- 1.
Dang, H.; Guan, B.; Zhu, L.; et al. A Review on Photocatalytic and Electrocatalytic Reduction of CO2 into C2+ Products: Recent Advances and Future Perspectives. Energy Fuels 2025, 39, 10109–10133.
- 2.
Wang, Y.; Chen, E.; Tang, J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catal. 2022, 12, 7300–7316.
- 3.
Zhang, Y.; Liu, Y.; Li, H.; et al. Regulating local charge distribution of single Ni sites in covalent organic frameworks for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 2024, 489, 151479.
- 4.
Lin, C.-C.; Huang, S.-K.; Tseng, W.-N.; et al. Chirality-Regulated Spin-Polarization of Perovskite Nanoplates for Photocatalytic CO2 Reduction Reaction. J. Am. Chem. Soc. 2025, 147, 40347–40355.
- 5.
Luo, H.; Lu, X.; Cao, Y.; et al. Boosted CO2 Photoreduction Performance by CdSe Nanoplatelets via Se Vacancy Engineering. Adv. Sci. 2025, 12, 2413684.
- 6.
Hong, L.; Zhang, H.; Hu, L.; et al. Near-infrared light–driven biomass conversion. Sci. Adv. 2024, 10, eadn9441.
- 7.
Xu, F.; Zhao, F.; Deng, X.; et al. Integrating S-scheme photocatalysis with tandem carbonylation: A green and scalable strategy for CO2 valorization. Nat. Commun. 2025, 16, 6882.
- 8.
Jin, P.; Guo, P.; Luo, N.; et al. Photochemical H2 dissociation for nearly quantitative CO2 reduction to ethylene. Science 2025, 389, 1037–1042.
- 9.
Wang, H.; Song, L.; Lv, X.; et al. Low-Coordination Triangular Cu3 Motif Steers CO2 Photoreduction to Ethanol. Angew. Chem. Int. Ed. 2025, 64, e202500928.
- 10.
Chen, C.; Ye, C.; Zhao, X.; et al. Supported Au single atoms and nanoparticles on MoS2 for highly selective CO2-to-CH3COOH photoreduction. Nat. Commun. 2024, 15, 7825.
- 11.
Gong, S.; Niu, Y.; Liu, X.; et al. Selective CO2 Photoreduction to Acetate at Asymmetric Ternary Bridging Sites. ACS Nano 2023, 17, 4922–4932.
- 12.
Shen, Y.; Ren, C.; Zheng, L.; et al. Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nat. Commun. 2023, 14, 1117.
- 13.
Su, H.; Yin, H.; Orbell, W.; et al. Asymmetric Triple-Atom Sites Combined with Oxygen Vacancy for Selective Photocatalytic Conversion of CO2 to Propionic Acid. Angew. Chem. Int. Ed. 2025, 64, e202425446.
- 14.
Huang, F.; Wang, F.; Liu, Y.; et al. Cu-ZnS Modulated Multi-Carbon Coupling Enables High Selectivity Photoreduction CO2 to CH3CH2COOH. Adv. Mater. 2025, 37, 2416708.
- 15.
Li, W.; Liu, Z.; Rhimi, B.; et al. Nitrogen-Bridged S–N–Cu Sites for CO2 Photoreduction to Ethanol with 99.5% Selectivity in Pure Water. Angew. Chem. Int. Ed. 2025, 64, e202423859.
- 16.
Huang, X.; Chen, Y.; Xie, X.; et al. Covalent Organic Frameworks with Tunable Bridge Positions for Photocatalytic CO2 Reduction to Propylene Under Visible Light Illumination. Small 2025, 21, 2408817.
- 17.
Wang, L.; Liu, Y.; Perumal, S.; et al. Enhancing photocatalytic CO2 reduction to butanol by facet-dependent interfacial engineering of CeO2/Cu2O. Appl. Catal. B Environ. 2025, 368, 125122.
- 18.
Li, C.; Wang, J.; Tong, L.; et al. Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products. Coord. Chem. Rev. 2024, 502, 215623.
- 19.
Lyu, W.; Liu, Y.; Zhou, J.; et al. Modulating the Reaction Configuration by Breaking the Structural Symmetry of Active Sites for Efficient Photocatalytic Reduction of Low-concentration CO2. Angew. Chem. Int. Ed. 2023, 62, e202310733.
- 20.
You, Q.; Wang, H.; Zhao, Y.; et al. Bottom-Up Construction of Metal–Organic Framework Loricae on Metal Nanoclusters with Consecutive Single Nonmetal Atom Tuning for Tailored Catalysis. J. Am. Chem. Soc. 2024, 146, 9026–9035.
- 21.
Liu, H.-X.; Wang, W.-W.; Fu, X.-P.; et al. Direct cleavage of C=O double bond in CO2 by the subnano MoOx surface on Mo2N. Nat. Commun. 2024, 15, 9126.
- 22.
Yang, T.; Dong, Y.; Liu, C.; et al. Supramolecules Containing Homogeneous Electron-rich Cu Sites for Photocatalytic CO2 Reduction to C2H6. Adv. Funct. Mater. 2025, 35, 2422348.
