- 1.
Dincer, C.; Bruch, R.; Costa-Rama, E.; et al. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, 1806739.
- 2.
Yosri, N.; Gao, S.; Zhou, R.; et al. Innovative Quantum Dots-based SERS for Ultrasensitive Reporting of Contaminants in Food: Fundamental Concepts and Practical Implementations. Food Chem. 2024, 467, 142395.
- 3.
Xu, J.; Zhang, S.; Luo, S.-H.; et al. Rapid Sample Pretreatment Facilitating SERS Detection of Trace Weak Organic Acids/Bases in Complex Matrices. Anal. Chem. 2024, 96, 9399–9407.
- 4.
Chen, Y.; Gu, W.; Zhu, C.; et al. Recent Advances in Photoelectrochemical Sensing for Food Safety. Anal. Chem. 2024, 96, 8855–8867.
- 5.
Tang, X.; Ji, C.; Zeng, W.; et al. Development of an Integrated EC–SPME–SERS Platform with the pAg-rGO-Au Substrate for Ultrasensitive Detection of Fenthion. ACS Sens. 2025, 10, 6206–6217.
- 6.
Mahmood Khan, I.; Niazi, S.; Akhtar, W.; et al. Surface Functionalized AuNCs Optical Biosensor as an Emerging Food Safety Indicator: Fundamental Mechanism to Future Prospects. Coord. Chem. Rev. 2023, 474, 214842.
- 7.
Han, T.; Cui, C.; Xing, Y.; et al. Advances of Signal Amplification Strategies and Sensing Formats in Electrochemiluminescence Sensors for Mycotoxins. TrAC Trends Anal. Chem. 2024, 180, 117961.
- 8.
Xie, X.; Pu, H.; Sun, D.W. Recent Advances in Nanofabrication Techniques for SERS Substrates and Their Applications in Food Safety Analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 2800–2813.
- 9.
Feng, E.; Zheng, T.; He, X.; et al. Plasmon-Induced Charge Transfer-Enhanced Raman Scattering on a Semiconductor: Toward Amplification-Free Quantification of SARS-CoV-2. Angew. Chem. Int. Ed. 2023, 62, e202309249.
- 10.
Lin, C.; Liang, S.; Peng, Y.; et al. Visualized SERS Imaging of Single Molecule by Ag/Black Phosphorus Nanosheets. Nano Micro Lett. 2022, 14, 75.
- 11.
Su, Y.; Wen, S.; Luo, X.; et al. Highly Biocompatible Plasmonically Encoded Raman Scattering Nanoparticles Aid Ultrabright and Accurate Bioimaging. ACS Appl. Mater. Interfaces 2021, 13, 135–147.
- 12.
Zhao, M.; Sikdar, D.; Zhao, M.; et al. 3D Self-Assembly of a Bilayer Nanoparticle Metasurface for Surface-Enhanced Raman Scattering (SERS) Sensing. Nano Lett. 2025, 25, 8251–8257.
- 13.
Tan, L.; Lou, Y.; Zhu, J.-J. High-performance SERS Chips for Sensitive Identification and Detection of Antibiotic Residues with Self-assembled Hollow Ag Octahedra. Chem. Commun. 2023, 59, 14443–14446.
- 14.
Glass, D.; Cortes, E.; Ben-Jaber, S.; et al. Dynamics of Photo-Induced Surface Oxygen Vacancies in Metal-Oxide Semiconductors Studied Under Ambient Conditions. Adv. Sci. 2019, 6, 1901841.
- 15.
Fujisawa, J.-I.; Kaneko, N.; Hanaya, M. Interfacial Charge-transfer Transitions in ZnO Induced Exclusively by Adsorption of Aromatic Thiols. Chem. Commun. 2020, 56, 4090–4093.
- 16.
Yang, J.; Dang, T.; Ma, S.; et al. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using α-Type MoO3 Semiconductor Nanorods with Strong Light Scattering in the Visible Regime. ACS Appl. Mater. Interfaces 2024, 16, 41257–41270.
