2508001059
  • Open Access
  • Review
Analytical Methods Applied to Auraptene: A Mini Review
  • Chiara Collevecchio,   
  • Lorenzo Marchetti,   
  • Francesco Epifano *,   
  • Salvatore Genovese,   
  • Serena Fiorito

Received: 29 May 2025 | Revised: 20 Jun 2025 | Accepted: 20 Jun 2025 | Published: 06 Aug 2025

Abstract

Auraptene (7-geranyloxycoumarin), a prenyloxycoumarin primarily found in Citrus species, has garnered significant attention due to its diverse bioactivities and presence in natural products. Accurate analytical techniques are crucial for the qualitative and quantitative assessment of auraptene in plant materials and formulations. This review provides an exhaustive summary of the analytical methods applied to auraptene, encompassing classical extraction, chromatographic separation, spectroscopic identification, and advanced hyphenated techniques. Critical evaluations of sample preparation, detection modes, and method validation are presented, alongside a discussion on current challenges and future directions in auraptene analysis.

References 

  • 1.
    Genovese, S.; Epifano, F. Auraptene: A natural biologically active compound with multiple targets. Curr. Drug Target 2011, 12, 381–386.
  • 2.
    Tayarani-Najaran, Z.; Tayarani-Najaran, N.; Eghbali, S. A review of auraptene as an anticancer agent. Front. Pharmacol. 2021, 12, 698352.
  • 3.
    Bibak, B.; Shakeri, F.; Barreto, G.E.; et al. A review of the pharmacological and therapeutic effects of auraptene. Biofactors 2019, 45, 867–879.
  • 4.
    Derosa, G.; Maffioli, P.; Sahebkar, A. Auraptene and its role in chronic diseases. Adv. Exp. Med. Biol. 2016, 929, 399–407.
  • 5.
    Taddeo, V.A.; Epifano, F.; Fiorito, S.; et al. Comparison of different extraction methods and HPLC quantification of prenylated and unprenylated phenylpropanoids in raw Italian propolis. J. Pharm. Biomed. Anal. 2016, 129, 219–223.
  • 6.
    Taddeo, V.A.; Genovese, S.; Medina, P.; et al. Quantification of biologically active O-prenylated and unprenylated phenylpropanoids in dill (Anethum graveolens), anise (Pimpinella anisum), and wild celery (Angelica archangelica). J. Pharm. Biomed. Anal. 2017, 134, 319–324.
  • 7.
    Fiorito, S.; Ianni, F.; Preziuso, F.; et al. UHPLC-UV/Vis quantitative analysis of hydroxylated and O-prenylated coumarins in pomegranate seed extract. Molecules 2019, 24, 1963.
  • 8.
    Moon, J.Y.; Kim, H.; Cho, S.K. Auraptene, a major compound of supercritical fluid extract of Phalsak (Citrus hassaku Hort ex Tanaka), induces apoptosis through the suppression of mTOR pathways in human gastric cancer SNU-1 cells. Evid. Based Complement. Alternat. Med. 2015, 2015, 40238.
  • 9.
    Scotti, L.; Genovese, S.; Bucciarelli, T.; et al. Analysis of biologically active oxyprenylated phenylpropanoids in Tea tree oil using selective solid-phase extraction with UHPLC-PDA detection. J. Pharm. Biomed. Anal. 2018, 154, 174–179.
  • 10.
    Urbain, A.; Avello Simões-Pires, C. Thin-Layer Chromatography for the detection and analysis of bioactive natural products. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp 1–29.
  • 11.
    Haggag, E.G.; Mahmoud, I.I.; Abou Moustafa, E.A.; et al. Coumarins, fatty acids, volatile terpenoids from the leaves of Citrus aurantium L. (sour orange), and Citrus sinensis (L.) Osbeck (sweet orange). As. J. Chem. 1999, 11, 784–789.
  • 12.
    Fiorito, S.; Preziuso, F.; Sharifi-Rad, M.; et al. Auraptene and umbelliprenin: A review on their latest literature acquisitions. Phytochem. Rev. 2022, 21, 317–326.
  • 13.
    Ogawa, K.; Kawasaki, A.; Yoshida, T.; et al. Evaluation of auraptene content in citrus fruits and their products. J. Agr. Food Chem. 2000, 48, 1763–1769.
  • 14.