- 23.
Lin, Z.; Yang, Z.; Wang, J.; et al. Unlocking the Potential of Oxide-Based Catalysts for CO2 Photo-Hydrogenation: Oxygen Vacancies Promoted C–O Bond Cleavage in Key Intermediates. Adv. Mater. 2025, 37, 2408906.
- 24.
Wu, J.; Liu, Z.; Lin, X.; et al. Breaking through water-splitting bottlenecks over carbon nitride with fluorination. Nat. Commun. 2022, 13, 6999.
- 25.
Huo, Y.; Zhang, P.; Chi, J.; et al. Surface Functionalization and Defect Construction of SnO2 with Amine Group for Enhanced Visible-Light-Driven Photocatalytic CO2 Reduction. Adv. Energy Mater. 2024, 14, 2304282.
- 26.
Li, W.; Zuo, G.; Ma, S.; et al. Localized photothermal effect mediated hollow S-scheme NiCo2O4@ZnIn2S4 for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2025, 365, 124971.
- 27.
Wang, S.; Wang, J.; Wang, Y.; et al. Insight into the Selectivity-Determining Step of Various Photocatalytic CO2 Reduction Products by Inorganic Semiconductors. ACS Catal. 2024, 14, 10760–10788.
- 28.
Sun, Q.; Liu, X.; Gu, Q.; et al. Breaking the Conversion-Selectivity Trade-Off in Methanol Synthesis from CO2 Using Dual Intimate Oxide/Metal Interfaces. J. Am. Chem. Soc. 2024, 146, 28885–28894.
- 29.
Tang, J.; Guo, C.; Wang, T.; et al. A review of g‐C3N4‐based photocatalytic materials for photocatalytic CO2 reduction. Carbon Neutralizat. 2024, 3, 557–583.
- 30.
Anemüller, R.; Belden, K.; Brause, B.; et al. Hip and Knee Section, Treatment, Antimicrobials: Proceedings of International Consensus on Orthopedic Infections. J. Arthroplast. 2019, 34, S477–S482.
- 31.
Sun, K.; Qian, Y.; Jiang, H.-L. Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction. Angew. Chem. Int. Ed. 2023, 62, e202217565.
- 32.
Feng, J.; Chen, S.; Lu, Z.; et al. Metal-Organic Frameworks for Photocatalytic CO2 Reduction: Progress and Prospects. ACS Appl. Mater. Interfaces 2025, 17, 60028–60054.
- 33.
Mohata, S.; Majumder, P.; Banerjee, R. Design and structure-function interplay in covalent organic frameworks for photocatalytic CO2 reduction. Chem. Soc. Rev. 2025, 54, 6062–6087.
- 34.
Qin, L.; Ma, C.; Zhang, J.; et al. Structural Motifs in Covalent Organic Frameworks for Photocatalysis. Adv. Funct. Mater. 2024, 34, 2401562.
- 35.
Li, B.; Liu, X.-J.; Zhu, H.-W.; et al. A Review on Bi2WO6-Based Materials for Photocatalytic CO2 Reduction. Small 2024, 20, 2406074.
- 36.
Kaur, J.; Peter, S.C. Two-Dimensional Perovskites for Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2025, 64, e202418708.
- 37.
Zheng, M.; Zhang, J.; Wang, P.; et al. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. Adv. Mater. 2024, 36, 2307913.
- 38.
de Almeida, J.C.; Wang, Y.; Rodrigues, T.A.; et al. Copper-based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications. Adv. Funct. Mater. 2025, 2502901. https://doi.org/10.1002/adfm.202502901.
- 39.
Liu, L.; Wang, Z.; Zhang, J.; et al. Tunable Interfacial Charge Transfer in a 2D-2D Composite for Efficient Visible-Light-Driven CO2 Conversion. Adv. Mater. 2023, 35, 2300643.
- 40.
Feng, C.; Hu, M.; Zuo, S.; et al. Ru-OV Site-Mediated Product Selectivity Switch for Overall Photocatalytic CO2 Reduction. Adv. Mater. 2025, 37, 2411813.
- 41.
Li, B.; Zhang, X.; Chen, M.; et al. Multichannel charge transfer mediated by polyoxometalate loaded SnS2 wrapped Te nanostructures for efficient photocatalytic CO2 reduction. Appl. Catal. B Environ. 2025, 377, 125509.
- 42.
Li, M.; Han, Z.; Hu, Q.; et al. Recent progress in solar-driven CO2 reduction to multicarbon products. Chem. Soc. Rev. 2024, 53, 9964–9975.
- 43.
Zhu, H.-W.; Guo, R.-T.; Liu, C.; et al. Recent progress on photocatalytic reduction of CO2 to C2+ products. J. Mater. Chem. A 2024, 12, 21677–21703.
- 44.
Chen, H.; Zhao, C.; Chen, X. Photocatalytic Reduction of Carbon Dioxide: Designing the Active Sites and Tracking the Pathways. Chem. Asian J. 2025, 20, e202500106.
