, S.; Pan, J.; Li, C.; et al. Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. Nanotechnology 2020, 31, 135701.
  • 36.
    Ochi, Y.; Otani, A.; Katakami, R.; et al. Open system massive synthesis of narrow-band blue and green fluorescent graphene quantum dots and their application in water sensing. J. Mater. Chem. C 2024, 12, 6548–6558.
  • 37.
    Zhu, Y.; Dai, C.; Hao, C.; et al. Purification of nitrogen-doped graphene quantum dots and its application in polymer solar cells. Colloid. Surface. A 2022, 648, 129401.
  • 38.
    Rao, Z.; Geng, F.; Zhou, Y.; et al. N-doped graphene quantum dots as a novel highly-efficient matrix for the analysis of perfluoroalkyl sulfonates and other small molecules by MALDI-TOF MS. Anal. Methods 2017, 9, 2014–2020.
  • 39.
    Guo, Z.; Cai, B.; Cao, Q.; et al. Facile synthesis of amine-functionalized graphene quantum dots with highly pH-sensitive photoluminescence. Fuller. Nanotube. Car. N. 2017, 25, 704–709.
  • 40.
    Martins, E.C.; Santana, E.R.; Spinelli, A. Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks. Talanta 2023, 252, 123836.
  • 41.
    Huang, J.J.; Rong, M.Z.; Zhang, M.Q. Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties. Phys. Chem. Chem. Phys. 2016, 18, 4800–4806.
  • 42.
    Huang, W.; Li, X.; Sun, X.; et al. Photoluminescence of graphene quantum dots enhanced by microwave post-treatment. Chem. Eng. J. 2021, 405, 126714.
  • 43.
    Li, R.; Liu, Y.; Li, Z.; et al. Bottom-up fabrication of single-layered nitrogen-doped graphene quantum dots through intermolecular carbonization arrayed in a 2D plane. Chem. Eur. J. 2015, 22, 272–278.
  • 44.
    Tang, L.; Ji, R.; Li, X.; et al. Size-dependent structural and optical characteristics of glucose-derived graphene quantum dots. Part. Part. Syst. Char. 2013, 30, 523–531.
  • 45.
    Jin, H.; Huang, H.; He, Y.; et al. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 7588–7591.
  • 46.
    Zhu, J.; Tang, Y.; Wang, G.; et al. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation. ACS Appl. Mater. Interfaces 2017, 9, 14470–14477.
  • 47.
    Wang, G.; Guo, Q.; Chen, D.; et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian. ACS Appl. Mater. Interfaces 2018, 10, 5750–5759.
  • 48.
    Dong, P.; Jiang, B.-P.; Liang, W.-Q.; et al. Synthesis of white-light-emitting graphene quantum dots via a one-step reduction and their interfacial characteristics-dependent luminescence properties. Inorg. Chem. Front. 2017, 4, 712–718.
  • 49.
    Su, J.; Zhang, X.; Tong, X.; et al. Preparation of graphene quantum dots with high quantum yield by a facile one-step method and applications for cell imaging. Mater. Lett. 2020, 271, 127806.
  • 50.
    Shin, Y.; Park, J.; Hyun, D.; et al. Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources. Nanoscale 2015, 7, 5633–5637.
  • 51.
    Tetsuka, H.; Asahi, R.; Nagoya, A.; et al. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.
  • 52.
    Zhang, A.; Chen, T.; Song, S.; et al. Ultrafast generation of highly crystalline graphene quantum dots from graphite paper via laser writing. J. Colloid Interface Sci. 2021, 594, 460–465.
  • 53.
    Kang, S.; Ryu, J.H.; Lee, B.; et al. Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Adv. 2019, 9, 13658–13663.
  • 54.
    Li, L.; Wu, G.; Yang, G.; et al. Focusing on luminescent graphenequantum dots: Current status and future perspectives. Nanoscale 2013, 5, 4015–4039.
  • 55.
    Bartolomei, B.; Bogo, A.; Amato, F.; et al. Nuclear Magnetic resonance reveals molecular species in carbon nanodot samples disclosing flaws. Angew. Chem. Int. Ed. 2022, 61, e202200038.
  • 56.
    Bartolomei, B.; Prato, M. The importance of the purification step and the characterization of the products in the synthesis of carbon nanodots. Small 2023, 19, 2206714.
  • 57.
    Ullal, N.; Mehta, R.; Sunil, D. Separation and purification of fluorescent carbon dots—an unmet challenge. Analyst 2024, 149, 1680–1700.
  • 58.
    Jiang, Q.-G.; Cao, C.; Lin, T.-C.; et al. Strong and tough glass with self-dispersed nanoparticles via solidification. Adv. Mater. 2019, 31, 1901803.
  • 59.
    Tian, P.; Tang, L.; Teng, K.S.; et al. Graphene quantum dots from chemistry to applications. Mater. Today Chem. 2018, 10, 221–258.
  • 60.
    Zhu, S.; Zhang, J.; Tang, S.; et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 2012, 22, 4732–4740.
  • 61.
    Chowdhury, A.D.; Takemura, K.; Li, T.-C.; et al. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 2019, 10, 3737.
  • 62.
    Dong, Y.; Dai, R.; Dong, T.; et al. Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots. Nanoscale 2014, 6, 11240–11245.
  • 63.
