2601002939
  • Open Access
  • Review

Photo-Biofuel Cell-Based Self-Powered Sensors for Food Safety

  • Linyun Zhang,   
  • Jiaying Bei,   
  • Cao Li,   
  • Xin Luo *

Received: 22 Dec 2025 | Revised: 27 Jan 2026 | Accepted: 28 Jan 2026 | Published: 05 Feb 2026

Abstract

Photo-biofuel-cell (PBFC) self-powered sensors are emerging as effective tools for food safety analysis because light-driven charge generation can be directly coupled with redox catalysis to produce bias-free signals with inherent amplification in complex matrices. Unlike photoelectrochemical sensors that commonly depend on external biasing or sacrificial reagents and biofuel cell sensors restricted by limited driving force and catalyst instability, PBFCs function as closed energy signal systems in which photovoltage and interfacial reaction pathways jointly govern signal output. This review consolidates recent progress by relating photocarrier behavior, interfacial field regulation, and cathodic charge utilization to analytical sensitivity, operational stability, and matrix tolerance. Material and interface strategies across photoanodes, photocathodes, and recognition layers are examined, including band structure modulation, heterojunction construction, conductive architectures, and interface gating for controlled charge transfer upon target binding. Representative applications involving antibiotics, pesticides, heavy metals, and toxins are discussed with attention to dual photoelectrode operation, microfluidic regulation, and ratiometric or multiplex readouts. These developments indicate that PBFCs are advancing toward reliable on-site sensing in real food matrices. 

References 

  • 1.

    Wang, P.-L.; Xie, L.-H.; Joseph, E.A.; et al. Metal-organic frameworks for food safety. Chem. Rev. 2019, 119, 10638.

  • 2.

    Luo, X.; Zhao, J.; Li, M.; et al. Single-atom materials for food safety. Mater. Today 2023, 64, 121.

  • 3.

    Kirby, R.; Teixeira, P. Consumer food trends and food safety: Challenges in modern food systems. Trend. Food Sci. Tech. 2025, 166, 105398.

  • 4.

    Li, H.-R.; Xu, H.; Li, S.-S.; et al. Heterojunction composite-based electrochemical sensors for hazardous substances detection in environmental and biological system. Coord. Chem. Rev. 2025, 540, 216787.

  • 5.

    Dashtian, K.; Shahbazi, S.; Tayebi, M.; et al. A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coord. Chem. Rev. 2021, 445, 214097.

  • 6.

    Luo, X.; Tan, F.; Mao, Z.; et al. Single atom-bridged Au nanozymes boost glucose oxidase-like activity in acidic media. Chem. Sci. 2025, 16, 22160.

  • 7.

    Yu, Z.; Tang, J.; Zeng, C.; et al. Shaping the future of the neurotransmitter sensor: Tailored CdS nanostructures for state-of-the-art self-powered photoelectrochemical devices. ACS Sens. 2024, 9, 2684.

  • 8.

    Yu, Z.; Gong, H.; Li, Y.; et al. Chemiluminescence-derived self-powered photoelectrochemical immunoassay for detecting a low-abundance disease-related protein. Anal. Chem. 2021, 93, 13389.

  • 9.

    Sun, X.; Chen, J.; Zhai, J.; et al. Beyond photosynthesis: H2O/H2O2/O2 self-circulation-based biohybrid photoelectrochemical cells for direct and sustainable solar-to-fuel-to-electric power conversion. J. Am. Chem. Soc. 2022, 144, 23073.

  • 10.

    Luo, X.; Li, S.; Wu, Y.; et al. Hybrid enzymatic and nanozymatic biofuel cells for wearable and implantable biosensors. TrAC Trend. Anal. Chem. 2025, 185, 118169.

  • 11.

    Gai, P.-P.; Ji, Y.-S.; Wang, W.-J.; et al. Ultrasensitive self-powered cytosensor. Nano Energy 2016, 19, 541.

  • 12.