- 45.
Chen, G.; Gao, R.; Zhao, Y.; et al. Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons. Adv. Mater. 2018, 30, 1704663.
- 46.
Wu, Y.; Hu, Q.; Chen, Q.; et al. Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO2 Photoreduction toward C2 Products. Acc. Chem. Res. 2023, 56, 2500–2513.
- 47.
Li, X.; Yu, J.; Jaroniec, M.; et al. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179.
- 48.
Che, W.; Zhao, S.; Byun, W.J.; et al. From Carbon Nitrides to COFs: Opportunities and Prospects in Photocatalytic CO2 Reduction. Adv. Mater. 2025, 37, 2306961.
- 49.
Yang, J.; Deng, C.; Lei, Y.; et al. Fe–N Co-Doped BiVO4 Photoanode with Record Photocurrent for Water Oxidation. Angew. Chem. Int. Ed. 2025, 64, e202416340.
- 50.
Huang, T.; Han, J.; Li, Z.; et al. Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO2 Reduction when Using Au Nanorods in a MOF. Angew. Chem. Int. Ed. 2025, 64, e202500269.
- 51.
Lin, Z.; Yu, X.; Zhao, Z.; et al. Controlling crystallization in covalent organic frameworks to facilitate photocatalytic hydrogen production. Nat. Commun. 2025, 16, 1940.
- 52.
Feng, J.; Zhang, L.; Liu, S.; et al. Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products. Nat. Commun. 2023, 14, 4615.
- 53.
Feng, C.; Wang, F.; Liu, Z.; et al. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nat. Commun. 2021, 12, 5980.
- 54.
Fu, H.; Lei, Y.; Zhang, Q.; et al. Optimization of CO2 Mass Transfer and Modulation of Reaction Kinetics for Efficient CO2 Conversion via a Three-Phase Photocatalytic Flow System. Adv. Funct. Mater. 2025, e15361. https://doi.org/10.1002/adfm.202515361.
- 55.
Alvarez, I.B.; Le, T.; Hosseini, H.; et al. Bond Selective Photochemistry at Metal Nanoparticle Surfaces: CO Desorption from Pt and Pd. J. Am. Chem. Soc. 2024, 146, 12431–12443.
- 56.
Liu, B.; Hu, Z.; Li, Y.; et al. Simultaneous value-added utilization of photogenerated electrons and holes on Pd/TiO2. Nat. Commun. 2025, 16, 6014.
- 57.
Ru, Q.; Zhang, B.; Li, S.; et al. Overcoming the bottleneck in one-electron reduction of CO2 with mechanical energy-driven triboelectric plasma-enabled catalysis. Chem. Eng. J. 2025, 519, 165012.
- 58.
Li, L.; Liu, W.; Shi, T.; et al. Photoexcited Single-Electron Transfer for Efficient Green Synthesis of Cyclic Carbonate from CO2. ACS Mater. Lett. 2023, 5, 1219–1226.
- 59.
Xu, Z.; Lu, R.; Lin, Z.-Y.; et al. Electroreduction of CO2 to methane with triazole molecular catalysts. Nat. Energy. 2024, 9, 1397–1406.
- 60.
Bains, A.K.; Sau, A.; Portela, B.S.; et al. Efficient super-reducing organic photoredox catalysis with proton-coupled electron transfer mitigated back electron transfer. Science. 2025, 388, 1294–1300.
- 61.
Wang, W.; Deng, C.; Xie, S.; et al. Photocatalytic C–C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II). J. Am. Chem. Soc. 2021, 143, 2984–2993.
- 62.
Li, Y.; Chen, Y.; Wang, Q.; et al. Realizing C–C Coupling via Accumulation of C1 Intermediates within Dual-Vacancy-Induced Dipole-Limited Domain Field to Propel Photoreduction of CO2-to-C2 Fuel. Adv. Mater. 2025, 37, 2414994.
- 63.
Ding, J.; Du, P.; Li, P.; et al. Highly Active Photoreduction of Atmospheric-Concentration CO2 into CH3COOH over Palladium Particles on Nb2O5 Nanosheets. Angew. Chem. Int. Ed. 2025, 64, e202414453.
- 64.
Shi, X.; Dai, W.; Li, X.; et al. Lattice-Matched S-Scheme High-Entropy Oxide Heterojunction for Efficient Visible-Light-Driven CO2 Photomethanation. Adv. Funct. Mater. 2025, e11696. https://doi.org/10.1002/adfm.202511696.
- 65.
Li, X.; Li, L.; Liu, X.; et al. Designing multi-metal-site nanosheet catalysts for CO2 photoreduction to ethylene. Nat. Commun. 2025, 16, 6500.
- 66.
Li, W.; Zhang, Y.; Wang, Y.; et al. Graphdiyne facilitates photocatalytic CO2 hydrogenation into C2+ hydrocarbons. Appl. Catal. B Environ. 2024, 340, 123267.
- 67.
