2511002349
  • Open Access
  • Review

Rational Design of Photocatalysts for CO2 Reduction to Multi-Carbon Products

  • Zhizhen Yin 1, 4,   
  • Huanhuan Sun 2,   
  • Wen Li 3,   
  • Xiaoyang Liu 3,   
  • Yanxi Hu 1,   
  • Yuting Wang 1,   
  • Gancheng Zuo 3, *

Received: 03 Oct 2025 | Revised: 17 Nov 2025 | Accepted: 20 Nov 2025 | Published: 27 Nov 2025

Abstract

Photocatalytic reduction of CO2 into multi-carbon (C2+) products is a promising but challenging pathway for carbon recycling, primarily hindered by the high kinetic barrier of C–C coupling and inefficient charge dynamics. This review systematically elaborates on the recent advances in photocatalyst development, focusing on key material systems including metal oxides, sulfides, Cu-based materials, graphitic carbon nitride, metal organic frameworks, and covalent-organic frameworks. It highlights the structure-activity relationships within these materials that govern the reaction pathway and selectivity. Furthermore, a systematic evaluation of performance-enhancing strategies, including defect engineering, doping engineering, heterojunction construction, and plasmonic effects, highlights their ability to precisely modulate electronic structures and reaction microenvironments, thereby promoting efficient C–C coupling. Finally, this review provides a critical discussion of current limitations and future research frontiers, offering perspectives on product verification, in-situ mechanistic studies, bifunctional synergy, and reactor design for practical application.

Graphical Abstract

References 

  • 1.

    Dang, H.; Guan, B.; Zhu, L.; et al. A Review on Photocatalytic and Electrocatalytic Reduction of CO2 into C2+ Products: Recent Advances and Future Perspectives. Energy Fuels 2025, 39, 10109–10133.

  • 2.

    Wang, Y.; Chen, E.; Tang, J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catal. 2022, 12, 7300–7316.

  • 3.

    Zhang, Y.; Liu, Y.; Li, H.; et al. Regulating local charge distribution of single Ni sites in covalent organic frameworks for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 2024, 489, 151479.

  • 4.

    Lin, C.-C.; Huang, S.-K.; Tseng, W.-N.; et al. Chirality-Regulated Spin-Polarization of Perovskite Nanoplates for Photocatalytic CO2 Reduction Reaction. J. Am. Chem. Soc. 2025, 147, 40347–40355.

  • 5.

    Luo, H.; Lu, X.; Cao, Y.; et al. Boosted CO2 Photoreduction Performance by CdSe Nanoplatelets via Se Vacancy Engineering. Adv. Sci. 2025, 12, 2413684.

  • 6.
    Hong, L.; Zhang, H.; Hu, L.; et al. Near-infrared light–driven biomass conversion. Sci. Adv. 2024, 10, eadn9441.
  • 7.

    Xu, F.; Zhao, F.; Deng, X.; et al. Integrating S-scheme photocatalysis with tandem carbonylation: A green and scalable strategy for CO2 valorization. Nat. Commun. 2025, 16, 6882.

  • 8.

    Jin, P.; Guo, P.; Luo, N.; et al. Photochemical H2 dissociation for nearly quantitative CO2 reduction to ethylene. Science 2025, 389, 1037–1042.

  • 9.

    Wang, H.; Song, L.; Lv, X.; et al. Low-Coordination Triangular Cu3 Motif Steers CO2 Photoreduction to Ethanol. Angew. Chem. Int. Ed. 2025, 64, e202500928.

  • 10.

    Chen, C.; Ye, C.; Zhao, X.; et al. Supported Au single atoms and nanoparticles on MoS2 for highly selective CO2-to-CH3COOH photoreduction. Nat. Commun. 2024, 15, 7825.

  • 11.

    Gong, S.; Niu, Y.; Liu, X.; et al. Selective CO2 Photoreduction to Acetate at Asymmetric Ternary Bridging Sites. ACS Nano 2023, 17, 4922–4932.

  • 12.

    Shen, Y.; Ren, C.; Zheng, L.; et al. Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nat. Commun. 2023, 14, 1117.

  • 13.

    Su, H.; Yin, H.; Orbell, W.; et al. Asymmetric Triple-Atom Sites Combined with Oxygen Vacancy for Selective Photocatalytic Conversion of CO2 to Propionic Acid. Angew. Chem. Int. Ed. 2025, 64, e202425446.

  • 14.

    Huang, F.; Wang, F.; Liu, Y.; et al. Cu-ZnS Modulated Multi-Carbon Coupling Enables High Selectivity Photoreduction CO2 to CH3CH2COOH. Adv. Mater. 2025, 37, 2416708.

  • 15.

    Li, W.; Liu, Z.; Rhimi, B.; et al. Nitrogen-Bridged S–N–Cu Sites for CO2 Photoreduction to Ethanol with 99.5% Selectivity in Pure Water. Angew. Chem. Int. Ed. 2025, 64, e202423859.

  • 16.

    Huang, X.; Chen, Y.; Xie, X.; et al. Covalent Organic Frameworks with Tunable Bridge Positions for Photocatalytic CO2 Reduction to Propylene Under Visible Light Illumination. Small 2025, 21, 2408817.

  • 17.

    Wang, L.; Liu, Y.; Perumal, S.; et al. Enhancing photocatalytic CO2 reduction to butanol by facet-dependent interfacial engineering of CeO2/Cu2O. Appl. Catal. B Environ. 2025, 368, 125122.