    Mirzaie, A.; Hasanzadeh, M.; Jouyban, A. Cross-linked chitosan/thiolated graphene quantum dots as a biocompatible polysaccharide towards aptamer immobilization. Int. J. Biol. Macromol. 2019, 123, 1091–1105.
  • 64.
    Dong, Y.; Chen, C.; Zheng, X.; et al. One-step and high yield simultaneous preparation of single- and multi-layer graphenequantum dots from CX-72 carbon black. J. Mater. Chem. 2012, 22, 8764–8766.
  • 65.
    Li, Z.; Bu, F.; Wei, J.; et al. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon. Nanoscale 2018, 10, 22871–22883.
  • 66.
    Gómez, L.; Martínez, G.; García, S.; et al. Graphene quantum dots: Synthesis and optical properties. J. Phys. Chem. C 2021, 125, 7124–7134.
  • 67.
    Nguyen, V.T.; Lee, C.; Nguyen, M.; et al. Single-particle spectroscopy of graphene quantum dots: Structure and emission mechanisms. ACS Nano 2020, 14, 2781–2791.
  • 68.
    Zhang, X.; Li, H.; Zhang, M.; et al. Role of surface oxidation in the optical properties of graphene quantum dots: Implications for sensing and bioimaging. Appl. Surf. Sci. 2022, 566, 155536.
  • 69.
    Alafeef, M.; Gani, T.; Yang, X.; et al. Fluorescence mechanism of graphene quantum dots: A review on synthesis, emission pathways, and applications. Small 2023, 19, 2303937.
  • 70.
    Qing, Y.; Jiang, Y.; Lin, H.; et al. Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J. Mater. Chem. 2019, 7, 6021–6027.
  • 71.
    Sun, H.; Zhao, A.; Gao, N.; et al. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem. Int. Ed. 2015, 54, 7176–7180.
  • 72.
    Zhou, X.; Tian, Z.; Li, J.; et al. Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 2014, 6, 2603–2607.
  • 73.
    Wu, J.; Ma, S.; Sun, J.; et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.
  • 74.
    Arumugasamy, S.K.; Govindaraju, S.; Yun, K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl. Surf. Sci. 2020, 508, 145294.
  • 75.
    Baluta, S.; Lesiak, A.; Cabaj, J. Graphene quantum dots-based electrochemical biosensor for catecholamine neurotransmitters detection. Electroanalysis 2018, 30, 1781–1790.
  • 76.
    Al-Azmi, A.; Keshipour, S. New bidental sulfur-doped graphene quantum dots modified with gold as a catalyst for hydrogen generation. J. Colloid Interface Sci. 2022, 612, 701–709.
  • 77.
    Yue, Z.; Lisdat, F.; Parak, W.J.; et al. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 2013, 5, 2800–2814.
  • 78.
    Li, L.-L.; Li, J.; Fei, R.; et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 2012, 22, 2971–2979.
  • 79.
    Kim, S.; Hwang, S.W.; Kim, M.-K.; et al. Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape. ACS Nano 2012, 6, 8203–8208.
  • 80.
    Lee, S.H.; Kim, D.Y.; Lee, J.; et al. Synthesis of single-crystalline hexagonal graphene quantum dots from solution chemistry. Nano Lett. 2019, 19, 5437–5442.
  • 81.
    Shinde, D.B.; Vishal, V.M.; Kurungot, S.; et al. Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction. Bull. Mater. Sci. 2015, 38, 435–442.
  • 82.
    Kwon, W.; Kim, Y.-H.; Lee, C.-L.; et al. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett. 2014, 14, 1306–1311.
  • 83.
    Oh, S.D.; Kim, J.; Lee, D.H.; et al. Structural and optical characteristics of graphene quantum dots size-controlled and well-aligned on a large scale by polystyrene-nanosphere lithography. J. Phys. D Appl. Phys. 2016, 49, 025308.
  • 84.
    Yeh, T.-F.; Huang, W.-L.; Chung, C.-J.; et al. Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. J. Phys. Chem. Lett. 2016, 7, 2087–2092.
  • 85.
    Jin, L.; Ki, L.; Xu, F.; et al. The synthesis and application of l-cysteine graphene quantum dots for quantitative analysis of nitrite content in water. Phys. Scr. 2024, 99, 065124.
  • 86.
    Tetsuka, H.; Nagoya, A.; Fukusumi, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 2016, 28, 4632–4638.
  • 87.
    Deka, M.J.; Dutta, A.; Chowdhury, D. Tuning the wettability and photoluminescence of graphene quantum dots via covalent modification. New J. Chem. 2018, 42, 355–362.
  • 88.
    Li, R.; Jia, H.; Li, N.; et al. Electrochemical detection of chlorpyrifos in fruits with gold-histidine functionalized graphene quantum dot-graphene hybrid and target-induced DNA cycle amplification. Sensor. Actuat. B Chem. 2022, 355, 131314.
  • 89.
    Chen, L.C.; Teng, C.Y.; Lin, C.Y.; et al. Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process. Adv. Energy Mater. 2016, 6, 1600719.
  • 90.
    Li, F.; Yang, D. Non-metal-heteroatom-doped carbon dots: synthesis and properties. Chem. Eur. J. 2018, 25, 1165–1176.
  • 91.
    Budak, E.; Ünlü, C. Boron regulated dual emission in B, N doped graphene quantum dots. Opt. Mater. 2021, 111, 110577.
  • 92.