- 17.
Tan, L.; Zhao, Y.; Zhou, P.; et al. A Ratiometric SERS Strategy Based on a WO3/W18O49 Homojunction Substrate with Built-In Raman Internal Standard for Accurate Trace Antibiotic Detection. Anal. Chem. 2025, 93, 17275–17284.
- 18.
Jena, T.; Choudhary, G.; Hossain, M.T.; et al. Salt-Catalyzed Directed Growth of Bilayer Palladium Diselenide (PdSe2) Dendrites and Pd Nanoparticle-Decorated PdSe2–Pd2Se3 Junction Exhibiting Very High Surface Enhanced Raman Scattering Sensitivity. Chem. Mater. 2024, 36, 5922–5934.
- 19.
Tang, X.; Hao, Q.; Hou, X.; et al. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance. Adv. Mater. 2024, 36, e2312348.
- 20.
Su, Y.; Yuan, B.; Jiang, Y.; et al. A Bioinspired Hollow g-C3N4–CuPc Heterostructure with Remarkable SERS Enhancement and Photosynthesis-mimicking Properties for Theranostic Applications. Chem. Sci. 2022, 13, 6573–6582.
- 21.
Liu, W.; Wang, Z.; Yan, W.; et al. Construction of Ultra-sensitive Surface-enhanced Raman Scattering Substrates Based on 3D Graphene Oxide Aerogels. Carbon 2023, 202, 389–397.
- 22.
Chen, N.; Xiao, T.-H.; Luo, Z.; et al. Porous Carbon Nanowire Array for Surface-enhanced Raman Spectroscopy. Nat. Commun. 2020, 11, 4772.
- 23.
Liu, X.; Li, T.; Lee, T.-C.; et al. Wearable Plasmonic Sensors Engineered via Active-Site Maximization of TiVC MXene for Universal Physiological Monitoring at the Molecular Level. ACS Sens. 2024, 9, 483–493.
- 24.
Sun, H.; Cong, S.; Zheng, Z.; et al. Metal–Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. J. Am. Chem. Soc. 2019, 141, 870–878.
- 25.
Meng, X.; Yu, J.; Shi, W.; et al. SERS Detection of Trace Carcinogenic Aromatic Amines Based on Amorphous MoO3 Monolayers. Angew. Chem. Int. Ed. 2024, 63, e202407597.
- 26.
Zhou, Y.; Gu, Q.; Qiu, T.; et al. Ultrasensitive Sensing of Volatile Organic Compounds Using a Cu-Doped SnO2-NiO p-n Heterostructure That Shows Significant Raman Enhancement. Angew. Chem. Int. Ed. 2021, 60, 26260–26267.
- 27.
Cong, S.; Yuan, Y.; Chen, Z.; et al. Noble Metal-comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies. Nat. Commun. 2015, 6, 7800.
- 28.
Yang, L.; Sang, Q.; Du, J.; et al. A Ag Synchronously Deposited and Doped TiO2 Hybrid as an Ultrasensitive SERS Substrate: A Multifunctional Platform for SERS Detection and Photocatalytic Degradation. Phys. Chem. Chem. Phys. 2018, 20, 15149–15157.
- 29.
Tan, L.; Yue, S.; Lou, Y.; et al. Enhancing Charge Transfer in W18O49/g-C3N4 Heterostructure via Band Structure Engineering for Effective SERS Detection and Flexible Substrate Applications. Analyst 2023, 149, 180–187.
- 30.
Kim, N.H.; Hwang, W.; Baek, K.; et al. Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host-Guest Chemistry. J. Am. Chem. Soc. 2018, 140, 4705–4711.
- 31.
Jiang, X.; Wang, R.; Tang, Y.; et al. Sulfur Vacancy-Rich MoS2 Flower-Like Microsphere with Synchronously Tunable Electromagnetic and Chemical Effects for Boosting Semiconductor SERS. Adv. Funct. Mater. 2025, 35, 2418412.