  • 18.

    Li, C.; Wang, J.; Tong, L.; et al. Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products. Coord. Chem. Rev. 2024, 502, 215623.

  • 19.

    Lyu, W.; Liu, Y.; Zhou, J.; et al. Modulating the Reaction Configuration by Breaking the Structural Symmetry of Active Sites for Efficient Photocatalytic Reduction of Low-concentration CO2. Angew. Chem. Int. Ed. 2023, 62, e202310733.

  • 20.
    You, Q.; Wang, H.; Zhao, Y.; et al. Bottom-Up Construction of Metal–Organic Framework Loricae on Metal Nanoclusters with Consecutive Single Nonmetal Atom Tuning for Tailored Catalysis. J. Am. Chem. Soc. 2024, 146, 9026–9035.
  • 21.

    Liu, H.-X.; Wang, W.-W.; Fu, X.-P.; et al. Direct cleavage of C=O double bond in CO2 by the subnano MoOx surface on Mo2N. Nat. Commun. 2024, 15, 9126.

  • 22.

    Yang, T.; Dong, Y.; Liu, C.; et al. Supramolecules Containing Homogeneous Electron-rich Cu Sites for Photocatalytic CO2 Reduction to C2H6. Adv. Funct. Mater. 2025, 35, 2422348.

  • 23.

    Lin, Z.; Yang, Z.; Wang, J.; et al. Unlocking the Potential of Oxide-Based Catalysts for CO2 Photo-Hydrogenation: Oxygen Vacancies Promoted C–O Bond Cleavage in Key Intermediates. Adv. Mater. 2025, 37, 2408906.

  • 24.
    Wu, J.; Liu, Z.; Lin, X.; et al. Breaking through water-splitting bottlenecks over carbon nitride with fluorination. Nat. Commun. 2022, 13, 6999.
  • 25.

    Huo, Y.; Zhang, P.; Chi, J.; et al. Surface Functionalization and Defect Construction of SnO2 with Amine Group for Enhanced Visible-Light-Driven Photocatalytic CO2 Reduction. Adv. Energy Mater. 2024, 14, 2304282.

  • 26.

    Li, W.; Zuo, G.; Ma, S.; et al. Localized photothermal effect mediated hollow S-scheme NiCo2O4@ZnIn2S4 for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2025, 365, 124971.

  • 27.

    Wang, S.; Wang, J.; Wang, Y.; et al. Insight into the Selectivity-Determining Step of Various Photocatalytic CO2 Reduction Products by Inorganic Semiconductors. ACS Catal. 2024, 14, 10760–10788.

  • 28.

    Sun, Q.; Liu, X.; Gu, Q.; et al. Breaking the Conversion-Selectivity Trade-Off in Methanol Synthesis from CO2 Using Dual Intimate Oxide/Metal Interfaces. J. Am. Chem. Soc. 2024, 146, 28885–28894.

  • 29.

    Tang, J.; Guo, C.; Wang, T.; et al. A review of g‐C3N4‐based photocatalytic materials for photocatalytic CO2 reduction. Carbon Neutralizat. 2024, 3, 557–583.

  • 30.
    Anemüller, R.; Belden, K.; Brause, B.; et al. Hip and Knee Section, Treatment, Antimicrobials: Proceedings of International Consensus on Orthopedic Infections. J. Arthroplast. 2019, 34, S477–S482.
  • 31.

    Sun, K.; Qian, Y.; Jiang, H.-L. Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction. Angew. Chem. Int. Ed. 2023, 62, e202217565.

  • 32.

    Feng, J.; Chen, S.; Lu, Z.; et al. Metal-Organic Frameworks for Photocatalytic CO2 Reduction: Progress and Prospects. ACS Appl. Mater. Interfaces 2025, 17, 60028–60054.

  • 33.

    Mohata, S.; Majumder, P.; Banerjee, R. Design and structure-function interplay in covalent organic frameworks for photocatalytic CO2 reduction. Chem. Soc. Rev. 2025, 54, 6062–6087.

  • 34.
    Qin, L.; Ma, C.; Zhang, J.; et al. Structural Motifs in Covalent Organic Frameworks for Photocatalysis. Adv. Funct. Mater. 2024, 34, 2401562.
  • 35.

    Li, B.; Liu, X.-J.; Zhu, H.-W.; et al. A Review on Bi2WO6-Based Materials for Photocatalytic CO2 Reduction. Small 2024, 20, 2406074.

  • 36.

    Kaur, J.; Peter, S.C. Two-Dimensional Perovskites for Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2025, 64, e202418708.

  • 37.
    Zheng, M.; Zhang, J.; Wang, P.; et al. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. Adv. Mater. 2024, 36, 2307913.
  • 38.
    de Almeida, J.C.; Wang, Y.; Rodrigues, T.A.; et al. Copper-based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications. Adv. Funct. Mater. 2025, 2502901. https://doi.org/10.1002/adfm.202502901.
  • 39.

    Liu, L.; Wang, Z.; Zhang, J.; et al. Tunable Interfacial Charge Transfer in a 2D-2D Composite for Efficient Visible-Light-Driven CO2 Conversion. Adv. Mater. 2023, 35, 2300643.

  • 40.