    Hao, S.; Sun, X.; Zhang, H.; et al. Recent development of biofuel cell based self-powered biosensors. J. Mater. Chem. B 2020, 8, 3393.

  • 13.

    He, Y.; Chen, K.; Leung, M.K.H.; et al. Photocatalytic fuel cell-A review. Chem. Eng. J. 2022, 428, 131074.

  • 14.

    Wang, L.; Zhang, J.-R.; Wu, X.; et al. Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. TrAC Trend. Anal. Chem. 2022, 146, 116476.

  • 15.

    Sohel Rana, S.M.; Faruk, O.; Robiul Islam, M.; et al. Recent advances in metal-organic framework-based self-powered sensors: A promising energy harvesting technology. Coord. Chem. Rev. 2024, 507, 215741.

  • 16.

    Theyagarajan, K.; Zahra, L.; Kim, Y.-J. Advances in the design and fabrication of flexible, wearable, and implantable electrochemical neurotransmitter sensors. Coord. Chem. Rev. 2026, 549, 217287.

  • 17.

    Zhou, M. Recent Progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review. Electroanalysis 2015, 27, 1786.

  • 18.

    Wu, F.; Yu, P.; Mao, L. Self-powered electrochemical systems as neurochemical sensors: Toward self-triggered in vivo analysis of brain chemistry. Chem. Soc. Rev. 2017, 46, 2692.

  • 19.

    Li, J.; Xu, C.; Shen, Y.; et al. A flexible electrochemical sensor for bisphenol A detection based on photoinitiated molecular imprinting on CdS functionalized carbon felt. Anal. Chim. Acta 2023, 1281, 341923.

  • 20.

    He, Y.; Sun, J.; Yao, W.; et al. A self-powered photoelectrochemical molecular imprinted sensor for chloroquine phosphate with enhanced cathodic photocurrent via stepped energy band alignment engineering. Chem. Eng. J. 2023, 451, 138748.

  • 21.

    Majani, S.S.; Basavaraj, R.B.; Sureshkumar, K.; et al. Photo-accelerated detoxification of Norfloxacin and electrochemical sensing application of engineered deep orange-red emitting samarium doped SrCeO3 nanostructures. Mater. Today Adv. 2025, 28, 100634.

  • 22.

    Jiang, J.; Wu, T.; Wei, M.; et al. Self-powered photoelectrochemical sensing for sensitive detection of chloramphenicol based on sulfur-vacancy engineered MoS2 nanoribbons/plasmonic Ti3C2 MXene with continual injection of photoinduced electrons. J. Environ. Chem. Eng. 2024, 12, 112067.

  • 23.

    Dashtian, K.; Hajati, S.; Karimi, R.; et al. Near-infrared-responsive photoelectrochemical biosensors. TrAC Trend. Anal. Chem. 2024, 179, 117890.

  • 24.

    Xu, X.; Zhou, X.; Huang, J.; et al. High-throughput multitarget molecular detection in an automatic light-addressable photoelectrochemical sensing platform. Anal. Chem. 2024, 96, 9185.

  • 25.

    Le, P.G.; Kim, M.I. Research progress and prospects of nanozyme-based glucose biofuel cells. Nanomaterials 2021, 11, 2116.

  • 26.

    Chen, Y.; Ji, W.; Yan, K.; et al. Fuel cell-based self-powered electrochemical sensors for biochemical detection. Nano Energy 2019, 61, 173.

  • 27.

    Toe, C.Y.; Zhou, S.; Gunawan, M.; et al. Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. J. Mater. Chem. A 2021, 9, 20277.

  • 28.

    Zhou, S.; Jiang, C.; Han, J.; et al. High‐performance self‐powered PEC photodetectors based on 2D BiVO4/MXene schottky junction. Adv. Funct. Mater. 2024, 35, 2416922.

  • 29.

