2512002639
  • Open Access
  • Article

A Flexible Copper-Doped Laser-Induced Graphene-Based Sensor for the Multiplexed Detection of Sweat Metabolites

  • Hongbin Chen,   
  • Haojun Zhang,   
  • Ming Gao,   
  • Nianyue Cao,   
  • Xingchao Liu,   
  • Xirui Chen,   
  • Panpan Gai *,   
  • Chengcheng Gu *

Received: 08 Dec 2025 | Revised: 23 Dec 2025 | Accepted: 25 Dec 2025 | Published: 19 Jan 2026

Abstract

Despite advances in wearable sweat sensors, the simultaneous detection of multiple analytes remains a challenge due to signal overlap. Ascorbic acid (AA), dopamine (DA), and uric acid (UA) are promising biomarkers for early diagnostics, but their similar oxidation potentials impede selective detection on conventional electrodes. To overcome this limitation, we developed a flexible sensor based on a copper-doped laser-induced graphene (Cu-LIG) electrode for the separate and simultaneous detection of these three biomarkers. The Cu-LIG electrode exhibits enhanced electrocatalytic activity compared to pristine LIG and performs effectively in artificial sweat. Cyclic voltammetry and differential pulse voltammetry confirm its improved electrochemical performance, including high sensitivity and low detection limits. This electrode demonstrates strong potential for integration into flexible, wearable health-monitoring devices.

References 

  • 1.

    Shin, J.; Song, J.W.; Flavin, M.T.; et al. A non-contact wearable device for monitoring epidermal molecular flux. Nature 2025, 640, 375–383. https://doi.org/10.1038/s41586-025-08825-2.

  • 2.

    Xu, C.; Song, Y.; Sempionatto, J.R.; et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 2024, 7, 168–179.

  • 3.

    Kim, S.-R.; Zhan, Y.; Davis, N.; et al. Electrodermal activity as a proxy for sweat rate monitoring during physical and mental activities. Nat. Electron. 2025, 8, 353–361.

  • 4.

    Yang, Y.; Song, Y.; Bo, X.; et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224.

  • 5.

    Wang, M.; Ye, C.; Yang, Y.; et al. Printable molecule-selective core–shell nanoparticles for wearable and implantable sensing. Nat. Mater. 2025, 24, 589–598.

  • 6.

    Zhong, B.; Qin, X.; Xu, H.; et al. Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat. Commun. 2024, 15, 624. https://doi.org/10.1038/s41467-024-44751-z.

  • 7.

    Ma, S.; Wan, Z.A.; Wang, C.; et al. Ultra-Sensitive and Stable Multiplexed Biosensors Array in Fully Printed and Integrated Platforms for Reliable Perspiration Analysis. Adv. Mater. 2024, 36, 2311106. https://doi.org/10.1002/adma.202311106.

  • 8.

    Huang, W.; Xu, Y.; Yang, Y.; et al. Wearable Sensor for Continuous Monitoring Multiple Biofluids: Improved Performances by Conductive Metal-Organic Framework with Dual-Redox Sites on Flexible Graphene Fiber Microelectrode. Adv. Funct. Mater. 2025, 35, 2424018. https://doi.org/10.1002/adfm.202424018.

  • 9.

    Hao, Z.; Fang, X.; Wang, Z.; et al. Intelligent Wearable Graphene Nano-Electronics with Switchable Surface Wettability Capabilities for Autonomous Sweat Enrichment-Purification-Analysis. Adv. Funct. Mater. 2024, 34, 2400947. https://doi.org/10.1002/adfm.202400947.

  • 10.

    Mi, Z.; Xia, Y.; Dong, H.; et al. Microfluidic Wearable Electrochemical Sensor Based on MOF-Derived Hexagonal Rod-Shaped Porous Carbon for Sweat Metabolite and Electrolyte Analysis. Anal. Chem. 2024, 96, 16676–16685. https://doi.org/10.1021/acs.analchem.4c02950.

  • 11.

    Davis, N.; Heikenfeld, J.; Milla, C.; et al. The challenges and promise of sweat sensing. Nat. Biotechnol. 2024, 42, 860–871. https://doi.org/10.1038/s41587-023-02059-1.

  • 12.

    Wang, M.; Yang, Y.; Min, J.; et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. https://doi.org/10.1038/s41551-022-00916-z.

  • 13.

    Tu, J.; Min, J.; Song, Y.; et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 2023, 7, 1293–1306. https://doi.org/10.1038/s41551-023-01059-5.

  • 14.

    Xu, T.-Q.; Zhang, Q.-L.; Zheng, J.-N.; et al. Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim. Acta 2014, 115, 109–115. https://doi.org/10.1016/j.electacta.2013.10.147.

  • 15.

    Zheng, X.; Zhou, X.; Ji, X.; et al. Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(4-aminobutyric acid) modified glassy carbon electrode. Sens. Actuators B Chem. 2013, 178, 359–365. https://doi.org/10.1016/j.snb.2012.12.115.

  • 16.

