2509001611
  • Open Access
  • Article

Authenticating Basil (Ocimum spp.): An Integrated Quality Control Strategy

  • Nazia Nazar 1,   
  • Velusamy Sundaresan 1, 2, 3,   
  • Ram S. Verma 3, 4,   
  • Adrain Slater 1,   
  • Randolph R. J. Arroo 5,   
  • Tiziana Sgamma 1, *

Received: 02 Sep 2025 | Revised: 25 Sep 2025 | Accepted: 25 Sep 2025 | Published: 21 Oct 2025

Abstract

Standardisation is essential to ensure the quality, efficacy, and safety of basil oil products. Although Ocimum basilicum L. is the most widely traded species, other Ocimum species are often sold under the same name, increasing the risk of misidentification and adulteration. Intraspecific variation in morphology and chemical composition further complicates standardisation, highlighting the need for a comprehensive authentication strategy. This study evaluates genetic, chemical, and morphological methods for the authentication of commercial basil accessions to support accurate species identification and product standardisation. Samples were analysed using DNA barcoding (matK, trnH-psbA, rbcL, rpl16), GC-MS-based chemical profiling, and trichome characterisation via scanning electron microscopy. Phylogenetic analysis placed all commercial samples within a broad clade encompassing O. basilicum, its hybrids, and related species. Species-specific single nucleotide variations in matK and trnH-psbA supported the identification of distinct accessions. Notably, liquorice basil showed genetic similarities to non-basilicum species, suggesting the need to revisit its classification. Chemical profiling revealed substantial variation in essential oil composition, with some samples dominated by linalool and eugenol, and others by methyl chavicol, raising potential safety concerns. Morphological analysis further highlighted differences in trichome density, particularly in the blue spice variety. The findings underscore the limitations of using a single method for basil authentication and advocate for an integrated approach. DNA barcoding supports species identification, while chemical profiling is essential for chemotype differentiation. Developing reliable DNA markers and incorporating combined analyses into routine quality control can strengthen industry standards for natural product authentication.

References 

  • 1.
    World Health Organization (WHO). National Policy on Traditional Medicine and Regulation of Herbal Medicines: Report of a WHO Global Survey; WHO: Geneva, Switzerland, 2005.
  • 2.
    Conboy, L.; Kaptchuk, T.J.; Eisenberg, D.M.; et al. The relationship between social factors and attitudes toward conventional and CAM practitioners. Complement. Ther. Clin. Pract. 2007, 13, 146–157.
  • 3.
    Rishton, G.M. Natural products as a robust source of new drugs and drug leads: Past successes and present-day issues. Am. J. Cardiol. 2008, 101, S43–S49.
  • 4.
    Schmidt, B.; Ribnicky, D.M.; Poulev, A.; et al. A natural history of botanical therapeutics. Metabolism 2008, 57, S3–S9.
  • 5.
    Wachtel-Galor, S.; Benzie, I.F.F. Herbal Medicine: An Introduction to Its History, Usage, Regulation, Current Trends, and Research Needs. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011.
  • 6.
    Mendes, A.; Oliveira, A.; Lameiras, J.; et al. Organic Medicinal and Aromatic Plants: Consumption Profile of a Portuguese Consumer Sample. Foods 2023, 12, 4145.
  • 7.
    Nazar, N.; Saxena, A.; Sebastian, A.; et al. Integrating DNA Barcoding Within an Orthogonal Approach for Herbal Product Authentication: A Narrative Review. Phytochem. Anal. 2025, 36, 7–29.
  • 8.
    Theodoridis, S.; Drakou, E.G.; Hickler T.; et al. Evaluating natural medicinal resources and their exposure to global change. Lancet Planet. Health 2023, 7, e155–e163.
  • 9.
    Li, Y.; Kong, D.; Fu, Y.; et al. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89.
  • 10.
    Ciocan, A-G.; Tecuceanu, V.; Enache-Preoteasa, C.; et al. Phenological and Environmental Factors’ Impact on Secondary Metabolites in Medicinal Plant Cotinus coggygria Scop. Plants 2023, 12, 1762.
  • 11.
    Elshafie, H.S.; Camele, I.; Mohamed, A.A. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int. J. Mol. Sci. 2023, 24, 3266.
  • 12.
    Chele, K.H.; Piater, L.A.; van der Hooft, J.J.J.; et al. Bridging Ethnobotanical Knowledge and Multi-Omics Approaches for Plant-Derived Natural Product Discovery. Metabolites 2025, 15, 362.
  • 13.