Liang, M.; Shao, X.; Choi, J.Y.; et al. Modified TiO2/In2O3 heterojunction with efficient charge separation for visible-light-driven photocatalytic CO2 reduction to C2 product. J. Energy Chem. 2024, 98, 714–720.
- 68.
Zhang, Y.; Li, W.; Tian, F.; et al. Construction of multiple channels for electron transport in In2S3/In2O3/rGO heterojunctions to boost photocatalytic CO2 conversion to C2+ hydrocarbons. Chem. Eng. J. 2023, 477, 147129.
- 69.
Du, P.; Ding, J.; Liu, C.; et al. Interface-Engineering-Induced C–C Coupling for C2H4 Photosynthesis from Atmospheric-Concentration CO2 Reduction. Angew. Chem. Int. Ed. 2025, 64, e202421353.
- 70.
Hao, S.; Chen, Y.; Peng, C.; et al. Photocatalytic Coupling of CH4 and CO2 to Ethanol on Asymmetric Ce–O–Zn Sites. Adv. Funct. Mater. 2024, 34, 2314118.
- 71.
Subrahmanyam, M.; Kaneco, S.; Alonso-Vante, N. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Appl. Catal. B Environ. 1999, 23, 169–174.
- 72.
Wang, J.; Lin, S.; Tian, N.; et al. Nanostructured Metal Sulfides: Classification, Modification Strategy, and Solar-Driven CO2 Reduction Application. Adv. Funct. Mater. 2021, 31, 2008008.
- 73.
Liu, C.; Xiao, Y.; Wan, W.; et al. Different behaviors on the external and inner surface of hollow CdS/VS-MoS2 heterojunctions in photoelectrocatalytic CO2 reduction via SH-assisted mechanism. Appl. Catal. B Environ. 2023, 325, 122394.
- 74.
Wang, B.; Jiang, Z.; Yu, J.C.; et al. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 2019, 11, 9296–9301.
- 75.
Yang, X.; Lan, X.; Zhang, Y.; et al. Rational design of MoS2@COF hybrid composites promoting C–C coupling for photocatalytic CO2 reduction to ethane. Appl. Catal. B Environ. 2023, 325, 122393.
- 76.
Liu, Y.; Liu, Y.; Luo, G.; et al. Photothermally inducing SnS2 phase transition in Cu2O@CuS@SnS2 core—Shell heterostructure to trigger efficient photocatalytic CO2 reduction. Chem. Eng. J. 2025, 510, 161537.
- 77.
Zhang, J.; Duan, L.; Zhang, W.; et al. Crystal-Facet Engineering of Mesoporous CuS Cascade Nanoreactors Enhances Photocatalytic C–C Coupling of CO2-to-C2H4. Angew. Chem. Int. Ed. 2025, 64, e202423861.
- 78.
Huang, H.B.; Zhang, N.; Xu, J.Y.; et al. Photocatalytic CO2-to-Ethylene Conversion over Bi2S3/CdS Heterostructures Constructed via Facile Cation Exchange. Research 2022, 2022, 9805879.
- 79.
Ren, L.; Yang, X.; Sun, X.; et al. Cascaded *CO–*COH Intermediates on a Nonmetallic Plasmonic Photocatalyst for CO2-to-C2H6 with 90.6% Selectivity. Angew. Chem. Int. Ed. 2024, 63, e202404660.
- 80.
Wang, J.; Zhang, H.; Mu, N.; et al. Sulfur in multiple chemical states synergistic bimetallic sites on CuIn11S17 promoting photocatalytic evolution of C2H4 from CO2. Appl. Catal. B Environ. 2025, 377, 125480.
- 81.
Lv, L.; Liu, Y.; Li, X.; et al. Synergistic Engineering of Zinc Vacancies and Er-Doping in ZnIn2S4 Nanosheets for Enhanced CO2 Photoreduction via Optimized Charge Dynamics. Carbon Neutralization 2025, 4, e70021.
- 82.
Song, W.; Wang, C.; Liu, Y.; et al. Unlocking Copper-Free Interfacial Asymmetric C–C Coupling for Ethylene Photosynthesis from CO2 and H2O. J. Am. Chem. Soc. 2024, 146, 29028–29039.
- 83.
Zheng, X.; Song, Y.; Gao, Q.; et al. Controllable-Photocorrosion Balance Endows ZnCdS Stable Photocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2025, 35, 2506159.
- 84.
Shi, H.; Liang, Y.; Hou, J.; et al. Boosting Solar-Driven CO2 Conversion to Ethanol via Single-Atom Catalyst with Defected Low-Coordination Cu-N2 Motif. Angew. Chem. Int. Ed. 2024, 63, e202404884.
- 85.
Wang, Q.; He, M.Q.; Yang, P.X.; et al. Selective Photocatalytic Conversion of CO2 to Ethanol via Unsaturated Cu-O Domains. ACS Nano 2024, 18, 33576–33586.
- 86.
Zeng, D.; Wang, H.; Zhu, X.; et al. Photocatalytic conversion of CO2 to acetic acid by CuPt/WO3: Chloride enhanced C-C coupling mechanism. Appl. Catal. B Environ. 2023, 323, 122177.
