2602003017
  • Open Access
  • Original Research Articles

CuMg Alloy Catalyst for Electrochemical Dopamine Detection

  • Cheng Wang 1,2,   
  • Wenlong Xu 3,   
  • Yiming Zhang 4,   
  • Xun Zhang 4,   
  • Congxiao Wang 1,*,   
  • Lei Jiao 4,*

Received: 11 Dec 2025 | Revised: 29 Jan 2026 | Accepted: 06 Feb 2026 | Published: 13 Feb 2026

Abstract

Electrochemical sensors offer rapid, cost-effective, and portable detection but often suffer from narrow linear ranges and poor long-term stability due to catalyst degradation or surface fouling. Herein, an electrochemical sensor employing a Cu1Mg1 bimetallic alloy catalyst was developed for highly sensitive and rapid detection of dopamine (DA). The Cu1Mg1 alloy, synthesized via a facile method, exhibited enhanced electrocatalytic activity due to synergistic effects between Cu and Mg, optimizing electron transfer and surface reactivity. The sensor demonstrated a wide linear range (0.01–100 μM) and excellent selectivity against common interferents. Notably, it achieved rapid response and superior long-term stability. Mechanistic studies revealed that Mg’s role in stabilizing Cu active sites and enhancing the conductivity was pivotal for broad-range detection. This work highlights the potential of Cu1Mg1 alloys as efficient catalysts for real-time, reliable neurotransmitter monitoring in biomedical applications, providing theoretical guidance for understanding the structure−property relationship.

Graphical Abstract

References 

  • 1.

    Zhang, J.; Liu, D.; Xiang, J.; et al. Combining Glial Fibrillary Acidic Protein and Neurofilament Light Chain for the Diagnosis of Major Depressive Disorder. Anal. Chem. 2024, 96, 1693–1699.

  • 2.

    Xiu, J.; Li, J.; Liu, Z.; et al. Elevated BICD2 DNA methylation in blood of major depressive disorder patients and reduction of depressive-like behaviors in hippocampal Bicd2-knockdown mice. Proc. Natl. Acad. Sci. USA 2022, 119, e2201967119.

  • 3.

    Shi, Y.; Song, R.; Wang, L.; et al. Identifying Plasma Biomarkers with high specificity for major depressive disorder: A multi-level proteomics study. J. Affect. Disord. 2020, 277, 620–630.

  • 4.

    Zhang, G.; Li, L.; Kong, Y.; et al. Vitamin D-binding protein in plasma microglia-derived extracellular vesicles as a potential biomarker for major depressive disorder. Genes Dis 2024, 11, 1009–1021.

  • 5.

    Kennis, M.; Gerritsen, L.; van Dalen, M.; et al. Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 321–338.

  • 6.

    Mayeux, R., Biomarkers: Potential uses and limitations. Neurorx 2004, 1, 182–188.

  • 7.

    Sun, X.; Li, X.; Zong, P.; et al. f-p-d Orbital Hybridization Promotes Hydroxyl Intermediate Adsorption for Electrochemical Biomolecular Oxidation and Identification. Anal. Chem. 2025, 97, 880–885.

  • 8.

    Tamilarasi, S.; Kumar, R.S.; Cho, K.-B.; Kim, C.-J.; et al. High-performance electrochemical detection of glucose in human blood serum using a hierarchical NiO2 nanostructure supported on phosphorus doped graphene. Mater. Today Chem. 2023, 34, 101765.

  • 9.

    Umapathi, S.; Masud, J.; Coleman, H.; et al. Electrochemical sensor based on CuSe for determination of dopamine. Mikrochim. Acta 2020, 187, 440.

  • 10.

    Lei, Y.; Butler, D.; Lucking, M.C.; et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

  • 11.

    Parker, J.G.; Marshall, J.D.; Ahanonu, B.; et al. Schnitzer, Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 2018, 557, 177–182.

  • 12.

    Chen, Y.; Gu, Y.; Wang, B.; et al. Synaptotagmin-11 deficiency mediates schizophrenia-like behaviors in mice via dopamine over-transmission. Nat. Commun. 2024, 15, 10571.

  • 13.

    Hu, K.; Le Vo, K.L.; Wang, F.; et al. Single Exosome Amperometric Measurements Reveal Encapsulation of Chemical Messengers for Intercellular Communication. J. Am. Chem. Soc. 2023, 145, 11499–11503.

  • 14.

    Cho, Y.W.; Park, J.H.; Lee, K.H.; et al. Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells. Nano Converg. 2020, 7, 40.

  • 15.

    Kimura, N.; Takayanagi, R.; Takizawa, N.; et al. Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr. Relat. Cancer 2014, 21, 405–414.

  • 16.

    Zhou, L.; Yang, R.; Li, X.; et al. COF-Coated Microelectrode for Space-Confined Electrochemical Sensing of Dopamine in Parkinson’s Disease Model Mouse Brain. J. Am. Chem. Soc. 2023, 145, 23727–23738.