    Chrysargyris, A.; Skaltsa, H.; Konstantopoulou, M. Medicinal and Aromatic Plants (MAPs): The Connection between Cultivation Practices and Biological Properties. Agronomy 2022, 12, 3108.
  • 14.
    Vaou, N.; Voidarou, C.; Rozos, G.; et al. Unraveling Nature’s Pharmacy: Transforming Medicinal Plants into Modern Therapeutic Agents. Pharmaceutics 2025, 17, 754.
  • 15.
    Paz Arraiza, M.; Calderón-Guerrero, C.; Guillén, S.C.; et al. Industrial Uses of MAPs: The Pharmaceutical Sector. In Medicinal and Aromatic Plants: The Basics of Industrial Application; Paz-Arraiza, M., González-Coloma, A., Burilo, J., et al., Eds.; Bentham Science: Singapore, 2017; pp. 60–75.
  • 16.
    Wang, H.; Chen, Y.; Wang, L.; et al. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023, 14, 1265178.
  • 17.
    Balkrishna, A.; Sharma, N.; Srivastava, D.; et al. Exploring the Safety, Efficacy, and Bioactivity of Herbal Medicines: Bridging Traditional Wisdom and Modern Science in Healthcare. Futur. Integr. Med. 2024, 3, 35–49.
  • 18.
    Wäldchen, J.; Rzanny, M.; Seeland, M.; et al. Automated plant species identification-Trends and future directions. PLoS Comput. Biol. 2018, 14, e1005993.
  • 19.
    Pratiwi, R.; Dipadharma, R.H.F.; Prayugo, I.J.; et al. Recent Analytical Method for Detection of Chemical Adulterants in Herbal Medicine. Molecules 2021, 26, 6606.
  • 20.
    Ichim, M.C. The DNA-Based Authentication of Commercial Herbal Products Reveals Their Globally Widespread Adulteration. Front. Pharmacol. 2019, 10, 1227.
  • 21.
    Sgamma, T.; Lockie-Williams, C.; Kreuzer, M.; et al. DNA Barcoding for Industrial Quality Assurance. Planta Med. 2017, 83, 1117–1129.
  • 22.
    Pant, P., Pandey, S., Dall’Acqua, S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chem. Biodivers. 2021, 18, e2100345.
  • 23.
    Dong, P., Wang, L., Qiu, D.; et al. Evaluation of the environmental factors influencing the quality of Astragalus membranaceus var. mongholicus based on HPLC and the Maxent model. BMC Plant Biol. 2024, 24, 697.
  • 24.
    International Fragrance Association (IFRA). IFRA Code of Practice. Available online: https://ifrafragrance.org/initiatives-positions/safe-use-fragrance-science/ifra-standards/ifra-code-of-practice (accessed on 13 July 2025).
  • 25.
    Perfumer & Flavorist. Special Report: 26th Meeting of the ISO/TC54 Committee for the Standardization of Essential Oils. Available online: https://www.perfumerflavorist.com/fragrance/regulatory-research/news/21884333/special-report-26th-meeting-of-the-iso-tc54-committee-for-the-standardization-of-essential-oils (accessed on 24 July 2025).
  • 26.

    European Directorate for the Quality of Medicines & HealthCare (EDQM). Content of the Dossier for Herbal Drugs and Herbal Drug Preparations—Quality Evaluation. Available online: Certification of Substances Division (accessed on 24 July 2025).

  • 27.
    Booker, A.; Agapouda, A.; Frommenwiler, D.A; et al. St John’s wort (Hypericum perforatum) products—An assessment of their authenticity and quality. Phytomedicine 2018, 40, 158–164.
  • 28.
    Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev. 2015, 9, 63–72.
  • 29.
    Mahgoub, Y.A.; Shawky, E.; Eldakak, M.; et al. Plant DNA Barcoding and Metabolomics for Comprehensive Discrimination of German Chamomile from Its Poisonous Adulterants for Food Safety. Food Control 2022, 136, 108840.
  • 30.
    Allkin, B. Useful Plants—Medicines: At Least 28,187 Plant Species Are Currently Recorded as Being of Medicinal Use. In State of the World’s Plants 2017; Willis, K.J., Ed.; Royal Botanic Gardens Kew: London, UK, 2017.
  • 31.
    Grayer, R.J.; Kite, G.C.; Goldstone, F.J.; et al. Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry. 1996, 43, 1033–1039.
  • 32.
    Nazar, N.; Howard, C.; Slater, A.; et al. Challenges in Medicinal and Aromatic Plants DNA Barcoding—Lessons from the Lamiaceae. Plants 2022 11, 137.