    Mercolini, L.; Mandrioli, R.; Ferranti, A.; et al. Quantitative evaluation of auraptene and umbelliferone, chemopreventive coumarins in citrus fruits, by HPLC-UV-FL-MS. J. Agr. Food Chem. 2013, 61, 1694–1701.
  • 15.
    Lei, Y.; Wang, Y.; Sun, Z.; et al. Quantitative analysis of multicomponents by single marker combined with HPLC fingerprint qualitative analyses for comprehensive evaluation of Aurantii Fructus. J. Sep. Sci. 2020, 43, 1382–1392.
  • 16.
    Rajmane, A.D.; Shinde, K.P. A review of HPLC method development and validation as per ICH guidelines. As. J. Pharm. Anal. 2023, 13, 143–151.
  • 17.
    Genovese, S.; Epifano, F.; Preziuso, F.; et al. A novel and efficient subcritical butane extraction method and UHPLC analysis of oxyprenylated phenylpropanoids from grapefruits peels. J. Pharm. Biomed. Anal. 2020, 184, 113185.
  • 18.
    Ferrone, V.; Genovese, S.; Carlucci, M.; et al. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chem. 2018, 245, 578–585.
  • 19.
    Fiorito, S.; Preziuso, F.; Epifano, F.; et al. Novel biologically active principles from spinach, goji and quinoa. Food Chem. 2019, 276, 262–265.
  • 20.
    Ungarala, R.; Sinha, S.N.; Sunder, R.S. Ultra high-Performance Liquid Chromatography (UHPLC) method development and validation for the identification of oxidized product of Epigallocatechin-3-Gallate (EGCG). J. Chromatogr. Sci. 2023, 61, 140–150.
  • 21.
    Takahashi, Y.; Inaba, N.; Kuwahara, S.; et al. Rapid and convenient method for preparing aurapten-enriched product from hassaku peel oil: Implications for cancer-preventive food additives. J. Agric. Food Chem. 2002, 50, 3193–3196.
  • 22.
    Nasiri, F.; Dehghan, G.; Shaghaghi, M.; et al. Probing the interaction between 7-geranyloxycoumarin and bovine serum albumin: Spectroscopic analyzing and molecular docking study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 254, 119664.
  • 23.
    Li, G.; Cheng, Y.; Zhang, T.; et al. Characterization of oxygenated heterocyclic compounds and in vitro antioxidant activity of pomelo essential oil. Drug Des. Devel. Ther. 2021, 15, 937–947.
  • 24.
    Daneshmand, S.; Jaafari, M.R.; Movaffagh, J.; et al. Preparation, characterization, and optimization of auraptene-loaded solid lipid nanoparticles as a natural anti-inflammatory agent: In vivo and in vitro evaluations. Colloids Surf. B Biointerfaces 2018, 164, 332–339.
  • 25.
    Bruyère, C.; Genovese, S.; Lallemand, B.; et al. Growth inhibitory activities of oxyprenylated and non-prenylated naturally occurring phenylpropanoids in cancer cell lines. Bioorg. Med. Chem. Lett. 2011, 21, 4174–4179.
  • 26.
    Ye, X.D.; Ouyang, H.; Zhong, L.Y.; et al. Rapid and sensitive LC-MS/MS method for the determination of auraptene in rat plasma and its application in a pharmacokinetic and bioavailability study in rats. Genet. Mol. Res. 2016, 15, 2.
  • 27.
    Ma, X.F.; Zhao, Q.; Cheng, Y.; et al. Metabolomics reveals the role of isopentenyl group in coumarins metabolism. Biomed. Chromat. 2022, 36, e5239.
  • 28.
    Li, Y.G.; Wang, X.Y.; Chen, H.F.; et al Comparison of the chemical constituents of raw Fructus Aurantii and Fructus Aurantii stir-baked with bran, and the biological effects of auraptene. J. Ethnopharmacol. 2021, 269, 113721.
  • 29.
    Yuan, J.; Li, M.; Chen, H.; et al. An HPLC method for the determination of auraptene in dog plasma: Application to pharmacokinetic study. Lat. Am. J. Pharm. 2021, 31, 251–256.
Share this article:
How to Cite
Collevecchio, C.; Marchetti, L.; Epifano, F.; Genovese, S.; Fiorito, S. Analytical Methods Applied to Auraptene: A Mini Review. Natural Products Analysis 2025, 1 (1), 100003. https://doi.org/10.53941/npa.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.