    Zhou, S.; Liu, X.; Gunawan, M.; et al. Unassisted photoelectrochemical hydrogen production coupled with selective glucose oxidation using metal halide perovskite photoanodes. Adv. Funct. Mater. 2025. https://doi.org/10.1002/adfm.202505281.

  • 30.

    Sui, Q.; Li, H.; Xia, J.; et al. Unbiased photoelectrochemical H2O2 production using boron nitride for both photogenerated hole extraction and oxygen reduction selectivity regulation. Angew. Chem. Int. Ed. 2025, 64, e202520190.

  • 31.

    Ma, N.; Lu, C.; Liu, Y.; et al. Direct Z-scheme heterostructure of vertically oriented SnS2 nanosheet on BiVO4 nanoflower for self-powered photodetectors and water splitting. Small 2024, 20, e2304839.

  • 32.

    Jiang, F.; Liu, S.; Dong, H.; et al. Self-powered photoelectrochemical immunosensor with triple enhanced photoelectric response for sensitive detection of cTnI. Sens. Actuators B Chem. 2023, 393, 134234.

  • 33.

    Zheng, Q.; Tang, Q.; Wang, Z.L.; et al. Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 2021, 18, 7.

  • 34.

    Cestellos-Blanco, S.; Zhang, H.; Kim, J.M.; et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 2020, 3, 245.

  • 35.

    Shen, F.; Xiao, X.; Dai, Q.; et al. Combining enzymatic biofuel cells with supercapacitors to self-charging hybrid devices. Chem. Rec. 2025, 25, e202400248.

  • 36.

    Kim, S.; Kim, M.; Kim, H. Self-powered photodetectors based on two-dimensional van der Waals semiconductors. Nano Energy 2024, 127, 109725.

  • 37.

    Wang, L.; He, G.; Wang, H.; et al. A self-powered photoelectrochemical sensing array based on Ni-doped Co3O4 photocathode for high-throughput detection of environmental pollutant dibutyl phthalate. Sens. Actuators B Chem. 2025, 445, 138568.

  • 38.

    King, A.J.; Weber, A.Z.; Bell, A.T. Understanding photovoltage enhancement in metal-insulator semiconductor photoelectrodes with Metal Nanoparticles. ACS Appl. Mater. Inter. 2024, 16, 36380.

  • 39.

    Wang, Q.; Niu, X.; Ning, W.; et al. Interaction of organic-inorganic hybrid perovskite electron system with lattice system. Mater. Today Sust. 2024, 25, 100617.

  • 40.

    Zhang, Y.; Liu, J.; Singh, M.; et al. Superionic conductivity in ceria-based heterostructure composites for low-temperature solid oxide fuel cells. Nano-micro lett. 2020, 12, 178.

  • 41.

    Dai, M.; He, Z.; Zhang, P.; et al. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 122, 231.

  • 42.

    Dou, L.; Lu, D.; Guo, H.; et al. Novel self-powered anti-interference photoelectrochemical sensor via zirconium porphyrin-based metal-organic framework as multifunctional signal label for oxytetracycline detection in food and environment. Chem. Eng. J. 2024, 496, 153979.

  • 43.

    Wang, Y.; Zhang, A.; Liu, J.; et al. Mosaic Se/InSe heterojunction for self-powered bipolar photodetection. Adv. Opt. Mater. 2023, 12, 2302149.

  • 44.

    Zhang, N.; Gao, X.; Guan, H.; et al. Three-dimensional porous In2O3 arrays for self-powered transparent solar-blind photodetectors with high responsivity and excellent spectral selectivity. Nano Res. 2023, 17, 4471.

  • 45.

    Dong, R.; Wang, H.; Zhang, J.; et al. Self-powered SiC-based photoelectrochemical ultraviolet photodetectors for robust underwater optical communication against full aquatic environments. Adv. Sci. 2026, 13, e13939. https://doi.org/10.1002/advs.202513939e13939.

  • 46.