  • 33.
    da Silva, L.R.R.; Ferreira, O.O.; Cruz, J.N.; et al. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid. Based Complement. Altern. Med. 2021, 2021, 6748052.
  • 34.
    Azizah, N.S.; Irawan, B.; Kusmoro, J.; et al. Sweet Basil (Ocimum basilicum L.)—A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. Plants 2023, 12, 4148.
  • 35.
    Kamelnia, E.; Mohebbati, R.; Kamelnia, R.; et al. Anti-inflammatory, immunomodulatory and anti-oxidant effects of Ocimum basilicum L. and its main constituents: A review. Iran. J. Basic. Med. Sci. 2023, 26, 617–627.
  • 36.
    Transparency Market Research. Basil Essential Oil Market report. Available online: https://www.transparencymarketresearch.com/basil-essential-oil-market.html (accessed on 6 July 2025).
  • 37.
    Helen, H. Investigation of the Cultivars of the Basil (Ocimum). Econ. Bot. 1974, 28, 63–67.
  • 38.
    Roberto, F.V.; Simon, J.E. Chemical Characterization of Basil (Ocimum spp.) Found in the Markets and Used in Traditional Medicine in Brazil. Econ. Bot. 2000, 54, 207–216.
  • 39.
    Padalia, R.C.; Verma, R.S.; Chauhan, A. Analyses of organ specific variations in essential oils of four Ocimum species. J. Essent. Oil Res. 2014, 26, 409–419.
  • 40.
    Svedman, C.; Engfeldt, M.; Api, A.M.; et al. Does the new standard for eugenol designed to protect against contact sensitization protect those sensitized from elicitation of the reaction? Dermatitis 2012, 23, 32–38.
  • 41.
    International Fragrance Association (IFRA); Research Institute for Fragrance Materials (RIFM). IFRA RIFM QRA Information Booklet, Version 7.1; Revised July 9, 2015. Available online: https://ifrafragrance.org (accessed on 9 July 2025).
  • 42.
    Ofenloch, R.F.; Andersen, K.E.; Foti. C.; et al. Allergic reactivity for different dilutions of eugenol in repeated open application test and patch testing. Contact Dermat. 2023, 89, 95–102.
  • 43.
    Mulugeta, S.M.; Pluhár, Z.; Radácsi, P. Phenotypic Variations and Bioactive Constituents among Selected Ocimum Species. Plants 2024, 13, 64.
  • 44.
    Srivastava, A.; Gupta, A.; Sarkar, S.; et al. Genetic and chemotypic variability in basil (Ocimum basilicum L.) germplasm towards future exploitation. Ind. Crops Prod. 2018, 112, 815–820.
  • 45.
    Varga, F.; Carović-Stanko, K.; Ristić, M.; et al. Morphological and biochemical intraspecific characterization of Ocimum basilicum L. Ind. Crops V. Prod. 2017, 109, 611–618.
  • 46.
    Avetisyan, A.; Markosian, A.; Petrosyan, M. et al. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017, 17, 60.
  • 47.
    Carović-Stanko, K.; Ribić, A.; Grdiša, M.; et al. Identification and discrimination of Ocimum basilicum L. morphotypes. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, 14–18 February 2011.
  • 48.
    Juškevičienė, D.; Radzevičius, A.; Viškelis, P.; et al. Estimation of Morphological Features and Essential Oil Content of Basils (Ocimum basilicum L.) Grown under Different Conditions. Plants 2022, 11, 1896.
  • 49.
    Lawrence, B.M. A further examination of the variation of Ocimum basilicum L. In Flavors and Fragrances: A World Perspective; Lawrence, B.M., Mookerjee, B.D., Willis, B.J., Eds.; Elsevier Science Publishers B.V: Amsterdam, The Netherlands, 1988; pp. 161–170.
  • 50.
    Muráriková, A.; Ťažký, A.; Neugebauerová, J.; et al. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method. Molecules 2017, 22, 1221.
  • 51.
    Gurav, T.P.; Dholakia, B.B.; Giri, A.P. A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochem. Rev. 2022, 21, 879–913.
  • 52.
    Padalia, R.C.; Verma, R.S.; Chauhan, A. Diurnal variations in aroma profile of Ocimum basilicum L., O. gratissimum L., O. americanum L., and O. kilimandscharicum Guerke. J. Essent. Oil Res, 2017, 29, 248–261.
  • 53.