  • 17.

    Monzani, E.; Nicolis, S.; Dell’Acqua, S.; et al. Oxidative Stress and Protein-Quinone Modifications in Parkinson’s and Other Neurodegenerative Diseases. Angew. Chem. Int. Ed. Engl. 2019, 58, 6512–6527.

  • 18.

    Huang, W.; Zhang, J.; Liu, D.; et al. Tuning the Electronic Structures of Multimetal Oxide Nanoplates to Realize Favorable Adsorption Energies of Oxygenated Intermediates. ACS Nano 2020, 14, 17640–17651.

  • 19.

    Shi, J.; Guo, Y.H.; Xie, F.; et al. Redox-Active Ligand Assisted Catalytic Water Oxidation by a Ru(IV) =O Intermediate. Angew. Chem. Int. Ed. Engl. 2020, 59, 4000–4008.

  • 20.

    Wang, Z.; Li, J.; Zhang, Q.; et al. Facilitating Formate Selectivity via Optimizing e(g)* Band Broadening in NiMn Hydroxides for Ethylene Glycol Electro-Oxidation. Angew. Chem. Int. Ed. Engl. 2024, 63, e202411517.

  • 21.

    Ferreira, G.M.; Baptista, V.; Silva, V.; et al. CMOS Spectrophotometric Microsystem for Malaria Detection. IEEE Trans. Biomed. Eng. 2023, 70, 2318–2328.

  • 22.

    Yamamoto, H.; Fujiwara, T.; Funatsu, T.; et al. Quantification of Intracellular Thiols by HPLC-Fluorescence Detection. Molecules 2021, 26, 2365.

  • 23.

    Martinez, M.L.; Rodriguez, M.A.; Irazu, L.E.; et al. New enzyme-linked immunoassay for the detection of specific antibodies against multiple Leptospira serogroups in bovine sera. Comp. Immunol. Microbiol. Infect. Dis. 2021, 75, 101609.

  • 24.

    Natarajan, B.; Kannan, P.; Maduraiveeran, G.; et al. Polymer nanocomposite-based biomolecular sensor for healthcare monitoring. Adv. Colloid Interface Sci. 2025, 343, 103557.

  • 25.

    Shafiq, F.; Rather, J.A.; Said, M.A.; et al. Fluorescent molecularly imprinted polymers: Design strategies and biomolecular sensing applications for healthcare monitoring. Adv. Colloid Interface Sci. 2026, 348, 103740.

  • 26.

    Jan, A.; Batool, M.; Akram, S.; et al. Functionalized Graphene Quantum Dots (FGQDs): A review of their synthesis, properties, and emerging biomedical applications. Carbon Trends 2025, 18, 100442.

  • 27.

    Yang, X.L.; Zhu, Q.H.; Zhang, G.H.; et al. On-site portable detection of gaseous methyl iodide using an electrochemical method. Chem. Commun. 2024, 60, 1168–1171.

  • 28.

    Díaz-Fernández, A.; Ranallo, S.; Ricci, F., Enzyme-Linked DNA Displacement (ELIDIS) Assay for Ultrasensitive Electrochemical Detection of Antibodies. Angew. Chem. Int. Ed. Engl. 2024, 63, e202314818.

  • 29.

    Wang, H.; Wang, Y.; Liu, S.; et al. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification. Biosens. Bioelectron. 2016, 80, 471–476.

  • 30.

    Li, R.; Guo, W.; Zhu, Z.; et al. Single-Site Sn-O-Cu Pairs with Interfacial Electron Transfer Effect for Enhanced Electrochemical Catalysis and Sensing. Small 2023, 19, e2300149.

  • 31.

    Li, X.; Jiao, L.; Li, R.; et al. Biomimetic Electronic Communication of Iodine Doped Single-Atom Fe Site for Highly Active and Stable Dopamine Oxidation. Small 2024, 20, e2405532.

  • 32.

    Huang, J.; Mensi, M.; Oveisi, E.; et al. Buonsanti, Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag-Cu Nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.

  • 33.

    Peng, C.; Ma, J.; Luo, G.; et al. (111) Facet-oriented Cu2Mg Intermetallic Compound with Cu3-Mg Sites for CO2 Electroreduction to Ethanol with Industrial Current Density. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316907.

  • 34.

    Feng, Y.; Li, Z.; Liu, H.; et al. Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO2 to Ethylene. Langmuir 2018, 34, 13544–13549.

Share this article:
How to Cite
Wang, C.; Xu, W.; Zhang, Y.; Zhang, X.; Wang, C.; Jiao, L. CuMg Alloy Catalyst for Electrochemical Dopamine Detection. Nano-electrochemistry & Nano-photochemistry 2026, 2 (1), 3. https://doi.org/10.53941/nenp.2026.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.