    Guo, Z.; Ni, S.; Wu, H.; et al. Designing nitrogen and phosphorus co-doped graphene quantum dots/g-C3N4 heterojunction composites to enhance visible and ultraviolet photocatalytic activity. Appl. Surf. Sci. 2021, 548, 149211.

  • 93.
    Gong, P.; Wang, J.; Hou, K.; et al. Yang. Small but strong: The influence of fluorine atoms on formation and performance of graphene quantum dots using a gradient F-sacrifice strategy. Carbon 2017, 112, 63–71.
  • 94.

    Arab, H.; MohammadNejad, S.; MohammadNejad, P. Se-doped NH2-functionalized graphene quantum dot for single-photon emission at free-space quantum communication wavelength. Quantum Inf. Process. 2021, 20, 184.

  • 95.
    Hasan, M.T.; Gonzalez-Rodriguez, R.; Ryan, C.; et al. Photo-and electroluminescence from nitrogen-doped and nitrogen-sulfur codoped graphene quantum dots. Adv. Funct. Mater. 2018, 28, 1804337.
  • 96.
    Lima, A.R.S.; Mikhraliieva, A.; Vanoni, C.R.; et al. 2D-network of boron-functionalized N-doped graphene quantum dots for electrochemical sensing of dopamine. Diam. Relat. Mater. 2024, 146, 111259.
  • 97.
    Cheng, H.; Zhao, Y.; Fan, Y.; et al. Graphene-quantum-dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano 2012, 6, 2237–2244.
  • 98.
    Wang, D.; Liang, Y.; Su, Y.; et al. Sensitivity enhancement of cloth-based closed bipolar electrochemiluminescence glucose sensor via electrode decoration with chitosan/multi-walled carbon nanotubes/graphene quantum dots-gold nanoparticles. Biosens. Bioelectron. 2019, 130, 55–64.
  • 99.
    Du, F.-P.; Cao, N.-N.; Zhang, Y.-F.; et al. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci. Rep. 2018, 8, 6441.
  • 100.