    Maggio, A.; Roscigno, G.; Bruno, M.; et al. Essential-Oil Variability in a Collection of Ocimum basilicum L. (Basil) Cultivars. Chem. Biodivers. 2016, 13, 1357–1368.
  • 54.
    Ciriello, M.; Cirillo, V.; Formisano, L.; et al. Productive, Morpho-Physiological, and Postharvest Performance of Six Basil Types Grown in a Floating Raft System: A Comparative Study. Plants 2023, 12, 486.
  • 55.
    Rusu, T.; Cowden, R.J.; Moraru, P.I.; et al. Overview of Multiple Applications of Basil Species and Cultivars and the Effects of Production Environmental Parameters on Yields and Secondary Metabolites in Hydroponic Systems. Sustainability 2021, 13, 11332.
  • 56.
    Bazzicalupo, M.; Betuzzi, F.; Frigerio, J.; et al. Characterization of the floral traits, pollen micromorphology and DNA barcoding of the edible flowers from three basil taxa (Lamiaceae). Genet. Resour. Crop Evol. 2024, 72, 3383–3403.
  • 57.
    Kumar, A.; Rodrigues, V.; Saxena, A.; et al. Evaluation of the plastid and nuclear DNA barcodes in the genus Ocimum towards quality assurance in the herbal industry. Ind. Crops Prod. 2025, 224, 120399.
  • 58.
    Raclariu-Manolică, A.C.; Anmarkrud, J.A.; Kierczak, M.; et al. DNA Metabarcoding for Quality Control of Basil, Oregano, and Paprika. Front. Plant Sci. 2021, 12, 665618.
  • 59.
    Mattia, F.D.; Bruni, I.; Galimberti, A.; et al. A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Res. Int. 2011, 44, 693–702.
  • 60.
    Venkatesan, A.; Balaji, R.; Tanuja.; et al. Chloroplast genome of Ocimum basilicum var. purpurascens Bentham 1830 (Lamiaceae). Mitochondrial DNA B Resour. 2024, 9, 252–256.
  • 61.
    Rastogi, S.; Meena, S.; Bhattacharya, A.; et al. De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genom. 2014, 15, 588.
  • 62.
    Gonda, I.; Faigenboim, A.; Adler.; C.; et al. The genome sequence of tetraploid sweet basil, Ocimum basilicum L., provides tools for advanced genome editing and molecular breeding. DNA Res. 2020, 27, dsaa027.
  • 63.
    Teliban, G-C.; Burducea, M.; Mihalache, G.; et al. Morphological, Physiological and Quality Performances of Basil Cultivars under Different Fertilization Types. Agronomy 2022, 12, 3219.
  • 64.
    Varani, J.; Perone, P.; Spahlinger, D.M.; et al. Human skin in organ culture and human skin cells (keratinocytes and fibroblasts) in monolayer culture for assessment of chemically induced skin damage. Toxicol. Pathol. 2007, 35, 693–701.
  • 65.
    de Araújo-Lopes, A.; da Fonseca, F.N.; Rocha, T.M.; et al. Eugenol as a Promising Molecule for the Treatment of Dermatitis: Antioxidant and Anti-inflammatory Activities and Its Nanoformulation. Oxid. Med. Cell Longev. 2018, 2018, 194849.
  • 66.
    Bhamra, S.K.; Heinrich, M.; Johnson, M.R.D.; et al. The Cultural and Commercial Value of Tulsi (Ocimum tenuiflorum L.): Multidisciplinary Approaches Focusing on Species Authentication. Plants 2022, 11, 3160.
  • 67.
    Maddi, R.; Amani, P.; Bhavitha, S.; et al. A review on Ocimum species: Ocimum americanum L., Ocimum basilicum L., Ocimum gratissimum L. and Ocimum tenuiflorum L. Int. J. Res. Ayurveda Pharm. 2019, 10, 41–48.
  • 68.
    Jordan, W.C.; Courtney, M.W.; Neigel, J.E. Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in north American duckweeds (Lemnaceae). Am. J. Bot. 1996, 83, 430–439.
  • 69.
    QIAGEN Bioinformatics. CLC Main Workbench. Available online: https://www.qiagenbioinformatics.com/products/clc-main-workbench/ (accessed on 17 March 2025).
  • 70.
    Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Bio Evol. 2021, 38, 3022–3027.
  • 71.
    Kumar, A.; Mishra, P.; Rodrigues, V.; et al. Delineation of Ocimum gratissimum L. complex combining morphological, molecular and essential oils analysis. Ind. Crops Prod. 2019, 139, 111536.
  • 72.