    Feng, C.; Hu, M.; Zuo, S.; et al. Ru-OV Site-Mediated Product Selectivity Switch for Overall Photocatalytic CO2 Reduction. Adv. Mater. 2025, 37, 2411813.

  • 41.

    Li, B.; Zhang, X.; Chen, M.; et al. Multichannel charge transfer mediated by polyoxometalate loaded SnS2 wrapped Te nanostructures for efficient photocatalytic CO2 reduction. Appl. Catal. B Environ. 2025, 377, 125509.

  • 42.

    Li, M.; Han, Z.; Hu, Q.; et al. Recent progress in solar-driven CO2 reduction to multicarbon products. Chem. Soc. Rev. 2024, 53, 9964–9975.

  • 43.

    Zhu, H.-W.; Guo, R.-T.; Liu, C.; et al. Recent progress on photocatalytic reduction of CO2 to C2+ products. J. Mater. Chem. A 2024, 12, 21677–21703.

  • 44.
    Chen, H.; Zhao, C.; Chen, X. Photocatalytic Reduction of Carbon Dioxide: Designing the Active Sites and Tracking the Pathways. Chem. Asian J. 2025, 20, e202500106.
  • 45.

    Chen, G.; Gao, R.; Zhao, Y.; et al. Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons. Adv. Mater. 2018, 30, 1704663.

  • 46.

    Wu, Y.; Hu, Q.; Chen, Q.; et al. Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO2 Photoreduction toward C2 Products. Acc. Chem. Res. 2023, 56, 2500–2513.

  • 47.

    Li, X.; Yu, J.; Jaroniec, M.; et al. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179.

  • 48.

    Che, W.; Zhao, S.; Byun, W.J.; et al. From Carbon Nitrides to COFs: Opportunities and Prospects in Photocatalytic CO2 Reduction. Adv. Mater. 2025, 37, 2306961.

  • 49.

    Yang, J.; Deng, C.; Lei, Y.; et al. Fe–N Co-Doped BiVO4 Photoanode with Record Photocurrent for Water Oxidation. Angew. Chem. Int. Ed. 2025, 64, e202416340.

  • 50.

    Huang, T.; Han, J.; Li, Z.; et al. Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO2 Reduction when Using Au Nanorods in a MOF. Angew. Chem. Int. Ed. 2025, 64, e202500269.

  • 51.
    Lin, Z.; Yu, X.; Zhao, Z.; et al. Controlling crystallization in covalent organic frameworks to facilitate photocatalytic hydrogen production. Nat. Commun. 2025, 16, 1940.
  • 52.

    Feng, J.; Zhang, L.; Liu, S.; et al. Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products. Nat. Commun. 2023, 14, 4615.

  • 53.
    Feng, C.; Wang, F.; Liu, Z.; et al. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nat. Commun. 2021, 12, 5980.
  • 54.

    Fu, H.; Lei, Y.; Zhang, Q.; et al. Optimization of CO2 Mass Transfer and Modulation of Reaction Kinetics for Efficient CO2 Conversion via a Three-Phase Photocatalytic Flow System. Adv. Funct. Mater. 2025, e15361. https://doi.org/10.1002/adfm.202515361.

  • 55.
    Alvarez, I.B.; Le, T.; Hosseini, H.; et al. Bond Selective Photochemistry at Metal Nanoparticle Surfaces: CO Desorption from Pt and Pd. J. Am. Chem. Soc. 2024, 146, 12431–12443.
  • 56.

    Liu, B.; Hu, Z.; Li, Y.; et al. Simultaneous value-added utilization of photogenerated electrons and holes on Pd/TiO2. Nat. Commun. 2025, 16, 6014.

  • 57.

    Ru, Q.; Zhang, B.; Li, S.; et al. Overcoming the bottleneck in one-electron reduction of CO2 with mechanical energy-driven triboelectric plasma-enabled catalysis. Chem. Eng. J. 2025, 519, 165012.

  • 58.

    Li, L.; Liu, W.; Shi, T.; et al. Photoexcited Single-Electron Transfer for Efficient Green Synthesis of Cyclic Carbonate from CO2. ACS Mater. Lett. 2023, 5, 1219–1226.

  • 59.

    Xu, Z.; Lu, R.; Lin, Z.-Y.; et al. Electroreduction of CO2 to methane with triazole molecular catalysts. Nat. Energy. 2024, 9, 1397–1406.

  • 60.
    Bains, A.K.; Sau, A.; Portela, B.S.; et al. Efficient super-reducing organic photoredox catalysis with proton-coupled electron transfer mitigated back electron transfer. Science. 2025, 388, 1294–1300.
  • 61.
    Wang, W.; Deng, C.; Xie, S.; et al. Photocatalytic C–C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II). J. Am. Chem. Soc. 2021, 143, 2984–2993.
  • 62.

    Li, Y.; Chen, Y.; Wang, Q.; et al. Realizing C–C Coupling via Accumulation of C1 Intermediates within Dual-Vacancy-Induced Dipole-Limited Domain Field to Propel Photoreduction of CO2-to-C2 Fuel. Adv. Mater. 2025, 37, 2414994.

  • 63.

    Ding, J.; Du, P.; Li, P.; et al. Highly Active Photoreduction of Atmospheric-Concentration CO2 into CH3COOH over Palladium Particles on Nb2O5 Nanosheets. Angew. Chem. Int. Ed. 2025, 64, e202414453.

  • 64.