- 32.
Yoon, J.; Kim, S.-H. Plasmonic–Photonic Hybrid Hydrogels for Slow-Light-Amplified Surface-Enhanced Raman Scattering Detection of Small Molecules. ACS Nano 2025, 19, 29531–29542.
- 33.
Wang, X.; Guo, L. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials. Angew. Chem. Int. Ed. 2020, 59, 4231–4239.
- 34.
Chaudhry, I.; Hu, G.; Ye, H.; et al. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS Nano 2024, 18, 20835–20850.
- 35.
Han, X.X.; Ji, W.; Zhao, B.; et al. Semiconductor-enhanced Raman Scattering: Active Nanomaterials and Applications. Nanoscale 2017, 9, 4847–4861.
- 36.
Lombardi, J.R.; Birke, R.L. Theory of Surface-Enhanced Raman Scattering in Semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.
- 37.
Yang, L.; Peng, Y.; Yang, Y.; et al. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Adv. Sci. 2019, 6, 1900310.
- 38.
Tan, L.; Lu, X.; Yue, S.; et al. Nitrogen-doped Graphene Quantum Dot-intensified Tungsten Oxide Nanosheets as a SERS Substrate for Antibiotics Detection. Chem. Commun. 2024, 60, 13360–13363.
- 39.
Vo, T.H.; Le, H.T.T.; Nguyen, L.H.; et al. Nanorod Structure Tuning and Defect Engineering of MoOx for High Performance SERS Substrates. Nanoscale 2024, 16, 22297–22311.
- 40.
Li, J.; Xie, Q.; Li, J.; et al. Macroscale TiO2 Microspherical Arrays with Multiple Synergistic Effect for Highly Sensitive Surface-Enhanced Raman Scattering. Adv. Funct. Mater. 2024, 34, 2400523.
- 41.
Liu, Y.; Dang, A.; Liu, X.; et al. Synergistic Resonances and Charge Transfer in Double-Shelled ZnO Hollow Microspheres for High-Performance Semiconductor-Based SERS Substrates. ACS Appl. Nano Mater. 2024, 7, 10104–10113.
- 42.
Li, H.; Xu, Q.; Wang, X.; et al. Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots. Small 2018, 14, e1801523.
- 43.
Ji, W.; Li, L.; Guan, J.; et al. Hollow Multi-Shelled V2O5 Microstructures Integrating Multiple Synergistic Resonances for Enhanced Semiconductor SERS. Adv. Opt. Mater. 2021, 9, 2101866.
- 44.
Yang, L.; Yang, Y.; Lombardi, J.R.; et al. Charge Transfer Enhancement in the Surface-enhanced Raman Scattering of Ta2O5 Superstructures. Appl. Surf. Sci. 2020, 520, 146325.
- 45.
Lv, Q.; Wu, X.; Tan, J.; et al. Ultrasensitive Molecular Sensing of Few-layer Niobium Diselenide. J. Mater. Chem. A 2021, 9, 2725–2733.
- 46.
Lv, Q.; Tan, J.; Wang, Z.; et al. Femtomolar-Level Molecular Sensing of Monolayer Tungsten Diselenide Induced by Heteroatom Doping with Long-Term Stability. Adv. Funct. Mater. 2022, 32, 2200273.
- 47.
Song, X.; Wang, Y.; Zhao, F.; et al. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials. ACS Nano 2019, 13, 8312–8319.
- 48.
Peng, Y.-R.; Zhang, T.; Yang, T.H.; et al. Scalable Fabrication of Janus WSSe/WS2 Heterostructures as Ultrasensitive Detection Platform for Electrochemical Ammonia Products by Surface-enhanced Raman Spectroscopy (SERS). Chem. Eng. J. 2025, 522, 166830.
- 49.
Liang, X.; Li, N.; Zhang, R.; et al. Carbon-based SERS Biosensor: From Substrate Design to Sensing and Bioapplication. NPG Asia Mater. 2021, 13, 8.