    Song, H.; Liu, J.; Wu, Y.; et al. High-performance dual-band self-powered photoelectrochemical photodetector based on type-I In2Te3/Se heterostructure for encrypted optical communication. Nano Lett. 2025, 25, 11689.

  • 47.

    Jiang, D.; Cao, X.; Shi, Y.; et al. Flexible Ti3C2Tx MXene Regulated Photoelectrochemical Sensing Platform for Sensitive Monitoring of Dopamine. Adv. Funct. Mater. 2025, 34, 2410546.

  • 48.

    Azadmanjiri, J.; Regner, J.; Děkanovský, L.; et al. Powering the future: Unleashing the potential of MXene-based dual-functional photoactive cathodes in photo-rechargeable Zinc-ion capacitor. Small 2024, 20, 2305972.

  • 49.

    Jahangir, T.N.; Kandiel, T.A.; Mahar, N.; et al. Exploring the role of Ti3C2TxMXene in photoelectrochemical water splitting over solution-processed BiVO4 photoanode. Mater. Today Energy 2024, 40, 101469.

  • 50.

    Chen, Z.; Liao, Y.; Chong, H.; et al. The CoNi@C/Mo1.33C i-MXene derived from novel (Mo2/3R1/3)2GaC (R = Dy, Ho, Er, Tm, and Lu) nanolaminations for electrochemical application in electrocatalytic hydrogen evolution and supercapacitance. Small 2025, 21, 2407667.

  • 51.

    Dang, C.; He, S.; Liu, Y.; et al. Designing In2S3@Bi2S3 type II heterostructure for bifunctional photo-enhanced Li-O2 batteries. Chem. Eng. J. 2023, 476, 146775.

  • 52.

    Li, L.; Bo, Y.; Miao, P.; et al. Self-powered photoelectrochemical immunosensing platform for sensitive CEA detection using dual-photoelectrode synergistic signal amplification. Biosens. Bioelectron. 2024, 250, 116075.

  • 53.

    Liu, S.; Dong, H.; Jiang, F.; et al. Wang, J. Self-powered photoelectrochemical biosensor with inherent potential for charge carriers drive. Biosens. Bioelectron. 2022, 211, 114361.

  • 54.

    Jeerapan, I.; Sempionatto, J.R.; Wang, J. On-body bioelectronics: Wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 2020, 30, 1906243.

  • 55.

    Song, L.; Fan, Y.; Fan, H.; et al. Photo-assisted rechargeable metal batteries. Nano Energy 2024, 125, 109538.

  • 56.

    Wang, W.; Zhang, X.; Lin, J.; et al. A Photoresponsive battery based on a redox-coupled covalent-organic-framework hybrid photoelectrochemical cathode. Angew. Chem. Int. Ed. 2022, 61, e202214816.

  • 57.

    Jing, L.; Xu, Y.; Xie, M.; et al. Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects. Nano Energy 2023, 112, 108508.

  • 58.

    Chae, S.Y.; Mehmood, A.; Park, E.D. Photoelectrochemical tandem chlorination of sp3 C-H bond in seawater/chloroform two-phase electrolyte system by Ti-doped Fe2O3 photoanode. J. Am. Chem. Soc. 2025, 147, 19472

  • 59.

    Zhu, K.; Zhang, X.; Wen, L.; et al. Electrochemical formation of BiVO4/BiPO4 photoanodes for enhanced selectivity toward H2O2 generation. Adv. Funct. Mater. 2025. https://doi.org/10.1002/adfm.202517929.

  • 60.

    Sun, S.; Li, W.; Zhang, Y.; et al. Mixed metal oxide heterojunction for high-performance self-powered ultraviolet photodetection. Small 2024, 21, e2407107.

  • 61.

    Miao, Y.; Li, Z.; Luo, L.; et al. Photoelectrocatalytic allylic C-H oxidation to allylic alcohols coupled with hydrogen evolution. Appl. Catal. B Environ. 2025, 361, 124588.

  • 62.