    Shi, X.; Dai, W.; Li, X.; et al. Lattice-Matched S-Scheme High-Entropy Oxide Heterojunction for Efficient Visible-Light-Driven CO2 Photomethanation. Adv. Funct. Mater. 2025, e11696. https://doi.org/10.1002/adfm.202511696.

  • 65.

    Li, X.; Li, L.; Liu, X.; et al. Designing multi-metal-site nanosheet catalysts for CO2 photoreduction to ethylene. Nat. Commun. 2025, 16, 6500.

  • 66.

    Li, W.; Zhang, Y.; Wang, Y.; et al. Graphdiyne facilitates photocatalytic CO2 hydrogenation into C2+ hydrocarbons. Appl. Catal. B Environ. 2024, 340, 123267.

  • 67.

    Liang, M.; Shao, X.; Choi, J.Y.; et al. Modified TiO2/In2O3 heterojunction with efficient charge separation for visible-light-driven photocatalytic CO2 reduction to C2 product. J. Energy Chem. 2024, 98, 714–720.

  • 68.

    Zhang, Y.; Li, W.; Tian, F.; et al. Construction of multiple channels for electron transport in In2S3/In2O3/rGO heterojunctions to boost photocatalytic CO2 conversion to C2+ hydrocarbons. Chem. Eng. J. 2023, 477, 147129.

  • 69.

    Du, P.; Ding, J.; Liu, C.; et al. Interface-Engineering-Induced C–C Coupling for C2H4 Photosynthesis from Atmospheric-Concentration CO2 Reduction. Angew. Chem. Int. Ed. 2025, 64, e202421353.

  • 70.

    Hao, S.; Chen, Y.; Peng, C.; et al. Photocatalytic Coupling of CH4 and CO2 to Ethanol on Asymmetric Ce–O–Zn Sites. Adv. Funct. Mater. 2024, 34, 2314118.

  • 71.

    Subrahmanyam, M.; Kaneco, S.; Alonso-Vante, N. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Appl. Catal. B Environ. 1999, 23, 169–174.

  • 72.

    Wang, J.; Lin, S.; Tian, N.; et al. Nanostructured Metal Sulfides: Classification, Modification Strategy, and Solar-Driven CO2 Reduction Application. Adv. Funct. Mater. 2021, 31, 2008008.

  • 73.

    Liu, C.; Xiao, Y.; Wan, W.; et al. Different behaviors on the external and inner surface of hollow CdS/VS-MoS2 heterojunctions in photoelectrocatalytic CO2 reduction via SH-assisted mechanism. Appl. Catal. B Environ. 2023, 325, 122394.

  • 74.

    Wang, B.; Jiang, Z.; Yu, J.C.; et al. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 2019, 11, 9296–9301.

  • 75.

    Yang, X.; Lan, X.; Zhang, Y.; et al. Rational design of MoS2@COF hybrid composites promoting C–C coupling for photocatalytic CO2 reduction to ethane. Appl. Catal. B Environ. 2023, 325, 122393.

  • 76.

    Liu, Y.; Liu, Y.; Luo, G.; et al. Photothermally inducing SnS2 phase transition in Cu2O@CuS@SnS2 core—Shell heterostructure to trigger efficient photocatalytic CO2 reduction. Chem. Eng. J. 2025, 510, 161537.

  • 77.

    Zhang, J.; Duan, L.; Zhang, W.; et al. Crystal-Facet Engineering of Mesoporous CuS Cascade Nanoreactors Enhances Photocatalytic C–C Coupling of CO2-to-C2H4. Angew. Chem. Int. Ed. 2025, 64, e202423861.

  • 78.

    Huang, H.B.; Zhang, N.; Xu, J.Y.; et al. Photocatalytic CO2-to-Ethylene Conversion over Bi2S3/CdS Heterostructures Constructed via Facile Cation Exchange. Research 2022, 2022, 9805879.

  • 79.

    Ren, L.; Yang, X.; Sun, X.; et al. Cascaded *CO–*COH Intermediates on a Nonmetallic Plasmonic Photocatalyst for CO2-to-C2H6 with 90.6% Selectivity. Angew. Chem. Int. Ed. 2024, 63, e202404660.

  • 80.

    Wang, J.; Zhang, H.; Mu, N.; et al. Sulfur in multiple chemical states synergistic bimetallic sites on CuIn11S17 promoting photocatalytic evolution of C2H4 from CO2. Appl. Catal. B Environ. 2025, 377, 125480.

  • 81.

    Lv, L.; Liu, Y.; Li, X.; et al. Synergistic Engineering of Zinc Vacancies and Er-Doping in ZnIn2S4 Nanosheets for Enhanced CO2 Photoreduction via Optimized Charge Dynamics. Carbon Neutralization 2025, 4, e70021.

  • 82.

    Song, W.; Wang, C.; Liu, Y.; et al. Unlocking Copper-Free Interfacial Asymmetric C–C Coupling for Ethylene Photosynthesis from CO2 and H2O. J. Am. Chem. Soc. 2024, 146, 29028–29039.

  • 83.
    Zheng, X.; Song, Y.; Gao, Q.; et al. Controllable-Photocorrosion Balance Endows ZnCdS Stable Photocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2025, 35, 2506159.
  • 84.