- 87.
Zhang, P.; Li, N.; Li, L.; et al. g-C3N4-Based Photocatalytic Materials for Converting CO2 into Energy: A Review. Chemphyschem 2024, 25, e202400075.
- 88.
Sun, Z.; Wang, H.; Wu, Z.; et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 2018, 300, 160–172.
- 89.
Xu, Y.; Gao, S.-P. Band gap of C3N4 in the GW approximation. Int. J. Hydrog. Energy 2012, 37, 11072–11080.
- 90.
Huang, Z.; Chen, H.; Zhao, L.; et al. Constructing g-C3N4quantum dots modified g-C3N4/GO nanosheet aerogel for UV-Vis-NIR driven highly efficient photocatalytic H2 production. Int. J. Hydrog. Energy 2019, 44, 31041–31052.
- 91.
Mo, Z.; Zhu, X.; Jiang, Z.; et al. Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Appl. Catal. B Environ. 2019, 256, 117854.
- 92.
Li, X.; Xiong, J.; Gao, X.; et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J. Alloys Compd. 2019, 802, 196–209.
- 93.
Chen, H.L.; Liu, F.Y.; Lin, Y.Y.; et al. Photocatalytic CO2 reduction to C1–C5 hydrocarbons using K2Fe2O4/g-C3N4 as coupling photocatalyst. Mater. Today Sustain. 2023, 23, 100430.
- 94.
Chen, Z.; Ding, G.; Wang, Z.; et al. Precision Molecular Engineering of Carbon Nitride for Efficient and Selective Photoreduction of CO2 to C2H6 in Pure Water. Adv. Funct. Mater. 2025, 35, 2423213.
- 95.
Gao, Q.; Qi, W.; Li, Y.; et al. Regulating Local Electron Density of Cyano Sites in Graphitic Nitride Carbon by Giant Internal Electric Field for Efficient CO2 Photoreduction to Hydrocarbons. Small 2024, 20, 2404822.
- 96.
Niu, P.; Yang, Y.; Yu, J.C.; et al. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun. 2014, 50, 10837–10840.
- 97.
Andrei, V.; Roh, I.; Lin, J.-A.; et al. Perovskite-driven solar C2 hydrocarbon synthesis from CO2. Nat. Catal. 2025, 8, 137–146.
- 98.
Rowsell, J.L.C.; Yaghi, O.M. Metal-organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3–14.
- 99.
Wang, W.W.; Song, S.J.; Wang, P.; et al. Chemical Bonding of g-C3N4/UiO-66(Zr/Ce) from Zr and Ce Single Atoms for Efficient Photocatalytic Reduction of CO2 under Visible Light. ACS Catal. 2023, 13, 4597–4610.
- 100.
Zhao, B.; Qiu, X.; Song, Y.; et al. Regulating Asymmetric Charge Distribution in Cu2MoS4 Nanosheets for Enhanced Photocatalytic CO2 Reduction. Small 2025, 21, 2500877.
- 101.
Zhou, Q.; Guo, Y.; Zhu, Y. Reticular copper dual sites embedded with semiconductor particles for selective CO2-to-C2H4 photoreduction. Nat. Catal. 2025, 8, 728–739.
- 102.
Xie, S.; Li, Y.; Sheng, B.; et al. Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. Appl. Catal. B Environ. 2022, 310, 121320.
- 103.
Chen, D.; Chu, B.; Li, F.; et al. Synergistic Catalysis by Cu Single Atoms and Atomically Cu-Doped Au Nanoparticles in a Metal—Organic Framework for Photocatalytic CO2 Reduction to C2H6. J. Am. Chem. Soc. 2025, 147, 22705–22713.
- 104.
Huang, Z.-W.; Hu, K.-Q.; Li, X.-B.; et al. Thermally Induced Orderly Alignment of Porphyrin Photoactive Motifs in Metal—Organic Frameworks for Boosting Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2023, 145, 18148–18159.
- 105.
Mishra, B.; Alam, A.; Chakraborty, A.; et al. Covalent Organic Frameworks for Photocatalysis. Adv. Mater. 2024, 2413118. https://doi.org/10.1002/adma.202413118.
- 106.
Hirani, Z.; Schweitzer, N.M.; Vitaku, E.; et al. A Phenazine-Based Two-Dimensional Covalent Organic Framework for Photochemical CO2 Reduction with Increased Selectivity for Two-Carbon Products. Angew. Chem. Int. Ed. 2025, 64, e202502799.
- 107.
Liu, Q.; Li, Q.; Li, Y.; et al. Two-Dimensional Covalent Organic Frameworks in Organic Electronics. Angew. Chem. Int. Ed. 2025, 64, e202502536.
- 108.
Hsueh, C.-H.; He, C.; Zhang, J.; et al. Three-Dimensional Mesoporous Covalent Organic Framework for Photocatalytic Oxidative Dehydrogenation to Quinoline. J. Am. Chem. Soc. 2024, 146, 33857–33864.