- 50.
Zhang, N.; Zhang, K.; Zou, M.; et al. Tuning the Fermi Level of Graphene by Two-Dimensional Metals for Raman Detection of Molecules. ACS Nano 2024, 18, 8876–8884.
- 51.
Meng, S.; Liang, J.; Jia, W.; et al. Metal-free and Flexible Surface-enhanced Raman Scattering Substrate Based on Oxidized Carbon Cloth. Carbon 2022, 189, 152–161.
- 52.
Lan, L.; Fan, X.; Yu, S.; et al. Flexible Two-Dimensional Vanadium Carbide MXene-Based Membranes with Ultra-Rapid Molecular Enrichment for Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2022, 14, 40427–40436.
- 53.
Xiong, Y.; Chen, S.; Ye, F.; et al. Synthesis of a Mixed Valence State Ce-MOF as an Oxidase Mimetic for the Colorimetric Detection of Biothiols. Chem. Commun. 2015, 51, 4635–4638.
- 54.
Ma, Y.; Li, X.; Li, A.; et al. H2S-Activable MOF Nanoparticle Photosensitizer for Effective Photodynamic Therapy against Cancer with Controllable Singlet-Oxygen Release. Angew. Chem. Int. Ed. 2017, 56, 13752–13756.
- 55.
Zhou, N.; Su, F.; Guo, C.; et al. Two-dimensional Oriented Growth of Zn-MOF-on-Zr-MOF Architecture: A Highly Sensitive and Selective Platform for Detecting Cancer Markers. Biosens. Bioelectron. 2019, 123, 51–58.
- 56.
Yu, Z.; Yu, W.; Xing, J.; et al. Charge Transfer Effects on Resonance-Enhanced Raman Scattering for Molecules Adsorbed on Single-Crystalline Perovskite. ACS Photonics 2018, 5, 1619–1627.
- 57.
Li, R.; Chen, Q.; Shi, W.; et al. Microstructure Evolution of Ti3C2/TiO2 Quasi-dynamic Heterostructures with high SERS sensitivity. Ceram. Int. 2024, 51, 9877–9883.
- 58.
Yan, L.; Zhang, X.; Lv, D.; et al. Charge Transfer Process in ZnO/MAPbI3 Heterojunctions of Perovskite Solar Cells (PSCs) Sensing by Surface-Enhanced Raman Scattering. J. Mater. Chem. C 2023, 11, 9179–9188.
- 59.
Liu, X.; Dai, Y.; Yao, W.; et al. Development of Multifunctional BP@MoS2 Two-dimensional Hybrid Nanomaterials for Label-free Surface-enhanced Raman Spectroscopy Detection and Synergistic Light-conversion Depredation of Pathogenic Bacteria. Talanta 2026, 297, 128700.
- 60.
Li, H.; Sun, B.; Xu, Y.; et al. Surface Defect-mediated Efficient Electron-hole Separation in Hierarchical Flower-like Bismuth Molybdate Hollow Spheres for Enhanced Visible-light-driven Photocatalytic Performance. J. Colloid Interface Sci. 2018, 531, 664–671.
- 61.
Gu, Z.; Yang, N.; Han, P.; et al. Oxygen Vacancy Tuning toward Efficient Electrocatalytic CO2 Reduction to C2H4. Small Methods 2019, 3, 1800449.
- 62.
Sachs, M.; Park, J.S.; Pastor, E.; et al. Effect of Oxygen Deficiency on the Excited State Kinetics of WO3 and Implications for Photocatalysis. Chem. Sci. 2019, 10, 5667–5677.
- 63.
Liu, W.; Bai, H.; Li, X.; et al. Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer. J. Phys. Chem. Lett. 2018, 9, 4096–4100.
- 64.
Jiang, X.; He, S.; Tang, Y.; et al. High Energy Facet-dominated TiO2−X Facet Heterojunction with Excellent Carrier Utilization for Ultrasensitive SERS Sensing and Efficient Degradation of Antibiotic Residues. Sens. Actuators B: Chem. 2024, 403, 135241.