    Jiang, D.; Yang, C.; Fan, Y.; et al. Ultra-sensitive photoelectrochemical aptamer biosensor for detecting E. coli O157:H7 based on nonmetallic plasmonic two-dimensional hydrated defective tungsten oxide nanosheets coupling with nitrogen-doped graphene quantum dots (dWO3•H2O@N-GQDs). Biosens. Bioelectron. 2021, 183, 113214.

  • 101.
    Yan, Y.; Liu, Q.; Mao, H.; et al. The immobilization of graphene quantum dots by one-step electrodeposition and its application in peroxydisulfate electrochemiluminescence. J. Electroanal. Chem. 2016, 775, 1–7.
  • 102.
    Dong, Y.; Tian, W.; Ren, S.; et al. Graphene quantum dots/L-Cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl. Mater. Interfaces 2014, 6, 1646–1651.
  • 103.
    Ou, J.; Tao, Y.; Ma, J.; Kong, Y. Well-dispersed chitosan-graphene quantum dots nanocomposites for electrochemical sensing platform. J. Electrochem. Soc. 2015, 162, H884–H889.
  • 104.
    Zhao, Q.; Zhou, L.; Li, X.; et al. Au-nitrogen-doped graphene quantum dot composites as “on-off” nanosensors for sensitive photo-electrochemical detection of caffeic acid. Nanomaterials 2020, 10, 1972.
  • 105.
    Monisha, S.; Subhashri, M.; Devi, K.S.S.; et al. Defective graphene-nanomaterials derived from banana-biomass for simultaneous electrochemical detection of xanthine, hypoxanthine, and uric acid: Insights from scanning electrochemical microscopy on edge and basal planes. Electrochim. Acta 2024, 497, 144515.
  • 106.
    Arumugasamy, S.K.; Chellasamy, G.; Yun, K.; et al. Bio-quantum dots for electrochemical sensing of cardiac biomarkers of acute myocardial infarction. J. Ind. Eng. Chem. 2024, 129, 488–498.
  • 107.

    Li, R.; Wei, M.; Zhou, X.; et al. Self-powered sensing platform for monitoring uric acid in sweat using cobalt nanocrystal-graphene quantum dot-Ti3C2TX monolithic film electrode with excellent supercapacitor and sensing behavior. Microchim. Acta 2024, 191, 530.

  • 108.
    Cotchim, S.; Kongkaew, S.; Thavarungkul, P.; et al. An unlabeled electrochemical immunosensor uses poly(thionine) and graphene quantum dot-modified activated marigold flower carbon for early prostate cancer detection. Biosensors 2024, 14, 589.
  • 109.
    Zahed, F.M.; Hatamluyi, B.; Bojdi, M.K. A sensitive electrochemical sensor based on graphene quantum dots/hierarchical flower-like gold nanostructures for determination of cytostatic drug flutamide. Mater. Sci. Eng. B 2024, 300, 117109.
  • 110.

    Yang, Y.; Yan, Q.; Liu, Q.; et al. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens. Bioelectron. 2018, 99, 450–457.

  • 111.
    Prasad, B.B.; Kumar, A.; Singh, R. Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosens. Bioelectron. 2017, 94, 1–9.
  • 112.
    Gu, S.; Hsieh, C.-T.; Mallick, B.C.; et al. Non-enzymatic electrochemical detection of hydrogen peroxide on highly amidized graphene quantum dot electrodes. Appl. Surf. Sci. 2020, 528, 146936.
  • 113.
    Ma, C.; Cao, Y.; Gou, X.; et al. Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 2019, 92, 431–454.
  • 114.