    Dong, Y.; Guo, C.; Zheng, R.; et al. Synergistic signal amplification by Cu2O-Au/Ag nanozyme in heterojunction photoanode for high-sensitivity photoelectrochemical detection of Cyfra21-1. Small 2025, 21, e02779.

  • 63.

    Wang, M.; Yan, Z.; Yun, Q.; et al. Self-powered broadband underwater optical communication enabled by enhanced donor-acceptor molecular junction in π-conjugated covalent organic framework. Chem. Eng. J. 2025, 524, 169368.

  • 64.

    Xiao, K.; Zhu, R.; Du, C.; et al. Zinc-air battery-assisted self-powered PEC sensors for sensitive assay of PTP1B activity based on perovskite quantum dots encapsulated in vinyl-functionalized covalent organic frameworks. Anal. Chem. 2022, 94, 9844.

  • 65.

    Pu, Y.; Zhu, S.; Chang, Y.; et al. CoAl layered double hydroxides decorated BiVO4 photoanode for highly efficient removal of antibiotics in photoelectrochemical-chloride system. Chem. Eng. J. 2025, 519, 165246.

  • 66.

    Chen, S.; Liu, Y.; Wu, J.; et al. Dimension-controlled BC2N nanoarchitectures: A novel strategy for superior photoelectrochemical photodetection performance. Chem. Eng. J. 2025, 520, 165599.

  • 67.

    Chen, Y.; Zhang, X.; Liu, Y.; et al. Gold nanoparticles and MXene nanocomposite based electrochemical sensor for point-of-care monitoring of serum biomarkers. ACS Nano 2025, 19, 16980.

  • 68.

    Ye, Q.; Chen, H.; Yao, R.; et al. Self-powered photoelectrochemical solar-blind UV photodetector with enhanced responsivity SnO2 nanosheets-Ti3C2Tx. Surf. Inter. 2024, 52, 104851.

  • 69.

    Shi, Y.; Song, G.; Yang, B.; et al. Prussian blue analogues "dressed" in MXene nanosheets tightly for high performance lithium-ion batteries. Adv. Mater. 2025, 37, e2416665.

  • 70.

    Li, H.J.; Huang, C.; Wang, F.; et al. Photo-nanozyme-integrated photoelectrochemical-electrochemical dual-mode biosensor: Enabling amplification-free detection of miRNA-133a in acute myocardial infarction. Anal. Chem. 2025, 97, 6686.

  • 71.

    Xiao, Z.; Chen, Y.; Zhang, Y. Self-powered portable photoelectrochemical sensor based on dual-photoelectrode for microplastics detection. Environ. Res. 2025, 271, 121084.

  • 72.

    Wang, D.; Ding, Z.; Cheng, H.; et al. High-performance self-powered photoelectrochemical bioassay system with a triphase oxidase enzymatic interface. Sens. Actuators B Chem. 2023, 392, 134125.

  • 73.

    Li, J.; Liu, C.; Dang, C.; et al. Light-switched electron migration routes via Co-catecholates grafted on Z-scheme Cu2O@CuO heterostructure for photoelectrochemical hydrogen evolution. Chem. Eng. J. 2025, 505, 159864.

  • 74.

    Cai, Q.; Li, H.; Li, Z.; et al. Single-atom iron boosts interfacial oxygen reduction for self-powered photoelectrochemical biosensing. Anal. Chem. 2025, 97, 17580.

  • 75.

    Tan, R.; Qin, Y.; Liu, M.; et al. Bifunctional single-atom iron cocatalysts enable an efficient photoelectrochemical fuel cell for sensitive biosensing. Adv. Funct. Mater. 2023, 33, 2305673.

  • 76.

    Tian, S.; Yu, Z.; Wang, Y.; et al. Crystal facet engineering modulated electron transfer mechanisms: A self-powered photoelectrochemical sensing platform for noninvasive detection of uric acid. Anal. Chem. 2025, 97, 9518.

  • 77.