- 65.
Tan, L.; Yuan, B.; Lou, Y.; et al. An Oxygen Vacancy-Engineered Bi2MoO6 Light Collector with Prominent SERS Enhancement for Ultrasensitive Detection and Degradation of Organic Contaminants. J. Alloys Compd. 2023, 945, 169233.
- 66.
Quan, Y.; Tang, X.H.; Shen, W.; et al. Sulfur Vacancies-Triggered High SERS Activity of Molybdenum Disulfide for Ultrasensitive Detection of Trace Diclofenac. Adv. Opt. Mater. 2022, 10, 2201395.
- 67.
Gao, M.; Yao, J.; Li, J.; et al. A Novel Strategy for Improving SERS Activity by Cerium Ion f→d Transitions for Rapid Detection of Endocrine Disruptor. Chem. Eng. J. 2021, 430, 131467.
- 68.
Wen, S.; Mu, M.; Xie, Q.; et al. Investigation of Sulfur Doping in Mn–Co Oxide Nanotubes on Surface-Enhanced Raman Scattering Properties. Anal. Chem. 2022, 94, 5987–5995.
- 69.
Xie, S.; Lai, K.; Gu, C.; et al. Fine Fabrication of TiO2/MoOx Nano-heterojunctions and Investigating on the Improved Charge Transfer for SERS Application. Mater. Today Nano 2022, 18, 100179.
- 70.
Chen, Y.; Zhang, J.; Li, Y.; et al. Bifunctional MoO3–x/CuS Heterojunction Nanozyme-Driven “Turn-On” SERS Signal for the Sensitive Detection of Cerebral Infarction Biomarker S100B. Anal. Chem. 2024, 96, 17711–17719.
- 71.
Sun, T.; Wu, Y.; Ma, H.; et al. The Design of WTe2/Graphene/Ag NPs Heterostructure for the Improvement of the Chemical Enhancement in SERS. Nano Lett. 2024, 24, 15324–15330.
- 72.
Pei, J.; Yang, F.; Zhao, H. Plasma-induced Enhancement of Light–matter Interaction on Graphene–MoS2 Heterostructure for Sensitive SERS Sensing. Nano Res. 2025, 18, 94907376.
- 73.
Yuan, W.; Jiao, K.; Yuan, H.; et al. Metal–Organic Frameworks/Heterojunction Structures for Surface-Enhanced Raman Scattering with Enhanced Sensitivity and Tailorability. ACS Appl. Mater. Interfaces 2024, 16, 26374–26385.
- 74.
Sun, H.; Gong, W.; Cong, S.; et al. Ultrathin Two-Dimensional Metal–Organic Framework Nanosheets with Activated Ligand-Cluster Units for Enhanced SERS. ACS Appl. Mater. Interfaces 2022, 14, 2326–2334.
- 75.
Fu, J.-H.; Zhong, Z.; Xie, D.; et al. SERS-Active MIL-100(Fe) Sensory Array for Ultrasensitive and Multiplex Detection of VOCs. Angew. Chem. Int. Ed. 2020, 59, 20489–20498.
- 76.
Song, X.; Li, Y.; Yin, M.; et al. Multilayered Hollow Transition Metal Nitride Spheres Made from Single-source Precursors for SERS Analytics. Nat. Commun. 2025, 16, 2678.
- 77.
Gao, C.; Yang, Y.; Chen, H.; et al. 3D Hollow MoS2 Architecture Enabled Highly Sensitive SERS Detection. Adv. Mater. Interfaces 2024, 8, 2400734.
- 78.
Qi, D.; Lu, L.; Wang, L.; et al. Improved SERS Sensitivity on Plasmon-Free TiO2 Photonic Microarray by Enhancing Light-Matter Coupling. J. Am. Chem. Soc. 2014, 136, 9886–9889.
- 79.