    Shi, H.; Liang, Y.; Hou, J.; et al. Boosting Solar-Driven CO2 Conversion to Ethanol via Single-Atom Catalyst with Defected Low-Coordination Cu-N2 Motif. Angew. Chem. Int. Ed. 2024, 63, e202404884.

  • 85.

    Wang, Q.; He, M.Q.; Yang, P.X.; et al. Selective Photocatalytic Conversion of CO2 to Ethanol via Unsaturated Cu-O Domains. ACS Nano 2024, 18, 33576–33586.

  • 86.

    Zeng, D.; Wang, H.; Zhu, X.; et al. Photocatalytic conversion of CO2 to acetic acid by CuPt/WO3: Chloride enhanced C-C coupling mechanism. Appl. Catal. B Environ. 2023, 323, 122177.

  • 87.

    Zhang, P.; Li, N.; Li, L.; et al. g-C3N4-Based Photocatalytic Materials for Converting CO2 into Energy: A Review. Chemphyschem 2024, 25, e202400075.

  • 88.

    Sun, Z.; Wang, H.; Wu, Z.; et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 2018, 300, 160–172.

  • 89.

    Xu, Y.; Gao, S.-P. Band gap of C3N4 in the GW approximation. Int. J. Hydrog. Energy 2012, 37, 11072–11080.

  • 90.

    Huang, Z.; Chen, H.; Zhao, L.; et al. Constructing g-C3N4quantum dots modified g-C3N4/GO nanosheet aerogel for UV-Vis-NIR driven highly efficient photocatalytic H2 production. Int. J. Hydrog. Energy 2019, 44, 31041–31052.

  • 91.

    Mo, Z.; Zhu, X.; Jiang, Z.; et al. Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Appl. Catal. B Environ. 2019, 256, 117854.

  • 92.

    Li, X.; Xiong, J.; Gao, X.; et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J. Alloys Compd. 2019, 802, 196–209.

  • 93.

    Chen, H.L.; Liu, F.Y.; Lin, Y.Y.; et al. Photocatalytic CO2 reduction to C1–C5 hydrocarbons using K2Fe2O4/g-C3N4 as coupling photocatalyst. Mater. Today Sustain. 2023, 23, 100430.

  • 94.

    Chen, Z.; Ding, G.; Wang, Z.; et al. Precision Molecular Engineering of Carbon Nitride for Efficient and Selective Photoreduction of CO2 to C2H6 in Pure Water. Adv. Funct. Mater. 2025, 35, 2423213.

  • 95.

    Gao, Q.; Qi, W.; Li, Y.; et al. Regulating Local Electron Density of Cyano Sites in Graphitic Nitride Carbon by Giant Internal Electric Field for Efficient CO2 Photoreduction to Hydrocarbons. Small 2024, 20, 2404822.

  • 96.

    Niu, P.; Yang, Y.; Yu, J.C.; et al. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun. 2014, 50, 10837–10840.

  • 97.

    Andrei, V.; Roh, I.; Lin, J.-A.; et al. Perovskite-driven solar C2 hydrocarbon synthesis from CO2. Nat. Catal. 2025, 8, 137–146.

  • 98.
    Rowsell, J.L.C.; Yaghi, O.M. Metal-organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3–14.
  • 99.

    Wang, W.W.; Song, S.J.; Wang, P.; et al. Chemical Bonding of g-C3N4/UiO-66(Zr/Ce) from Zr and Ce Single Atoms for Efficient Photocatalytic Reduction of CO2 under Visible Light. ACS Catal. 2023, 13, 4597–4610.

  • 100.

    Zhao, B.; Qiu, X.; Song, Y.; et al. Regulating Asymmetric Charge Distribution in Cu2MoS4 Nanosheets for Enhanced Photocatalytic CO2 Reduction. Small 2025, 21, 2500877.

  • 101.

    Zhou, Q.; Guo, Y.; Zhu, Y. Reticular copper dual sites embedded with semiconductor particles for selective CO2-to-C2H4 photoreduction. Nat. Catal. 2025, 8, 728–739.

  • 102.

    Xie, S.; Li, Y.; Sheng, B.; et al. Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. Appl. Catal. B Environ. 2022, 310, 121320.

  • 103.

    Chen, D.; Chu, B.; Li, F.; et al. Synergistic Catalysis by Cu Single Atoms and Atomically Cu-Doped Au Nanoparticles in a Metal—Organic Framework for Photocatalytic CO2 Reduction to C2H6. J. Am. Chem. Soc. 2025, 147, 22705–22713.

  • 104.

    Huang, Z.-W.; Hu, K.-Q.; Li, X.-B.; et al. Thermally Induced Orderly Alignment of Porphyrin Photoactive Motifs in Metal—Organic Frameworks for Boosting Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2023, 145, 18148–18159.

  • 105.
    Mishra, B.; Alam, A.; Chakraborty, A.; et al. Covalent Organic Frameworks for Photocatalysis. Adv. Mater. 2024, 2413118. https://doi.org/10.1002/adma.202413118.
  • 106.

    Hirani, Z.; Schweitzer, N.M.; Vitaku, E.; et al. A Phenazine-Based Two-Dimensional Covalent Organic Framework for Photochemical CO2 Reduction with Increased Selectivity for Two-Carbon Products. Angew. Chem. Int. Ed. 2025, 64, e202502799.