    Fan, X.; Wang, S.; Liu, H.; et al. A sensitive electrochemiluminescence biosensor for assay of cancer biomarker (MMP-2) based on NGQDs-Ru@SiO2 luminophore. Talanta 2022, 236, 122830.

  • 115.
    Bae, G.; Cho, H.; Hong, B.H. A review on synthesis, properties, and biomedical applications of graphene quantum dots (GQDs). Nanotechnology 2024, 35, 372001.
  • 116.
    Huang, Y.; Hu, X.; Zhang, W.; et al. Multiwalled carbon nanorings found in raw single-walled carbon nanotubes and applied for electrochemiluminescent immunoassay. ACS Sens. 2025, 10, 4589–4599.
  • 117.
    Zhi, S.; Zhu, Z.; Li, Y.; et al. Electrochemiluminescence detection of catechol and tryptophol using nitrogen, sulfur co-doped graphene quantum dots based on a paper-based sensor. Microchem. J. 2024, 200, 110408.
  • 118.
    Ma, L.; Kang, L.; Sun, Y.; et al. Nitrogen-doped graphene quantum dots as electrochemiluminescence-emitting species for sensitive detection of KRAS G12C mutation via PET-RAFT. Chem. Eur. J. 2023, 29, e202301602.
  • 119.
    Zhu, Z.; Li, R.; Li, Y.; et al. Paper-based electrodes with nitrogen-doped graphene quantum dots for detection of copper ions via electrochemiluminescence. Mater. Chem. Phys. 2023, 296, 127300.
  • 120.
    Liu, M.; Jiang, R.; Zheng, M.; et al. A sensitive ratiometric biosensor for determination cardiac troponin I of myocardial infarction markers based on N, Zn-GQDs. Talanta 2022, 249, 123577.
  • 121.

    Wang, B.; Wang, C.; Li, Y.; et al. Electrochemiluminescence biosensor for cardiac troponin I with signal amplification based on a MoS2@Cu2O-Ag-modified electrode and Ce:ZnO-NGQDs. Analyst 2022, 147, 4768–4776.

  • 122.
    Liang, X.; Zhang, W.; Zhang, M.; et al. Facile synthesis of nitrogen-doped graphene quantum dots as nanocarbon emitters for sensitive detection of catechol. RSC Adv. 2022, 12, 25778–25785.
  • 123.

    Wu, Z.; Dai, C.; Wang, Y.; et al. A novel sensor for visual and selective detection of Hg2+ based on functionalized doped quantum dots. Anal. Methods 2022, 14, 2368–2375.

  • 124.
    Yuan, R.; Liu, Q.; Hong, H.; et al. Wang. Enhanced cathodic electrochemiluminescent microcystin-LR aptasensor based on surface plasmon resonance of Bi nanoparticles. J. Hazard. Mater. 2022, 434, 128877.
  • 125.
    Sun, Y.; Huang, C.; Sun, X.; et al. Electrochemiluminescence biosensor based on molybdenum disulfide-graphene quantum dots nanocomposites and DNA walker signal amplification for DNA detection. Microchim. Acta 2021, 188, 353.
  • 126.
    Zheng, Y.; Lin, J.; Xie, L.; et al. One-step preparation of nitrogen-doped graphene quantum dots with anodic electrochemiluminescence for sensitive detection of hydrogen peroxide and glucose. Front. Chem. 2021, 9, 688358.
  • 127.
    Liu, P.; Meng, H.; Han, Q.; et al. Determination of ascorbic acid using electrochemiluminescence sensor based on nitrogen and sulfur doping graphene quantum dots with luminol as internal standard. Microchim. Acta 2021, 188, 120.
  • 128.

    Li, L.; Chen, B.; Luo, L.; et al. Sensitive and selective detection of Hg2+ in tap and canal water via self-enhanced ECL aptasensor based on NH2-Ru@SiO2-NGQDs. Talanta 2021, 222, 121579.