    Partovi, R.; Iranbakhsh, A.; Sheidai, M.; et al. The use of DNA barcoding to avoid adulteration in olive plant leaf products. Asian J. For. 2021, 5. https://doi.org/10.13057/asianjfor/r050106.
  • 73.
    Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177.
  • 74.
    Chase, M.W.; Salamin, N.; Wilkinson, M.; et al. Land plants and DNA barcodes: Short-term and long-term goals. Philos. Trans. R. Soc. B 2005, 360, 1889–1895.
  • 75.
    Jürges, G.; Beyerle, K.; Tossenberger, M.; et al. Development and validation of microscopical diagnostics for ‘Tulsi’ (Ocimum tenuiflorum L.) in Ayurvedic preparations. Eur. Food Res. Technol. 2009, 229, 99–106.
  • 76.
    Zhang, S.Y.; Yan, H.F.; Wei, L.; et al. Plastid genome and its phylogenetic implications of Asiatic Spiraea (Rosaceae). BMC Plant Biol. 2024, 24, 23.
  • 77.
    Awad, M.; Fahmy, R.M.; Mosa, K.A.; et al. Identification of effective DNA barcodes for Triticum plants through chloroplast genome-wide analysis. Comput. Biol. Chem. 2017, 71, 20–31.
  • 78.
    Qian, Z.H.; Munywoki, J.M.; Wang, Q.F.; et al. Molecular Identification of African Nymphaea Species (Water Lily) Based on ITS, trnT-trnF and rpl16. Plants 2022, 11, 2431.
  • 79.
    Wang, A.K.; Lu, Q.F.; Zhu. Z.X; et al. Exploring phylogenetic relationships within the subgenera of Bambusa based on DNA barcodes and morphological characteristics. Sci. Rep. 2022, 12, 8018.
  • 80.
    Yesuthason, R.S.; Balaji, R.; Tanuja, P.M. The complete chloroplast genome and phylogenetic analysis of Ocimum kilimandscharicum Gurke (Camphor Basil) from India. Mitochondrial DNA B Resour. 2021, 6, 2164–2165.
  • 81.
    Balaji, R.; Ravichandiran, K.; Tanuja, P.M. The complete chloroplast genome of Ocimum gratissimum from India—A medicinal plant in the Lamiaceae. Mitochondrial DNA B Resour. 2021, 6, 948–950.
  • 82.
    Wong, K.H.; Zheng, T.; Yue, G.G. et al. A Systematic Approach for Authentication of Medicinal Patrinia Species Using an Integration of Morphological, Chemical and Molecular Methods. Sci. Rep. 2024, 14, 6566.
  • 83.
    de Vere, N.; Rich, T.C.; Trinder, S.A.; et al. DNA barcoding for plants. Methods Mol. Biol. 2015, 1245,101–118.
  • 84.
    Letsiou, S.; Madesis, P.; Vasdekis, E.; et al. DNA Barcoding as a Plant Identification Method. Appl. Sci. 2024, 14, 1415.
  • 85.
    Li, H.; Xiao, W.; Tong, T.; et al. The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Sci. Rep. 2021, 11, 1424.
  • 86.

    British Pharmacopoeia.SC VII D. DNA Barcoding as a Tool for Botanical Identification of Herbal Drugs. Available online: Cookies on The British Pharmacopoeia Website (accessed on 17 March 2025)

  • 87.
    Christina, V.L.; Annamalai, A. Nucleotide based validation of Ocimum species by evaluating three candidate barcodes of the chloroplast region. Mol. Ecol. Resour. 2014, 14, 60–68.
  • 88.
    Wu, H-Y.; Shaw, P-C. Strategies for Molecular Authentication of Herbal Products: From Experimental Design to Data Analysis. Chin. Med. 2022, 17, 38.
  • 89.
    Jurges, G.; Sahi, V.; Rodriguez, D.R.; et al. Product authenticity versus globalisation—The Tulsi case. PLoS ONE 2018, 13, e0207763.
  • 90.
    Loera-Sánchez, M.; Studer, B.; Kölliker, R. DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Res. Notes 2020, 13, 35.
  • 91.
    Frigerio. J.; Agostinetto. G.; Mezzasalma, V.; et al. DNA-Based Herbal Teas’ Authentication: An ITS2 and psbA-trnH Multi-Marker DNA Metabarcoding Approach. Plants 2021, 10, 2120.
  • 92.
    Besse, P.; Da Silva, D.; Grisoni, M. Plant DNA Barcoding Principles and Limits: A Case Study in the Genus Vanilla. Methods Mol. Biol. 2021, 2222, 131–148.