  • 107.
    Liu, Q.; Li, Q.; Li, Y.; et al. Two-Dimensional Covalent Organic Frameworks in Organic Electronics. Angew. Chem. Int. Ed. 2025, 64, e202502536.
  • 108.
    Hsueh, C.-H.; He, C.; Zhang, J.; et al. Three-Dimensional Mesoporous Covalent Organic Framework for Photocatalytic Oxidative Dehydrogenation to Quinoline. J. Am. Chem. Soc. 2024, 146, 33857–33864.
  • 109.
    Zhu, J.; Huang, L.; Dong, W.; et al. Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to N-Unprotected Ketimines: Efficient Synthesis of Cipargamin. Angew. Chem. Int. Ed. 2019, 58, 16119–16123.
  • 110.
    Yang, J.; Chen, Z.; Zhang, L.; et al. Covalent Organic Frameworks for Photocatalytic Reduction of Carbon Dioxide: A Review. ACS Nano 2024, 18, 21804–21835.
  • 111.

    Guan, G.-W.; Zheng, S.-T.; Zhang, L.-P.; et al. Regulating Charge Distribution in Porphyrin-Based Polymer for Achieving Photocatalytic CO2 Conversion to CH4 or C2H6. Small 2025, 21, 2409575.

  • 112.

    Chen, X.; Liu, C.; Yang, T.; et al. Cu atom pairs within covalent organic frameworks facilitate the photocatalytic reduction of CO2 to C2H6. Appl. Catal. B Environ. 2025, 377, 125499.

  • 113.

    Hu, Y.; Liu, G.; Song, T.; et al. Single-atom Cu sites on covalent organic frameworks with Kagome lattices for visible-light-driven CO2 reduction to propylene. Appl. Catal. B Environ. 2025, 361, 124587.

  • 114.

    Wang, Y.-C.; Shi, W.-J.; Zhang, J.-H.; et al. Rapid electron transfer via imine-linked interface in dinuclear cobalt MOF@COF Z-scheme heterojunction for enhanced photocatalytic CO2 reduction with H2O. Chem. Eng. J. 2025, 517, 164327.

  • 115.

    Zhang, W.; Zhong, Z.; Wei, X.; et al. Single-Crystal Metal—Organic and Covalent Organic Framework Hybrids Enable Efficient Photoelectrochemical CO2 Reduction to Ethanol. J. Am. Chem. Soc. 2025, 147, 17975–17984.

  • 116.

    Huang, Y.; Du, P.; Shi, W.-X.; et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B Environ. 2021, 288, 120001.

  • 117.
    Zhang, Y.; Guan, X.; Meng, Z.; et al. Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis. J. Am. Chem. Soc. 2025, 147, 3776–3785.
  • 118.
    Zheng, Y.; Yang, J.; Qiao, Z.-A. Condensed Matter Chemistry: The Defect Engineering of Porous Materials. Prog. Chem. 2023, 35, 954–967.
  • 119.

    Zhang, M.; Zhang, D.; Jing, X.; et al. Engineering NH2-Cu-NH2 Triple-atom Sites in Defective MOFs for Selective Overall Photoreduction of CO2 into CH3COCH3. Angew. Chem. Int. Ed. 2024, 63, e202402755.

  • 120.
    Zhang, L.; Liu, T.; Liu, T.; et al. Improving photocatalytic performance of defective titania for carbon dioxide photoreduction by Cu cocatalyst with SCN-ion modification. Chem. Eng. J. 2023, 463, 142358.
  • 121.

    Wang, J.; Yang, C.; Mao, L.; et al. Regulating the Metallic Cu–Ga Bond by S Vacancy for Improved Photocatalytic CO2 Reduction to C2H4. Adv. Funct. Mater. 2023, 33, 2213901.

  • 122.

    Chen, H.; Wang, L.; Long, D.; et al. Advancing the ethanol pathway during the competitive photocatalytic CO2 reduction in a defective transition metal dichalcogenide. Appl. Catal. B Environ. 2024, 357, 124260.

  • 123.

    Liu, B.; Cheng, M.; Zhang, C.; et al. Au-Cu dual-single-atom sites on Bi2WO6 with oxygen vacancy for CO2 photoreduction towards multicarbon products. Appl. Catal. B Environ. 2024, 357, 124263.

  • 124.

    Das, K.; Chakraborty, S.; Kediya, S.; et al. Dopant and Exfoliation Induced Simultaneous Modification of Charge Density and C–C Coupling Sites for Efficient CO2 Photoreduction to Ethylene. Angew. Chem. Int. Ed. 2025, 64, e202423471.

  • 125.

    Xing, F.; Li, Q.; Li, J.; et al. Cu doping induced asymmetric Cu-Vs-In active sites in In2S3 for efficient photocatalytic C2H4 conversion from CO2. J. Colloid Interface Sci. 2025, 691, 137388.

  • 126.

    Gao, S.; Guan, H.; Wang, H.; et al. Creation of SnxNb1–xO2 solid solution through heavy Nb-doping in SnO2 to boost its photocatalytic CO2 reduction to C2+ products under simulated solar illumination. J. Adv. Ceram. 2022, 11, 1404–1416.

  • 127.

    Shao, W.; Li, X.; Zhu, J.; et al. Metaln+-Metalδ+ pair sites steer C-C coupling for selective CO2 photoreduction to C2 hydrocarbons. Nano Res. 2022, 15, 1882–1891.

  • 128.