    Mwaurah, M.M.; Mathiyarasu, J.; Vinu Mohan, A.M. MWCNTs-Beta-Cyclodextrin-reduced graphene oxide gel based electrochemical sensor for simultaneous detection of dopamine and uric acid in human sweat samples. Carbohydr. Polym. 2025, 350, 123060. https://doi.org/10.1016/j.carbpol.2024.123060.

  • 17.

    Bhole, V.; Choi, J.W.J.; Woo Kim, S.; et al. Serum Uric Acid Levels and the Risk of Type 2 Diabetes: A Prospective Study. Am. J. Med. 2010, 123, 957–961. https://doi.org/10.1016/j.amjmed.2010.03.027.

  • 18.

    Feig, D.I.; Kang, D.-H.; Johnson, R.J. Uric Acid and Cardiovascular Risk. N. Engl. J. Med. 2008, 359, 1811–1821. https://doi.org/10.1056/NEJMra0800885.

  • 19.

    Kohagura, K.; Kochi, M.; Miyagi, T.; et al. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: A biopsy-based study. Hypertens. Res. 2013, 36, 43–49. https://doi.org/10.1038/hr.2012.135.

  • 20.

    Major, T.J.; Dalbeth, N.; Stahl, E.A.; et al. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018, 14, 341–353. https://doi.org/10.1038/s41584-018-0004-x.

  • 21.

    Choudhury, S.; Zafar, S.; Deepak, D.; et al. A surface modified laser-induced graphene based flexible biosensor for multiplexed sweat analysis. J. Mater. Chem. B 2025, 13, 274–287. https://doi.org/10.1039/D4TB01936A.

  • 22.

    Xu, G.; Jarjes, Z.A.; Wang, H.-W.; et al. Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 42136–42145. https://doi.org/10.1021/acsami.8b16692.

  • 23.

    Feng, Z.; Geng, Z.; Pan, S.; et al. In situ patterning of nickel/sulfur-codoped laser-induced graphene electrode for selective electrocatalytic valorization of glycerol. Appl. Catal. B Environ. Energy 2024, 353, 124101. https://doi.org/10.1016/j.apcatb.2024.124101.

  • 24.

    Qing, Z.; Bai, A.; Xing, S.; et al. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens. Bioelectron. 2019, 137, 96–109. https://doi.org/10.1016/j.bios.2019.05.014.

  • 25.

    Singh, A.; Hazarika, A.; Dutta, L.; et al. A fully handwritten-on-paper copper nanoparticle ink-based electroanalytical sweat glucose biosensor fabricated using dual-step pencil and pen approach. Anal. Chim. Acta 2022, 1227, 340257. https://doi.org/10.1016/j.aca.2022.340257.

  • 26.

    Zhang, Y.; Li, N.; Xiang, Y.; et al. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 2020, 156, 506–513. https://doi.org/10.1016/j.carbon.2019.10.006.

  • 27.

    Jia, B.; Zhao, Y.; Zhang, Z.; et al. Borax promotes the facile formation of hollow structure in Cu single crystalline nanoparticles for multifunctional electrocatalysis. Inorg. Chem. Front. 2019, 6, 893–902. https://doi.org/10.1039/C8QI01330F.

  • 28.

    Liu, X.; Xiang, J.; Xue, Y.; et al. Plant wearable sensor based on flexible laser-induced Fe-doped graphene for in situ monitoring salicylic acid under salt stress. Sens. Actuators B 2025, 440, 137931. https://doi.org/10.1016/j.snb.2025.137931.

  • 29.

    Nguyen, V.T.; Le, H.D.; Nguyen, V.C.; et al. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 035012. https://doi.org/10.1088/2043-6262/4/3/035012.

  • 30.

    Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171. https://doi.org/10.1038/s41928-018-0043-y.

  • 31.

    Ibarlucea, B.; Pérez Roig, A.; Belyaev, D.; et al. Electrochemical detection of ascorbic acid in artificial sweat using a flexible alginate/CuO-modified electrode. Microchim. Acta 2020, 187, 520.

  • 32.

    Yu, R.; Deng, Z.; Sharel, P.E.; et al. Highly specific and sensitive quantification of uric acid in sweat using a dual boron-doped diamond electrode. Sens. Actuators B 2025, 426, 137031. https://doi.org/10.1016/j.snb.2024.137031.

  • 33.

    Midander, K.; Julander, A.; Kettelarij, J.; et al. Testing in artificial sweat—Is less more? Comparison of metal release in two different artificial sweat solutions. Regul. Toxicol. Pharm. 2016, 81, 381–386. https://doi.org/10.1016/j.yrtph.2016.09.021.

Share this article:
How to Cite
Chen, H.; Zhang, H.; Gao, M.; Cao, N.; Liu, X.; Chen, X.; Gai, P.; Gu, C. A Flexible Copper-Doped Laser-Induced Graphene-Based Sensor for the Multiplexed Detection of Sweat Metabolites. Nano-electrochemistry & Nano-photochemistry 2026, 2 (1), 1. https://doi.org/10.53941/nenp.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.