Zhao, Z.; He, H.; Zhu, Y.; et al. An Ordered Fish Scale-like Co-TiO2/GO Inverse Opal Photonic Crystal as the Multifunctional SERS Substrate. J. Alloys Compd. 2021, 858, 158356.
- 80.
Liu, Y.; Dang, A.; Liu, X.; et al. Recyclable MXene Film as SERS Sensor with High Sensitivity and Flexibility Adjusted with ZnO Quantum Dots. Sens. Actuators B Chem. 2025, 422, 136685.
- 81.
Jiang, X.; Li, K.; Tang, Y.; et al. A Double Defects-dominated Flexible TiO2 Matrix for in-situ SERS Sensing of Antibiotic Residues in Aquatic Ecosystem (Fish & Fishpond Water) and Their on-site Degradation in Flowing Water. Sci. Total Environ. 2024, 921, 171154.
- 82.
Zhang, H.; Tang, Y.; Wang, W.; et al. A New Semiconductor Heterojunction SERS Substrate for Ultra-sensitive Detection of Antibiotic Residues in Egg. Food Chem. 2023, 431, 137163.
- 83.
Zhang, Q.; Li, X.; Yi, W.; et al. Plasmonic MoO2 Nanospheres as a Highly Sensitive and Stable Non-Noble Metal Substrate for Multicomponent Surface-Enhanced Raman Analysis. Anal. Chem. 2017, 89, 11765–11771.
- 84.
Quan, Y.; Su, R.; Yang, S.; et al. In-situ Surface-enhanced Raman Scattering based on MTi20 Nanoflowers: Monitoring and Degradation of Contaminants. J. Hazard. Mater. 2021, 412, 125209.
- 85.
Liang, P.; Cao, Y.; Dong, Q.; et al. A Balsam Pear-shaped CuO SERS Substrate with Highly Chemical Enhancement for Pesticide Residue Detection. Microchim. Acta 2020, 187, 335.
- 86.
Xu, H.; Li, B.; Wang, Z.; et al. Pure Metallic 1T Phase Sc-Doped MoS2 Fusilli Morphology for Ultra-Sensitive SERS Detection. J. Hazard. Mater. 2025, 491, 138043.
- 87.
Liman, G.; Aylaz, G.; Shaikh, H.; et al. Graphene Oxide Decorated with Melamine-imprinted Nanobeads for SERS Detection of Melamine in Milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 338, 126156.
- 88.
Zhang, H.; Huang, S.; Yang, X.; et al. A SERS Biosensor Constructed by Calcined ZnO Substrate with High-efficiency Charge Transfer for Sensitive Detection of Pb2+. Sens. Actuators B Chem. 2021, 343, 130142.
- 89.
Kamal, S.; Yang, T.C.-K. Silver Enriched Silver Phosphate Microcubes as an Efficient Recyclable SERS Substrate for the Detection of Heavy Metal Ions. J. Colloid Interface Sci. 2022, 605, 173–181.
- 90.
Parveen, S.; Saifi, S.; Akram, S.; et al. ZnO Nanoparticles Functionalized SWCNTs as Highly Sensitive SERS Substrate for Heavy Metal Ions Detection. Mater. Sci. Semicond. Process. 2022, 149, 106852.
- 91.
Han, K.; Yan, Z.; Ding, Z.; et al. High-sensitivity SERS Sensor Leveraging Three-dimensional Ti3C2Tx/TiO2/W18O49 Semiconductor Heterostructures for Reliable Detection of Trace Micro/Nanoplastics in Environmental Matrices. Talanta 2025, 286, 127474.
- 92.
Quan, Y.; Yao, J.; Yang, S.; et al. ZnO Nanoparticles on MoS2 Microflowers for Ultrasensitive SERS Detection of Bisphenol A. Microchim. Acta 2019, 186, 593.
- 93.
Zhang, W.; Peng, Y.; Wang, C.; et al. Molybdenum Boride MBene with an Ultraclean Surface for Stable and Portable Detection of Environment Toxins. ACS Sens. 2025, 10, 6950–6961.