    Ni, B.; Zhang, G.; Wang, H.; et al. Correlating Oxidation State and Surface Ligand Motifs with the Selectivity of CO2 Photoreduction to C2 Products. Angew. Chem. Int. Ed. 2023, 62, e202215574.

  • 129.

    Wu, Y.; Chen, Q.; Zhu, J.; et al. Selective CO2-to-C2H4 Photoconversion Enabled by Oxygen-Mediated Triatomic Sites in Partially Oxidized Bimetallic Sulfide. Angew. Chem. Int. Ed. 2023, 62, e202301075.

  • 130.

    Xu, M.; Zhang, Q.; Wei, S.; et al. Engineering Heteronuclear Dual-Metal Active Sites in Ordered Macroporous Architectures for Enhanced C2H4 Production from CO2 Photoreduction. Angew. Chem. Int. Ed. 2025, 64, e202506072.

  • 131.

    Zhang, Y.; Wei, T.; Ding, D.; et al. Aggregation-Induced Equidistant Dual Pt Atom Pairs for Effective CO2 Photoreduction to C2H4. ACS Catal. 2025, 15, 5614–5622.

  • 132.

    Wang, Y.; Jiang, J.; Yao, N.; et al. Enhanced photocatalytic CO2 conversion over 0D/2D AgVO3/TiO2 heterojunctions assisted by Z-scheme charge separation. Sci. China Mater. 2024, 67, 1820–1829.

  • 133.

    He, Q.; Ma, D.; Du, Y.; et al. An Atypical Heterojunction in Favor of Conversion of CO2 and Sunlight into C2H4. Adv. Sci. 2025, 12, 2503336.

  • 134.

    Zhang, Z.; Hu, Q.; Xie, J.; et al. CO2 Photoreduction into C2 Fuels Steered by Heteroatom Pair Sites in MxOy@Bi2S3 Heterojunction. ACS Catal. 2025, 15, 14021–14028.

  • 135.
    Wu, Y.; Li, Z.; Chen, Q.; et al. Cooperative Atomic Palladium Site and Island-Distributed S-Scheme Heterostructure for Photocatalytic C2H6 Production. ACS Catal. 2025, 15, 3558–3569.
  • 136.

    Yu, S.; Wilson, A.J.; Heo, J.; et al. Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Lett. 2018, 18, 2189–2194.

  • 137.

    Li, N.; Jiang, R.; Li, Y.; et al. Plasma-Assisted Photocatalysis of CH4 and CO2 into Ethylene. ACS Sustain. Chem. Eng. 2019, 7, 11455–11463.

  • 138.

    Devasia, D.; Wilson, A.J.; Heo, J.; et al. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat. Commun. 2021, 12, 2612.

  • 139.

    Lu, C.; Li, J.; Yan, J.; et al. Surface plasmon resonance and defects on tungsten oxides synergistically boost high-selective CO2 reduction for ethylene. Appl. Mater. Today 2020, 20, 100744.

  • 140.

    Yang, X.; Ren, L.; Chen, Z.; et al. Constructing an Active Sulfur-Vacancy-Rich Surface for Selective *CH3-CH3 Coupling in CO2-to-C2H6 Conversion With 92% Selectivity. Adv. Mater. 2025, 37, 2412299.

  • 141.

    Xie, Z.; Cheng, W.; Luo, H.; et al. Artificial Photothermal Synthesis of Hydrocarbons from CO2 and H2O. Adv. Energy Mater. 2025, 2501840. https://doi.org/10.1002/aenm.202501840.

  • 142.

    He, H.; Ren, Y.; Zhu, Y.-H.; et al. Continuous Flow Photothermal Catalytic CO2 Reduction: Materials, Mechanisms, and System Design. ACS Catal. 2025, 15, 10480–10520.

  • 143.

    Song, H.; Sun, K.; Huang, H.; et al. Integrating photochemical and photothermal effects for selective oxidative coupling of methane into C2+ hydrocarbons with multiple active sites. Nat. Commun. 2025, 16, 2831.

  • 144.
    Feng, G.; Wang, S.; Li, S.; et al. Highly Selective Photoelectroreduction of Carbon Dioxide to Ethanol over Graphene/Silicon Carbide Composites. Angew. Chem. Int. Ed. 2023, 62, e202218664.
  • 145.

    Yan, K.; Wu, D.; Wang, T.; et al. Highly Selective Ethylene Production from Solar-Driven CO2 Reduction on the Bi2S3@In2S3 Catalyst with In–SV–Bi Active Sites. ACS Catal. 2023, 13, 2302–2312.

  • 146.

    Li, X.; Li, L.; Chu, X.; et al. Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Nat. Commun. 2024, 15, 5639.

  • 147.

    Peng, R.; Ren, Y.; Si, Y.; et al. Strong Photothermal Tandem Catalysis for CO2 Reduction to C2H4 Boosted by Zr–O–W Interfacial H2O Dissociation. ACS Catal. 2025, 15, 1–13.

  • 148.

    Yu, M.; Li, M.; Zhang, X.; et al. Coupling Photocatalytic Reduction and Biosynthesis Towards Sustainable CO2 Upcycling. Angew. Chem. Int. Ed. 2025, 64, e202423995.

  • 149.

    Cai, Y.; Yang, R.; Fu, J.; et al. Self-pressurizing nanoscale capsule catalysts for CO2 electroreduction to acetate or propanol. Nat. Synth. 2024, 3, 891–902.