    Song, X.; Ming, Y.; Liu, J.; et al. Highly catalytic CoFe-prussian blue analogue/ZIF-67 yolk-shell nanocube-decorated MBene nanosheets for ultrasensitive electrochemical cancer-specific neoantigen biosensor. J. Colloid Interface Sci. 2025, 683, 58.

  • 78.

    Guo, X.; Zhang, H.; Wang, Y.; et al. Confining asymmetrically coordinated cobalt single-atoms/clusters on holey MXene for ultrafast fenton-like catalysis. Angew. Chem. Int. Ed. 2025, 64, e202511266.

  • 79.

    Leng, D.; Ren, X.; Liu, L.; et al. A self-powered photoelectrochemical biosensing platform for H-FABP monitoring mediated by CsPbBr3@COF-V. Biosens. Bioelectron. 2023, 241, 115710.

  • 80.

    Li, Y.; Cheng, F.; Qi, Y.; et al. Synthesis of Ti2CO2 MXene and its application in photoelectrochemical biosensors with ultrahigh sensitivity and long-term stability. ACS Nano 2025, 19, 22007.

  • 81.

    Liu, B.; Ge, Y.; Lu, Y.; et al. An NIR light-responsive "on-off-on" photoelectrochemical aptasensor for carcinoembryonic antigen assay based on Y-shaped DNA. Biosens. Bioelectron. 2023, 229, 115241.

  • 82.

    Ban, R.; Lu, M.J.; Hu, J.; et al. Biological modulating organic photoelectrochemical transistor through in situ enzymatic engineering of photoactive gate for sensitive detection of serum alkaline phosphatase. Biosens. Bioelectron. 2022, 218, 114752.

  • 83.

    Wang, J.; Kong, J.; Zhang, X. Riboflavin-induced photo-ATRP electrochemical strategy for detection of biomarker trypsin. Talanta 2024, 277, 126386.

  • 84.

    Niu, X.; Zheng, N.; Liao, M.; et al. Cux+1O-mediated photo-nanozyme-integrated photoelectrochemical-colorimetric dual-readout biosensing for sensitive detection of MiRNA. Sens. Actuators B Chem. 2025, 444, 138383.

  • 85.

    Tian, T.; Song, D.; Zhen, L.; et al. Colorimetric-Fluorescence-Photothermal tri-mode sensor array combining the machine learning method for the selective identification of sulfonylurea pesticides. Biosens. Bioelectron. 2025, 277, 117286.

  • 86.

    Fang, Y.; Hao, L.L.; Xiao, J.Y.; et al. Photo-manipulating the interlayer spacing of MXene toward switchable electrochemical and gas sensing functionality. Adv. Funct. Mater. 2025, 35, 2421833.

  • 87.

    Cao, D.; Wu, W.; Fang, J.; et al. Dual-mode self-powered photoelectrochemical and colorimetric determination of procalcitonin accomplished by multienzyme-expressed Ni4Cu2 bimetallic hollow nanospheres and spherical nanoflower-MoS2/Cu2ZnSnS4/Bi2S3. Anal. Chim. Acta 2024, 1288, 342056.

  • 88.

    Wang, H.; Zhang, T.; Chen, X.; et al. Colorimetric-assisted photoelectrochemical sensing for dual-mode detection of neuron-specific enolase via the photoanode-photocathode system. Anal. Chem. 2025, 97, 15350.

  • 89.

    Luo, G.; Sun, Y.; Du, C.; et al. Self-powered PEC platform with large and stable photocurrent for blocker-free sensitive assay of Caspase-3 activity based on CdIn2S4/CdS QDs anode and NH2-MIL-125Ti@MAPbI3/Au NPs cathode. Biosens. Bioelectron. 2025, 278, 117350.

  • 90.

    Liu, J.; Lv, L.; Leng, D.; et al. Interface self-shelling effect-mediated photoinduced carrier transport and multiplexed signal amplification mechanism in self-powered photoelectrochemical biosensing. Biosens. Bioelectron. 2025, 284, 117577.