  • 129.
    Hou, X.; Suo, Z.; Hu, Z.; et al. Label-free tri-luminophores electrochemiluminescence sensor for microRNAs detection based on three-way DNA junction structure. J. Electroanal. Chem. 2021, 880, 114935.
  • 130.
    Jiao, M.; Fan, X.; Wang, Z.; et al. Electrochemiluminescence resonance energy transfer system based on ox-MWCNTs-IGQDs and PdAg nanosheets for the detection of 5-fluorouracil in serum. Microchem. J. 2022, 183, 108066.
  • 131.
    Hu, L.; Song, C.; Shi, T.; et al. Dual-quenching electrochemiluminescence resonance energy transfer system from IRMOF-3 coreaction accelerator enriched nitrogen-doped GQDs to ZnO@Au for sensitive detection of procalcitonin. Sensor. Actuat. B Chem. 2021, 346, 130495.
  • 132.
    Wu, Z.; Liu, S.; Li, Y.; et al. Electrochemiluminescence resonance energy transfer system fabricated by quantum state complexes for cardiac troponin I detection. Sensor. Actuat. B Chem. 2021, 336, 129733.
  • 133.

    Liu, Y.; Sun, Y.; Yang, M. A double-potential ratiometric electrochemiluminescence platform based on g-C3N4 nanosheets (g-C3N4 NSs) and graphene quantum dots for Cu2+ detection. Anal. Methods 2021, 13, 903–909.

  • 134.

    Guo, L.; Li, L.; Luo, L.; et al. Amplified electrochemiluminescence of Ru(dcbpy)32+ via coreactant active sites on nitrogen-doped graphene quantum dots. Talanta 2025, 286, 127554.

  • 135.
    Li, S.; Peng, J.; Lin, X.; et al. RuSiNPs@ N, S-GQDs as self-enhanced anodic electrochemiluminescent immunobeacons for the highly sensitive quantitation of okadaic acid in shellfish. Microchim. Acta 2024, 191, 737.
  • 136.
    Cheng, L.-Y.; Qin, L.-L.; Liu, F.-J.; et al. Electrochemiluminescent (ECL) aptasensor for lysozyme using a graphene quantum dot (GQD)-ruthenium bipyridine-silica nanocomposite. Anal. Lett. 2025, 58, 1204–1213.
  • 137.
    Luo, L.; Liu, X.; Bi, X.; et al. Dual-quenching effects of methylene blue on the luminophore and co-reactant: Application for electrochemiluminescent-electrochemical ratiometric zearalenone detection. Biosens. Bioelectron. 2023, 222, 114991.
  • 138.

    Wei, J.; Chen, L.; Cai, X.; et al. 2D mesoporous silica-confined CsPbBr3 nanocrystals and N-doped graphene quantum dot: A self-enhanced quaternary composite structures for electrochemiluminescence analysis. Biosens. Bioelectron. 2022, 216, 114664.

  • 139.

    Li, L.; Chen, B.; Liu, X.; et al. ‘On-off-on’ electrochemiluminescent aptasensor for Hg2+ based on dual signal amplification enabled by a self-enhanced luminophore and resonance energy transfer. J. Electroanal. Chem. 2022, 907, 116063.

  • 140.

    Li, Y.; Liu, D.; Meng, S.; et al. Regulation of Ru(bpy)32+ electrochemiluminescence based on distance-dependent electron transfer of ferrocene for dual-signal readout detection of aflatoxin B1 with high sensitivity. Anal. Chem. 2022, 94, 1294–1301.

  • 141.

    Zhou, Y.; Zhang, C.; Liu, J.; et al. Nanochannel confined graphene quantum dots/platinum nanoparticles boosts electrochemiluminescence of luminal-O2 system for sensitive immunoassay. Talanta 2025, 285, 127223.

  • 142.
    Zhang, S.; Jiang, M.; Lai, W.; et al. Quenching study of Cu2S-MPA/NGODs composites in electrochemiluminescence detection by modulating resonance energy transfer and adsorption process. Bioelectrochemistry 2024, 159, 108729.
  • 143.

    Zheng, L.; Zhang, H.; Won, M.; et al. Codoping g-C3N4 with boron and graphene quantum dots: Enhancement of charge transfer for ultrasensitive and selective photoelectrochemical detection of dopamine. Biosens. Bioelectron. 2023, 224, 115050.

  • 144.
    Meng, L.; Xiao, K.; Zhang, X.; et al. A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens. Bioelectron. 2020, 150, 111861.
  • 145.