  • 150.
    Du, H.; Liu, L.-X.; Li, P.; et al. Enriching reaction intermediates in multishell structured copper catalysts for boosted propanol electrosynthesis from carbon monoxide. ACS Nano 2023, 17, 8663–8670.
  • 151.

    Zhu, W.; Zhang, Y.-J.; Zhang, H.; et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.

  • 152.

    Zhu, W.; Michalsky, R.; Metin, Ö.; et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

  • 153.

    Xie, L.; Cai, Y.; Jiang, Y.; et al. Direct low concentration CO2 electroreduction to multicarbon products via rate-determining step tuning. Nat. Commun. 2024, 15, 10386.

  • 154.

    Uthirakumar, P.; Son, H.; Dao, V.; et al. Accelerating photoelectrochemical CO2RR selectively of C2+ products by integrating Ag/Pd cocatalysts on Cu/Cu2O/CuO heterojunction nanorods. J. Environ. Chem. Eng. 2024, 12, 112442.

  • 155.

    Guo, X.; Wang, C.; Yang, Z.; et al. Boosting C2+ production from photoelectrochemical CO2 reduction on gallium doped Cu2O. Chem. Eng. J. 2023, 471, 144539.

  • 156.

    Chen, M.; Sun, Y.-H.; Zhou, D.; et al. Efficient CO2 reduction to C2 products in a Ce-TiO2 photoanode-driven photoelectrocatalysis system using a Bnanometer Cu2O cathode. Appl. Catal. A Gen. 2024, 687, 119966.

  • 157.

    Liu, Q.; Bai, C.; Zhu, C.; et al. M/BiOCl-(M = Pt, Pd, and Au) Boosted Selective Photocatalytic CO2 Reduction to C2 Hydrocarbons via *CHO Intermediate Manipulation. Adv. Sci. 2024, 11, 2400934.

  • 158.

    Jiang, Y.; Lv, C.; Lu, B.; et al. Ag Stabilized Cu+/Cu0 Interface Catalysts for Enhanced CO2 Electroreduction to C2+ Products at Ampere Level Current Density. ACS Nano 2025, 19, 11263–11272.

  • 159.

    Wei, Y.; Duan, R.; Zhang, Q.; et al. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism. Chin. J. Catal. 2023, 47, 243–253.

  • 160.
    Zuo, L.; Deng, Y.; Chen, L.; et al. Fundamental Insights into Photoelectrochemical Carbon Dioxide Reduction: Elucidating the Reaction Pathways. ACS Catal. 2024, 14, 16795–16833.
  • 161.

    Huang, Y.; Du, P.; Shi, W.-X.; et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B Environ. 2021, 288, 120001.

  • 162.

    Yang, R.; Cai, Y.; Qi, Y.; et al. How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction. Nat. Commun. 2024, 15, 7140.

  • 163.

    Cai, Y.; Fu, J.; Zhou, Y.; et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.

  • 164.
    Zhuang, Z.; Wang, G.; Zhao, W.; et al. Silver-doped porous copper catalysts for efficient resource utilization of CO-containing flue gases. ACS Environ. Au 2025, 5, 287–297.
  • 165.
    Ye, Z.; Shen, B.; Kang, D.; et al. A data-driven approach for the guided regulation of exposed facets in nanoparticles. Nat. Synth. 2024, 3, 922–929.
  • 166.

    Su, L.; Rodríguez-Jiménez, S.; Short, M.I.M.; et al. Adapting gas fermenting bacteria for light-driven domino valorization of CO2. Chem. Sci. 2025, 16, 11801–11808.

  • 167.
    Wang, Q.; Kalathil, S.; Pornrungroj, C.; et al. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nat. Catal. 2022, 5, 633–641.
  • 168.

    Tian, Y.; Guo, Z.; He, J.; et al. Light-driven eosin Y-Ralstonia eutropha biohybrid for CO2 conversion to acetoin via specific photo-induced electron transfer and metabolic engineering. J. CO2 Util. 2025, 93, 103051.

  • 169.
    Chen, N.; Xi, J.; He, T.; et al. Beyond natural synthesis via solar-decoupled biohybrid photosynthetic system. Chem 2025, 11, 102381.
  • 170.

    Bai, X.; Li, Y.; Xie, Y.; et al. High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model. Green Energy Environ. 2025, 10, 132–138.

  • 171.
    Yang, Y.; Zhou, J.; Zhao, Z.; et al. Atomic-scale identification of active sites of oxygen reduction nanocatalysts. Nat. Catal. 2024, 7, 796–806.
  • 172.
    Sun, M.Z.; Huang, B.L. Direct Machine Learning Predictions of C3 Pathways. Adv. Energy Mater. 2024, 14, 2400152.
  • 173.
    Li, J.; Wang, K.; Zhang, Y.; et al. Prediction of Carbon Dioxide Reduction Catalyst Using Machine Learning with a Few-Feature Model: WLEDZ. J. Phys. Chem. C 2022, 126, 18235–18244.
Share this article:
How to Cite
Yin, Z.; Sun, H.; Li, W.; Liu, X.; Hu, Y.; Wang, Y.; Zuo, G. Rational Design of Photocatalysts for CO2 Reduction to Multi-Carbon Products. Nano-electrochemistry & Nano-photochemistry 2025, 1 (1), 6. https://doi.org/10.53941/nenp.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.