  • 91.

    Parvulescu, V.I.; Epron, F.; Garcia, H.; et al. Recent progress and prospects in catalytic water treatment. Chem. Rev. 2022, 122, 2981.

  • 92.

    Zhu, L.; He, Y.; Huang, H.; et al. Synergistic enhancement of PEC activity in heterojunction assisted by oxygen vacancies and ferroelectric polarization at zero bias: Mechanism study and achievement of ultrasensitive detection. Anal. Chem. 2025, 97, 4166.

  • 93.

    Yang, P.; Jiang, H.; Zhang, H.; et al. Synergistic signal amplification-initiated innovative self-powered photoelectrochemical aptasensing: An ingenious photocathode activated by the high-light-harvesting photoanode. Anal. Chem. 2023, 95, 7303.

  • 94.

    Lu, K.; Hong, C.; Liu, D.; et al. A self-powered molecular imprinted photoelectrochemical sensor for streptomycin cathodic detection based on a signal amplification of ZnO/ZnS/Ag2S photoanode. Sens. Actuators B Chem. 2022, 371, 132588.

  • 95.

    Leng, D.; Song, L.; Du, Y.; et al. Advancing microfluidic photoelectrochemical aptasensing platform with photogenerated carrier regulation for protein biosynthesis inhibitors detection. Anal. Chem. 2025, 97, 17788.

  • 96.

    Fan, X.; Peng, J.; Zhang, X.; et al. Reconfiguration/immobilization "dual-free" self-powered multiplex photoelectrochemical strategy for dual magnetic bead-mediated dimension differentiate type complex sample assay. Anal. Chem. 2025, 97, 11778.

  • 97.

    Tang, J.; Bai, X.; Ji, Y.; et al. Signal amplified self-powered cathodic photoelectrochemical sensor based on elevating potential strategy and prolonging electron lifetime. Sens. Actuators B Chem. 2025, 426, 137108.

  • 98.

    Hu, S.; Wei, Y.; Wang, J.; et al. A photo-renewable ZIF-8 photo-electrochemical sensor for the sensitive detection of sulfamethoxazole antibiotic. Anal. Chim. Acta 2021, 1178, 338793.

  • 99.

    Zhang, L.; Zhang, Y.; Chen, W.-T.; et al. Recent advances and perspectives in functionalized nanocomposites for electrochemical sensing of toxic environmental heavy metal ions. Coord. Chem. Rev. 2025, 542, 216859.

  • 100.

    Guo, A.; Song, M.; Chen, Q.; et al. Enhanced label-free photoelectrochemical strategy for pollutant detection: Using surface oxygen vacancies-enriched BiVO4 photoanode. Anal. Chem. 2024, 96, 9944.

  • 101.

    Chen, S.; Lan, W.; Yang, D.; et al. Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and Ag2S/SnS2 photoanode for ultrasensitive dimethoate sensing. Anal. Chim. Acta 2025, 1337, 343556.

  • 102.

    Du, X.; Du, W.; Sun, J.; et al. Self-powered photoelectrochemical sensor for chlorpyrifos detection in fruit and vegetables based on metal-ligand charge transfer effect by Ti3C2 based Schottky junction. Food. Chem. 2022, 385, 132731.

  • 103.

    Hu, J.; Li, Z.; Zhai, C.; et al. Photo-assisted simultaneous electrochemical detection of multiple heavy metal ions with a metal-free carbon black anchored graphitic carbon nitride sensor. Anal. Chim. Acta 2021, 1183, 338951.

  • 104.

    Zou, W.; Li, Q.; Wu, Q.; et al. Bifunctional Dy-MOF for efficient electrochemical detection and photocatalytic reduction of Cr(VI). Chem. Eng. J. 2025, 505, 159428.

  • 105.