- 109.
Zhu, J.; Huang, L.; Dong, W.; et al. Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to N-Unprotected Ketimines: Efficient Synthesis of Cipargamin. Angew. Chem. Int. Ed. 2019, 58, 16119–16123.
- 110.
Yang, J.; Chen, Z.; Zhang, L.; et al. Covalent Organic Frameworks for Photocatalytic Reduction of Carbon Dioxide: A Review. ACS Nano 2024, 18, 21804–21835.
- 111.
Guan, G.-W.; Zheng, S.-T.; Zhang, L.-P.; et al. Regulating Charge Distribution in Porphyrin-Based Polymer for Achieving Photocatalytic CO2 Conversion to CH4 or C2H6. Small 2025, 21, 2409575.
- 112.
Chen, X.; Liu, C.; Yang, T.; et al. Cu atom pairs within covalent organic frameworks facilitate the photocatalytic reduction of CO2 to C2H6. Appl. Catal. B Environ. 2025, 377, 125499.
- 113.
Hu, Y.; Liu, G.; Song, T.; et al. Single-atom Cu sites on covalent organic frameworks with Kagome lattices for visible-light-driven CO2 reduction to propylene. Appl. Catal. B Environ. 2025, 361, 124587.
- 114.
Wang, Y.-C.; Shi, W.-J.; Zhang, J.-H.; et al. Rapid electron transfer via imine-linked interface in dinuclear cobalt MOF@COF Z-scheme heterojunction for enhanced photocatalytic CO2 reduction with H2O. Chem. Eng. J. 2025, 517, 164327.
- 115.
Zhang, W.; Zhong, Z.; Wei, X.; et al. Single-Crystal Metal—Organic and Covalent Organic Framework Hybrids Enable Efficient Photoelectrochemical CO2 Reduction to Ethanol. J. Am. Chem. Soc. 2025, 147, 17975–17984.
- 116.
Huang, Y.; Du, P.; Shi, W.-X.; et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B Environ. 2021, 288, 120001.
- 117.
Zhang, Y.; Guan, X.; Meng, Z.; et al. Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis. J. Am. Chem. Soc. 2025, 147, 3776–3785.
- 118.
Zheng, Y.; Yang, J.; Qiao, Z.-A. Condensed Matter Chemistry: The Defect Engineering of Porous Materials. Prog. Chem. 2023, 35, 954–967.
- 119.
Zhang, M.; Zhang, D.; Jing, X.; et al. Engineering NH2-Cu-NH2 Triple-atom Sites in Defective MOFs for Selective Overall Photoreduction of CO2 into CH3COCH3. Angew. Chem. Int. Ed. 2024, 63, e202402755.
- 120.
Zhang, L.; Liu, T.; Liu, T.; et al. Improving photocatalytic performance of defective titania for carbon dioxide photoreduction by Cu cocatalyst with SCN-ion modification. Chem. Eng. J. 2023, 463, 142358.
- 121.
Wang, J.; Yang, C.; Mao, L.; et al. Regulating the Metallic Cu–Ga Bond by S Vacancy for Improved Photocatalytic CO2 Reduction to C2H4. Adv. Funct. Mater. 2023, 33, 2213901.
- 122.
Chen, H.; Wang, L.; Long, D.; et al. Advancing the ethanol pathway during the competitive photocatalytic CO2 reduction in a defective transition metal dichalcogenide. Appl. Catal. B Environ. 2024, 357, 124260.
- 123.
Liu, B.; Cheng, M.; Zhang, C.; et al. Au-Cu dual-single-atom sites on Bi2WO6 with oxygen vacancy for CO2 photoreduction towards multicarbon products. Appl. Catal. B Environ. 2024, 357, 124263.
- 124.
Das, K.; Chakraborty, S.; Kediya, S.; et al. Dopant and Exfoliation Induced Simultaneous Modification of Charge Density and C–C Coupling Sites for Efficient CO2 Photoreduction to Ethylene. Angew. Chem. Int. Ed. 2025, 64, e202423471.
- 125.
Xing, F.; Li, Q.; Li, J.; et al. Cu doping induced asymmetric Cu-Vs-In active sites in In2S3 for efficient photocatalytic C2H4 conversion from CO2. J. Colloid Interface Sci. 2025, 691, 137388.
- 126.
Gao, S.; Guan, H.; Wang, H.; et al. Creation of SnxNb1–xO2 solid solution through heavy Nb-doping in SnO2 to boost its photocatalytic CO2 reduction to C2+ products under simulated solar illumination. J. Adv. Ceram. 2022, 11, 1404–1416.
- 127.
Shao, W.; Li, X.; Zhu, J.; et al. Metaln+-Metalδ+ pair sites steer C-C coupling for selective CO2 photoreduction to C2 hydrocarbons. Nano Res. 2022, 15, 1882–1891.
- 128.
Ni, B.; Zhang, G.; Wang, H.; et al. Correlating Oxidation State and Surface Ligand Motifs with the Selectivity of CO2 Photoreduction to C2 Products. Angew. Chem. Int. Ed. 2023, 62, e202215574.