  • 93.
    Zhang, W.; Sun, Y.; Liu, J.; et al. DNA barcoding of Oryza: Conventional, specific, and super barcodes. Plant Mol. Biol. 2021, 105, 215–228.
  • 94.
    Chen, S, Yin, X.; Han, J.; et al. DNA barcoding in herbal medicine: Retrospective and prospective. J. Pharm. Anal. 2023, 13, 431–441.
  • 95.
    Samarina, L.S.; Koninskaya, N.G.; Shkhalakhova, R.M.; et al. DNA-Barcoding for Cultivar Identification and Intraspecific Diversity Analysis of Agricultural Crops. Int. J. Mol. Sci. 2025, 26, 6808.
  • 96.
    Huang, S.; Kirchoff, B.K.; Liao, J. The Capitate and Peltate Glandular Trichomes of Lavandula pinnata L. (Lamiaceae): Histochemistry, Ultrastructure, and Secretion. J. Torrey Bot. Soc. 2008, 135, 155–167.
  • 97.
    Santos, T.L.R.D.; De Melo, S.S.C.; Rodrigues, T.M. Non-Glandular Trichomes in Lamiaceae and Verbenaceae Species: Morphological and Histochemical Features Indicate More than Physical Protection. N. Z. J. Bot. 2016, 54, 446–457.
  • 98.
    Gostin, I.N. Glandular and Non-Glandular Trichomes from Phlomis herba-venti subsp. pungens Leaves: Light, Confocal, and Scanning Electron Microscopy and Histochemistry of the Secretory Products. Plants 2023, 12, 2423.
  • 99.
    Serrato-Valenti, G.; Bisio, A.; Cornara, L.; et al. Structural and histochemical investigation of the glandular trichomes of Salvia aurea L. leaves, and chemical analysis of the essential oil. Ann. Bot. 1997, 79, 329–336.
  • 100.
    Gul, S.; Ahmad, M.; Zafar, M.; et al. Foliar epidermal anatomy of Lamiaceae with special emphasis on their trichomes diversity using scanning electron microscopy. Microsc. Res. Tech. 2019, 82, 206–223.
  • 101.
    Karabourniotis, G.; Liakopoulos, G.; Nikolopoulos, D.; et al. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. J. For. Res. 2020, 31, 1–12.
  • 102.
    Mahmoud, S.S.; Maddock, S.; Adal, A.M. Isoprenoid Metabolism and Engineering in Glandular Trichomes of Lamiaceae. Front. Plant Sci. 2021, 12, 699157.
  • 103.
    Wang, X.; Shen, C.; Meng, P.; et al. Analysis and review of trichomes in plants. BMC Plant Biol. 2021, 21, 70.
  • 104.
    Tirillini, B.; Maggi, F. Volatile Organic Compounds of the Glandular Trichomes of Ocimum basilicum and Artifacts during the Distillation of the Leaves. Appl. Sci. 2021, 11, 7312.
  • 105.
    Schilmiller, A.L.; Last, R.L.; Pichersky, E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 2008, 54, 702–711.
  • 106.
    Weathers, P.J.; Arsenault, P.R.; Covello, P.S.; et al. Artemisinin production in Artemisia annua: Studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem. Rev. 2011, 10, 173–183.
  • 107.
    Moon, H-K.; Hong, S-P.; Smets, E.; et al. Phylogenetic Significance of Leaf Micromorphology and Anatomy in the Tribe Mentheae (Nepetoideae: Lamiaceae). Bot. J. Linn. Soc. 2009, 160, 211–231.
  • 108.
    Abu-Assab, M.S.; Cantino, P.D. Phylogenetic Implications of Leaf Anatomy in Subtribe Melittidinae (Labiatae) and Related Taxa. J. Arnold Arbor. 1987, 68, 1–34.
  • 109.
    Khosroshahi E.E.; Salmaki, Y. Evolution of trichome types and its systematic significance in the genus Phlomoides (Lamioideae–Lamiaceae). Nord. J. Bot. 2019, 37. https://doi.org/10.1111/njb.02132.
  • 110.
    Majeed, J.; Shaheen, S.; Waheed, M.; et al. Morpho-anatomical studies of family lamiaceae species of district Lahore, Punjab: A revision to flora of Pakistan. BMC Plant Biol. 2024, 24, 694.
  • 111.
    Maurya, S.; Chandra, M.; Yadav, R.K.; et al. Interspecies comparative features of trichomes in Ocimum reveal insights for biosynthesis of specialized essential oil metabolites. Protoplasma 2019, 256, 893–907.