    Deng, Y.; Yan, W.; Guo, Y.; et al. Highly sensitive and selective photoelectrochemical aptasensing of di-2-ethylhexyl phthalate based on graphene quantum dots decorated TiO2 nanotube arrays. J. Hazard. Mater. 2022, 426, 128107.

  • 146.

    Bakhshandeh, F.; Saha, S.; Sakib, S.; et al. TiO2 nanoparticles Co-sensitized with graphene quantum dots and pyrocatechol violet for photoelectrochemical detection of Cr(VI). J. Electrochem. Soc. 2022, 169, 057520.

  • 147.

    Liao, D.; Zhi, J.; Wang, Q.; et al. Efficient photoelectrochemical aptasensing of di-2-ethylhexyl phthalate in environmental samples based on N, S co-doped graphene quantum dots/TiO2 nanorods. Anal. Chim. Acta 2023, 1271, 341477.

  • 148.
    Chen, Q.; Yuan, C.; He, Z.; et al. A label-free photoelectrochemical sensor of S, N co-doped graphene quantum dot (S, N-GQD)-modified electrode for ultrasensitive detection of bisphenol A. Microchim. Acta 2022, 189, 208.
  • 149.

    Wu, Z.; Liang, Z.; He, Z.; et al. A label-free photoelectrochemical sensor based on Bi2S3@nitrogen doped graphene quantum dots for ascorbic acid determination. Chem. Res. Chin. Univ. 2022, 38, 1387–1393.

  • 150.

    Zhang, T.; Gu, Y.; Li, C.; et al. Fabrication of novel electrochemical biosensor based on graphene nanohybrid to detect H2O2 released from living cells with ultrahigh performance. ACS Appl. Mater. Interfaces 2017, 9, 37991–37999.

  • 151.
    Xi, J.; Xie, C.; Zhang, Y.; et al. Pd nanoparticles decorated N‑doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Appl. Mater. Interfaces 2016, 8, 22563–22573.
  • 152.
    Ju, J.; Chen, W. In situ growth of surfactant-free gold nanoparticles on nitrogen doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 2015, 87, 1903–1910.
  • 153.
    Panda, A.K.; Murugan, K.; Sakthivel, R.; et al. A non-enzymatic, biocompatible electrochemical sensor based on N-doped graphene quantum dot-incorporated SnS2 nanosheets for in situ monitoring of hydrogen peroxide in breast cancer cells. Colloid. Surface. B 2023, 222, 113033.
  • 154.
    Zhou, C.; Chen, Y.; You, X.; et al. An electrochemiluminescent biosensor based on interactions between a graphene quantum dot-sulfite co-reactant system and hydrogen peroxide. ChemElectroChem 2017, 4, 1783–1789.
  • 155.

    Tian, K.; Li, D.; Tang, T.; et al. A novel electrochemiluminescence resonance energy transfer system of luminol-graphene quantum dot composite and its application in H2O2 detection. Talanta 2018, 185, 446–452.

  • 156.
    Chang, L.-Y.; Rinawati, M.; Guo, Y.-T.; et al. Nitrogen-Doped graphene quantum dots incorporated into MOF-derived NiCo layered double hydroxides for nonenzymatic lactate detection in noninvasive biosensors. ACS Appl. Nano Mater. 2024, 7, 14431–14442.
  • 157.
    Zhang, H.; Qu, H.; Cui, J.; et al. A simple electrochemical immunosensor based on a chitosan/reduced graphene oxide nanocomposite for sensitive detection of biomarkers of malignant melanoma. RSC Adv. 2022, 12, 25844–25851.
  • 158.
    Sapkota, B.; Benabbas, A.; Lin, H.G.; et al. Peptide-decorated tunable-fluorescence graphene quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 9378–9387.
Share this article:
How to Cite
Geng, Y.; Cao, Y.; Zhu, J. Graphene Quantum Dots: Synthesis, Properties, and Applications in Electroanalysis. Nano-electrochemistry & Nano-photochemistry 2025, 1 (1), 3. https://doi.org/10.53941/nenp.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.