- 129.
Wu, Y.; Chen, Q.; Zhu, J.; et al. Selective CO2-to-C2H4 Photoconversion Enabled by Oxygen-Mediated Triatomic Sites in Partially Oxidized Bimetallic Sulfide. Angew. Chem. Int. Ed. 2023, 62, e202301075.
- 130.
Xu, M.; Zhang, Q.; Wei, S.; et al. Engineering Heteronuclear Dual-Metal Active Sites in Ordered Macroporous Architectures for Enhanced C2H4 Production from CO2 Photoreduction. Angew. Chem. Int. Ed. 2025, 64, e202506072.
- 131.
Zhang, Y.; Wei, T.; Ding, D.; et al. Aggregation-Induced Equidistant Dual Pt Atom Pairs for Effective CO2 Photoreduction to C2H4. ACS Catal. 2025, 15, 5614–5622.
- 132.
Wang, Y.; Jiang, J.; Yao, N.; et al. Enhanced photocatalytic CO2 conversion over 0D/2D AgVO3/TiO2 heterojunctions assisted by Z-scheme charge separation. Sci. China Mater. 2024, 67, 1820–1829.
- 133.
He, Q.; Ma, D.; Du, Y.; et al. An Atypical Heterojunction in Favor of Conversion of CO2 and Sunlight into C2H4. Adv. Sci. 2025, 12, 2503336.
- 134.
Zhang, Z.; Hu, Q.; Xie, J.; et al. CO2 Photoreduction into C2 Fuels Steered by Heteroatom Pair Sites in MxOy@Bi2S3 Heterojunction. ACS Catal. 2025, 15, 14021–14028.
- 135.
Wu, Y.; Li, Z.; Chen, Q.; et al. Cooperative Atomic Palladium Site and Island-Distributed S-Scheme Heterostructure for Photocatalytic C2H6 Production. ACS Catal. 2025, 15, 3558–3569.
- 136.
Yu, S.; Wilson, A.J.; Heo, J.; et al. Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Lett. 2018, 18, 2189–2194.
- 137.
Li, N.; Jiang, R.; Li, Y.; et al. Plasma-Assisted Photocatalysis of CH4 and CO2 into Ethylene. ACS Sustain. Chem. Eng. 2019, 7, 11455–11463.
- 138.
Devasia, D.; Wilson, A.J.; Heo, J.; et al. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat. Commun. 2021, 12, 2612.
- 139.
Lu, C.; Li, J.; Yan, J.; et al. Surface plasmon resonance and defects on tungsten oxides synergistically boost high-selective CO2 reduction for ethylene. Appl. Mater. Today 2020, 20, 100744.
- 140.
Yang, X.; Ren, L.; Chen, Z.; et al. Constructing an Active Sulfur-Vacancy-Rich Surface for Selective *CH3-CH3 Coupling in CO2-to-C2H6 Conversion With 92% Selectivity. Adv. Mater. 2025, 37, 2412299.
- 141.
Xie, Z.; Cheng, W.; Luo, H.; et al. Artificial Photothermal Synthesis of Hydrocarbons from CO2 and H2O. Adv. Energy Mater. 2025, 2501840. https://doi.org/10.1002/aenm.202501840.
- 142.
He, H.; Ren, Y.; Zhu, Y.-H.; et al. Continuous Flow Photothermal Catalytic CO2 Reduction: Materials, Mechanisms, and System Design. ACS Catal. 2025, 15, 10480–10520.
- 143.
Song, H.; Sun, K.; Huang, H.; et al. Integrating photochemical and photothermal effects for selective oxidative coupling of methane into C2+ hydrocarbons with multiple active sites. Nat. Commun. 2025, 16, 2831.
- 144.
Feng, G.; Wang, S.; Li, S.; et al. Highly Selective Photoelectroreduction of Carbon Dioxide to Ethanol over Graphene/Silicon Carbide Composites. Angew. Chem. Int. Ed. 2023, 62, e202218664.
- 145.
Yan, K.; Wu, D.; Wang, T.; et al. Highly Selective Ethylene Production from Solar-Driven CO2 Reduction on the Bi2S3@In2S3 Catalyst with In–SV–Bi Active Sites. ACS Catal. 2023, 13, 2302–2312.
- 146.
Li, X.; Li, L.; Chu, X.; et al. Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Nat. Commun. 2024, 15, 5639.
- 147.
Peng, R.; Ren, Y.; Si, Y.; et al. Strong Photothermal Tandem Catalysis for CO2 Reduction to C2H4 Boosted by Zr–O–W Interfacial H2O Dissociation. ACS Catal. 2025, 15, 1–13.
- 148.
Yu, M.; Li, M.; Zhang, X.; et al. Coupling Photocatalytic Reduction and Biosynthesis Towards Sustainable CO2 Upcycling. Angew. Chem. Int. Ed. 2025, 64, e202423995.
- 149.