  • 112.
    Gang, D.R.; Simon, J.; Lewinsohn, E.; et al. Peltate Glandular Trichomes of Ocimum basilicum L. (Sweet Basil) Contain High Levels of Enzymes Involved in the Biosynthesis of Phenylpropenes. J. Herbs Spices Med. Plants 2002, 9, 189–195.
  • 113.
    Punja, Z.K.; Sutton, D.B.; Kim, T. Glandular trichome development, morphology, and maturation are influenced by plant age and genotype in high THC-containing cannabis (Cannabis sativa L.) inflorescences. J. Cannabis Res. 2023, 5, 12.
  • 114.
    Di Cesare, L.F.; Forni, E.; Viscardi, D.; et al. Changes in the chemical composition of Basil caused by different drying procedures. J. Agric. Food Chem. 2003, 51, 3575–3581.
  • 115.
    Das, P.C.; Vista, A.R.; Tabil, L.G.; et al. Postharvest operations of Cannabis and their effect on cannabinoid content: A Review. Bioengineering 2022, 9, 364.
  • 116.
    Mokhtarikhah, G., Ebadi, M-T., Ayyari, M. Qualitative changes of spearmint essential oil as affected by drying methods. Ind. Crops Prod. 2020, 153, 112492.
  • 117.
    El-Gamal, R.; Song, C.; Rayan, A.M.; et al. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580.
  • 118.
    dos Santos Tozin, L.R.; Tatiane, M.R. Glandular trichomes in the tree-basil (Ocimum gratissimum L., Lamiaceae): Morphological features with emphasis on the cytoskeleton. Flora 2019, 259, 151459.
  • 119.
    Huchelmann, A.; Boutry, M.; Hachez, C. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. Plant Physiol. 2017, 175, 6–22.
  • 120.
    Han, G.; Li, Y.; Yang, Z.; et al. Molecular Mechanisms of Plant Trichome Development. Front. Plant Sci. 2022, 13, 910228.
  • 121.
    Watts, S.; Kariyat, R. Morphological characterization of trichomes shows enormous variation in shape, density and dimensions across the leaves of 14 Solanum species. AoB Plants, 2021, 13, plab071.
  • 122.
    Feng, Z.; Bartholomew, E.S.; Liu, Z.; et al. Glandular trichomes: New focus on horticultural crops. Hortic. Res. 2021, 8, 158.
  • 123.
    De Masi, L., Siviero, P.; Esposito, C.; et al. Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.) Eur. Food Res. Technol. 2006, 223, 273–281.
  • 124.
    Ciriello, M.; Pannico, A.; El-Nakhel, C.; et al. Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. Plants 2020, 9, 1786.
  • 125.
    Tammannavar, P.; Pushpalatha, C.; Jain, S.; et al. An unexpected positive hypersensitive reaction to eugenol. BMJ Case Rep. 2013, bcr2013009464. https://doi.org/10.1136/bcr-2013-009464.
  • 126.
    Iijima, Y.; Davidovich-Rikanati, R.; Fridman, E.; et al. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 2004, 136, 3724–3736.
  • 127.
    Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of Plant Volatiles: Nature’s Diversity and Ingenuity. Science 2006, 311, 808–811.
  • 128.
    Kısa, D.; Ceylan, Y.; İmamoğlu, R. Accumulation of phenolic compounds and expression of phenylpropanoid biosynthesis-related genes in leaves of basil transformed with A. rhizogenes strains. Physiol. Mol. Biol. Plants 2023, 29, 629–640.
  • 129.
    Gang, D.R.; Lavid, N.; Zubieta, C.; et al. Characterization of phenylpropene O-methyltransferases from sweet basil: Facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 2002, 14, 505–519.
  • 130.
    Tremmel, R.; Herrmann, K.; Engst, W.; et al. Methyleugenol DNA adducts in human liver are associated with SULT1A1 copy number variations and expression levels. Arch. Toxicol. 2017, 91, 3329–3339.
  • 131.
    European Commission Health & Consumer Protection Directorate-General. Opinion of the Scientific Committee on Food on Estragole (1-Allyl-4-methoxybenzene); Scientific Committee on Food: Brussel, Belgium, 2001.
  • 132.
    National Toxicology Program (NTP). Toxicology and Carcinogenesis Studies of Methyleugenol (CAS No. 93-15-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies); Technical Report Series No. 491; NTP: Research Triangle Park, NC, USA, 2000.
  • 133.