    Dai, H.; Zhang, S.; Wei, J.; et al. A self-powered photoelectrochemical aptasensing platform for microcystin-LR cathodic detection via integrating Bi2S3 photoanode and CuInS2 photocathode. Sens. Actuators B Chem. 2023, 397, 134692.

  • 106.

    Wang, Y.; Wang, Y.; Wang, L.; et al. A self-powered PFC sensing platform via integrating aptamer-modified photoanode and Z-scheme signal amplifying photocathode for microcystin-LR detection. Anal. Chim. Acta 2025, 1347, 343792.

  • 107.

    Du, X.; Jiang, D.; Liu, Q.; et al. Ingenious dual-photoelectrode internal-driven self-powered sensing platform for the power generation and simultaneous microcystin monitoring based on the membrane/mediator-free photofuel cell. Anal. Chem. 2019, 91, 1728.

  • 108.

    Sun, J.; Zhu, R.; Du, X.; et al. An ultrasensitive photo-driven self-powered aptasensor for microcystin-RR assay based on ZnIn2S4/Ti3C2 MXenes integrated with a matching capacitor for multiple signal amplification. Analyst 2023, 148, 5060.

  • 109.

    Wei, J.; Hu, Q.; Gao, Y.; et al. A multiplexed self-powered dual-photoelectrode biosensor for detecting dual analytes based on an electron-transfer-regulated conversion strategy. Anal. Chem. 2021, 93, 6214.

  • 110.

    Qiu, Z.; Yang, Y.; Xue, X.; et al. Laser-induced CdS/TiO2/graphene dual photoanodes for ratiometric self-powered photoelectrochemical sensor: An innovative approach for aflatoxin B1 detection. Microchim. Acta 2024, 191, 630.

  • 111.

    Yan, K.; Ding, Y.; Liu, X.; et al. Portable self-powered electrochemical aptasensing platform for ratiometric detection of mycotoxins based on multichannel photofuel cell. Anal. Chim. Acta 2024, 1299, 342442.

  • 112.

    Chang, Z.; Wang, F.; Wang, Z.; et al. Fiber-based electrochemical sweat sensors toward personalized monitoring. Prog. Mater. Sci. 2026, 156, 101579.

  • 113.

    Shi, J.; Li, P.; Kim, S.; et al. Implantable bioelectronic devices for photoelectrochemical and electrochemical modulation of cells and tissues. Nat. Rev. Bioeng. 2025, 3, 485.

  • 114.

    Qin, J.; Yu, Z.; Wu, D.; et al. Target-induced oxygen vacancy on the etching WO3 photoanode for in-situ amplified photoelectrochemical immunoassay. Biosens. Bioelectron. 2025, 279, 117405.

  • 115.

    Dai, H.; Ahmad, W.; Zhang, S.; et al. A visible-light-driven self-powered nodularin-R biosensing platform controlled by an integrated portable photoelectrochemical detection device. Anal. Chem. 2024, 96, 12526.

  • 116.

    Lei, W.; Zhang, S.; Shu, J.; et al. Self-powered glucose biosensor based on non-enzymatic biofuel cells by Au nanocluster/Pd nanocube heterostructure and Fe3C@C-Fe single-atom catalyst. Small 2025, 21, e2410326.

  • 117.

    Bae, S.; Moehl, T.; Service, E.; et al. A hole-selective hybrid TiO2 layer for stable and low-cost photoanodes in solar water oxidation. Nat. Commun. 2024, 15, 9439.

  • 118.

    Li, W.; Wen, J.; Gu, W.; et al. Recent advances in signal amplification strategies for photoelectrochemical sensing. J. Anal. Test. 2025, 93, 13389–13397. https://doi.org/10.1007/s41664-025-00417-3.

Share this article:
How to Cite
Zhang, L.; Bei, J.; Li, C.; Luo, X. Photo-Biofuel Cell-Based Self-Powered Sensors for Food Safety. Nano-electrochemistry & Nano-photochemistry 2026, 2 (1), 2. https://doi.org/10.53941/nenp.2026.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.