Cai, Y.; Yang, R.; Fu, J.; et al. Self-pressurizing nanoscale capsule catalysts for CO2 electroreduction to acetate or propanol. Nat. Synth. 2024, 3, 891–902.
- 150.
Du, H.; Liu, L.-X.; Li, P.; et al. Enriching reaction intermediates in multishell structured copper catalysts for boosted propanol electrosynthesis from carbon monoxide. ACS Nano 2023, 17, 8663–8670.
- 151.
Zhu, W.; Zhang, Y.-J.; Zhang, H.; et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.
- 152.
Zhu, W.; Michalsky, R.; Metin, Ö.; et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.
- 153.
Xie, L.; Cai, Y.; Jiang, Y.; et al. Direct low concentration CO2 electroreduction to multicarbon products via rate-determining step tuning. Nat. Commun. 2024, 15, 10386.
- 154.
Uthirakumar, P.; Son, H.; Dao, V.; et al. Accelerating photoelectrochemical CO2RR selectively of C2+ products by integrating Ag/Pd cocatalysts on Cu/Cu2O/CuO heterojunction nanorods. J. Environ. Chem. Eng. 2024, 12, 112442.
- 155.
Guo, X.; Wang, C.; Yang, Z.; et al. Boosting C2+ production from photoelectrochemical CO2 reduction on gallium doped Cu2O. Chem. Eng. J. 2023, 471, 144539.
- 156.
Chen, M.; Sun, Y.-H.; Zhou, D.; et al. Efficient CO2 reduction to C2 products in a Ce-TiO2 photoanode-driven photoelectrocatalysis system using a Bnanometer Cu2O cathode. Appl. Catal. A Gen. 2024, 687, 119966.
- 157.
Liu, Q.; Bai, C.; Zhu, C.; et al. M/BiOCl-(M = Pt, Pd, and Au) Boosted Selective Photocatalytic CO2 Reduction to C2 Hydrocarbons via *CHO Intermediate Manipulation. Adv. Sci. 2024, 11, 2400934.
- 158.
Jiang, Y.; Lv, C.; Lu, B.; et al. Ag Stabilized Cu+/Cu0 Interface Catalysts for Enhanced CO2 Electroreduction to C2+ Products at Ampere Level Current Density. ACS Nano 2025, 19, 11263–11272.
- 159.
Wei, Y.; Duan, R.; Zhang, Q.; et al. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism. Chin. J. Catal. 2023, 47, 243–253.
- 160.
Zuo, L.; Deng, Y.; Chen, L.; et al. Fundamental Insights into Photoelectrochemical Carbon Dioxide Reduction: Elucidating the Reaction Pathways. ACS Catal. 2024, 14, 16795–16833.
- 161.
Huang, Y.; Du, P.; Shi, W.-X.; et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B Environ. 2021, 288, 120001.
- 162.
Yang, R.; Cai, Y.; Qi, Y.; et al. How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction. Nat. Commun. 2024, 15, 7140.
- 163.
Cai, Y.; Fu, J.; Zhou, Y.; et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.
- 164.
Zhuang, Z.; Wang, G.; Zhao, W.; et al. Silver-doped porous copper catalysts for efficient resource utilization of CO-containing flue gases. ACS Environ. Au 2025, 5, 287–297.
- 165.
Ye, Z.; Shen, B.; Kang, D.; et al. A data-driven approach for the guided regulation of exposed facets in nanoparticles. Nat. Synth. 2024, 3, 922–929.
- 166.
Su, L.; Rodríguez-Jiménez, S.; Short, M.I.M.; et al. Adapting gas fermenting bacteria for light-driven domino valorization of CO2. Chem. Sci. 2025, 16, 11801–11808.
- 167.
Wang, Q.; Kalathil, S.; Pornrungroj, C.; et al. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nat. Catal. 2022, 5, 633–641.
- 168.
Tian, Y.; Guo, Z.; He, J.; et al. Light-driven eosin Y-Ralstonia eutropha biohybrid for CO2 conversion to acetoin via specific photo-induced electron transfer and metabolic engineering. J. CO2 Util. 2025, 93, 103051.
- 169.
Chen, N.; Xi, J.; He, T.; et al. Beyond natural synthesis via solar-decoupled biohybrid photosynthetic system. Chem 2025, 11, 102381.
- 170.
Bai, X.; Li, Y.; Xie, Y.; et al. High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model. Green Energy Environ. 2025, 10, 132–138.
- 171.
Yang, Y.; Zhou, J.; Zhao, Z.; et al. Atomic-scale identification of active sites of oxygen reduction nanocatalysts. Nat. Catal. 2024, 7, 796–806.
- 172.
Sun, M.Z.; Huang, B.L. Direct Machine Learning Predictions of C3 Pathways. Adv. Energy Mater. 2024, 14, 2400152.
- 173.
Li, J.; Wang, K.; Zhang, Y.; et al. Prediction of Carbon Dioxide Reduction Catalyst Using Machine Learning with a Few-Feature Model: WLEDZ. J. Phys. Chem. C 2022, 126, 18235–18244.