    Vural, N. Chemometrics data analysis and controversial carcinogenic effect of Ocimum basilicum L. rich in methyl eugenol. Food Meas. 2021, 15, 4825–4837.
  • 134.
    Kofidis, G.; Bosabalidis, A.; Kokkini, S. Seasonal Variation of Essential Oils in a Linalool-Rich Chemotype of Mentha spicata Grown Wild in Greece. J. Essent. Oil Res. 2004, 16, 469–472.
  • 135.
    Anand, A.; Jayaramaiah, R.H.; Beedkar, S.D.; et al. Comparative functional characterization of eugenol synthase from four different Ocimum species: Implications on eugenol accumulation. Biochim. Biophys. Acta 2016, 1864, 1539–1547.
  • 136.
    Kamatou, G.P.P.; Viljoen, A.M. Linalool—A Review of a Biologically Active Compound of Commercial Importance. Nat. Prod. Commun. 2008, 3, 1183–1192.
  • 137.
    Dos Santos, É.R.Q.; Maia, J.G.S.; Fontes-Júnior, E.A.; et al. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr. Neuropharmacol. 2022, 20,1073–1092.
  • 138.
    Radulović, N.S.; Blagojević, P.D.; Miltojević, A.B. α-Linalool—A marker compound of forged/synthetic sweet basil (Ocimum basilicum L.) essential oils. J. Sci. Food Agric. 2013, 93, 3292–3303.
  • 139.
    Mączka, W.; Duda-Madej, A.; Grabarczyk, M.; et al. Natural Compounds in the Battle against Microorganisms—Linalool. Molecules 2022, 27, 6928.
  • 140.
    Türkmen, M. The effect of different Phenological periods and harvest times on the essential oil ratio and components of basil genotypes. J. Essent. Oil-Bear. Plants. 2021, 24, 94–109.
  • 141.
    Hazrati, S.; Mousavi, Z.; Nicola, S. Harvest time optimization for medicinal and aromatic plant secondary metabolites. Plant Physiol. Biochem. 2024, 212, 108735.
  • 142.
    Bai, C.; Yang, J.; Cao, B.; et al. Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of Scutellaria baicalensis. Ind. Crops Prod. 2020, 158, 112985.
  • 143.
    Xing, Z.; Bi, G.; Li, T.; et al. Effect of Harvest Time on Growth and Bioactive Compounds in Salvia miltiorrhiza. Plants 2024, 13, 1788.
  • 144.
    Heinrich, M.; Barnes, J.; Prieto-Garcia, J.; et al. Fundamentals of Pharmacognosy and Phytotherapy: Fundamentals of Pharmacognosy and Phytotherapy E-Book, 3rd ed.; Elsevier Health Sciences: London, UK, 2017.
  • 145.
    De Vincenzi, M.; Silano, M.; Maialetti, F.; et al. Constituents of aromatic plants: II. Estragole. Fitoterapia. 2001, 71, 725–729.
  • 146.
    Upton R.; David, B.; Gafner, S.; et al. Botanical Ingredient Identification and Quality Assessment: Strengths and Limitations of Analytical Techniques. Phytochem. Rev. 2020, 19, 1157–1177.
  • 147.
    Simmler, C.; Chen, S.N.; Anderson, J.; et al. Botanical Integrity: The Importance of the Integration of Chemical, Biological, and Botanical Analyses, and the Role of DNA Barcoding. HerbalGram 2015, 106, 58–60.
  • 148.
    Dawan, J.; Ahn, J. Application of DNA barcoding for ensuring food safety and quality. Food Sci. Biotechnol. 2022, 31, 1355–1364.
  • 149.
    Ragupathy, S.; Thirugnanasambandam, A.; Henry, T.; et al. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Food 2024, 13, 1862.
  • 150.
    Mück, F.; Scotti, F.; Mauvisseau, Q.; et al. Three-Tiered Authentication of Herbal Traditional Chinese Medicine Ingredients Used in Women’s Health Provides Progressive Qualitative and Quantitative Insight. Front. Pharmacol. 2024, 15, 1353434.
  • 151.
    Kress, W.J.; Wurdack, K.J.; Zimmer, E.A.; et al. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8369–8374.
Share this article:
How to Cite
Nazar, N.; Sundaresan, V.; Verma, R. S.; Slater, A.; Arroo, R. R. J.; Sgamma, T. Authenticating Basil (Ocimum spp.): An Integrated Quality Control Strategy. Natural Products Analysis 2025, 1 (1), 100006. https://doi.org/10.53941/npa.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.