- 1.
World Health Organization (WHO). National Policy on Traditional Medicine and Regulation of Herbal Medicines: Report of a WHO Global Survey; WHO: Geneva, Switzerland, 2005.
- 2.
Conboy, L.; Kaptchuk, T.J.; Eisenberg, D.M.; et al. The relationship between social factors and attitudes toward conventional and CAM practitioners. Complement. Ther. Clin. Pract. 2007, 13, 146–157.
- 3.
Rishton, G.M. Natural products as a robust source of new drugs and drug leads: Past successes and present-day issues. Am. J. Cardiol. 2008, 101, S43–S49.
- 4.
Schmidt, B.; Ribnicky, D.M.; Poulev, A.; et al. A natural history of botanical therapeutics. Metabolism 2008, 57, S3–S9.
- 5.
Wachtel-Galor, S.; Benzie, I.F.F. Herbal Medicine: An Introduction to Its History, Usage, Regulation, Current Trends, and Research Needs. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011.
- 6.
Mendes, A.; Oliveira, A.; Lameiras, J.; et al. Organic Medicinal and Aromatic Plants: Consumption Profile of a Portuguese Consumer Sample. Foods 2023, 12, 4145.
- 7.
Nazar, N.; Saxena, A.; Sebastian, A.; et al. Integrating DNA Barcoding Within an Orthogonal Approach for Herbal Product Authentication: A Narrative Review. Phytochem. Anal. 2025, 36, 7–29.
- 8.
Theodoridis, S.; Drakou, E.G.; Hickler T.; et al. Evaluating natural medicinal resources and their exposure to global change. Lancet Planet. Health 2023, 7, e155–e163.
- 9.
Li, Y.; Kong, D.; Fu, Y.; et al. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89.
- 10.
Ciocan, A-G.; Tecuceanu, V.; Enache-Preoteasa, C.; et al. Phenological and Environmental Factors’ Impact on Secondary Metabolites in Medicinal Plant Cotinus coggygria Scop. Plants 2023, 12, 1762.
- 11.
Elshafie, H.S.; Camele, I.; Mohamed, A.A. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int. J. Mol. Sci. 2023, 24, 3266.
- 12.
Chele, K.H.; Piater, L.A.; van der Hooft, J.J.J.; et al. Bridging Ethnobotanical Knowledge and Multi-Omics Approaches for Plant-Derived Natural Product Discovery. Metabolites 2025, 15, 362.
- 13.
Chrysargyris, A.; Skaltsa, H.; Konstantopoulou, M. Medicinal and Aromatic Plants (MAPs): The Connection between Cultivation Practices and Biological Properties. Agronomy 2022, 12, 3108.
- 14.
Vaou, N.; Voidarou, C.; Rozos, G.; et al. Unraveling Nature’s Pharmacy: Transforming Medicinal Plants into Modern Therapeutic Agents. Pharmaceutics 2025, 17, 754.
- 15.
Paz Arraiza, M.; Calderón-Guerrero, C.; Guillén, S.C.; et al. Industrial Uses of MAPs: The Pharmaceutical Sector. In Medicinal and Aromatic Plants: The Basics of Industrial Application; Paz-Arraiza, M., González-Coloma, A., Burilo, J., et al., Eds.; Bentham Science: Singapore, 2017; pp. 60–75.
- 16.
Wang, H.; Chen, Y.; Wang, L.; et al. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023, 14, 1265178.
- 17.
Balkrishna, A.; Sharma, N.; Srivastava, D.; et al. Exploring the Safety, Efficacy, and Bioactivity of Herbal Medicines: Bridging Traditional Wisdom and Modern Science in Healthcare. Futur. Integr. Med. 2024, 3, 35–49.
- 18.
Wäldchen, J.; Rzanny, M.; Seeland, M.; et al. Automated plant species identification-Trends and future directions. PLoS Comput. Biol. 2018, 14, e1005993.
- 19.
Pratiwi, R.; Dipadharma, R.H.F.; Prayugo, I.J.; et al. Recent Analytical Method for Detection of Chemical Adulterants in Herbal Medicine. Molecules 2021, 26, 6606.
- 20.
Ichim, M.C. The DNA-Based Authentication of Commercial Herbal Products Reveals Their Globally Widespread Adulteration. Front. Pharmacol. 2019, 10, 1227.
- 21.
Sgamma, T.; Lockie-Williams, C.; Kreuzer, M.; et al. DNA Barcoding for Industrial Quality Assurance. Planta Med. 2017, 83, 1117–1129.
- 22.
Pant, P., Pandey, S., Dall’Acqua, S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chem. Biodivers. 2021, 18, e2100345.
- 23.
Dong, P., Wang, L., Qiu, D.; et al. Evaluation of the environmental factors influencing the quality of Astragalus membranaceus var. mongholicus based on HPLC and the Maxent model. BMC Plant Biol. 2024, 24, 697.
- 24.
International Fragrance Association (IFRA). IFRA Code of Practice. Available online: https://ifrafragrance.org/initiatives-positions/safe-use-fragrance-science/ifra-standards/ifra-code-of-practice (accessed on 13 July 2025).
- 25.
Perfumer & Flavorist. Special Report: 26th Meeting of the ISO/TC54 Committee for the Standardization of Essential Oils. Available online: https://www.perfumerflavorist.com/fragrance/regulatory-research/news/21884333/special-report-26th-meeting-of-the-iso-tc54-committee-for-the-standardization-of-essential-oils (accessed on 24 July 2025).
- 26.
European Directorate for the Quality of Medicines & HealthCare (EDQM). Content of the Dossier for Herbal Drugs and Herbal Drug Preparations—Quality Evaluation. Available online: Certification of Substances Division (accessed on 24 July 2025).
- 27.
Booker, A.; Agapouda, A.; Frommenwiler, D.A; et al. St John’s wort (Hypericum perforatum) products—An assessment of their authenticity and quality. Phytomedicine 2018, 40, 158–164.
- 28.
Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev. 2015, 9, 63–72.
- 29.
Mahgoub, Y.A.; Shawky, E.; Eldakak, M.; et al. Plant DNA Barcoding and Metabolomics for Comprehensive Discrimination of German Chamomile from Its Poisonous Adulterants for Food Safety. Food Control 2022, 136, 108840.
- 30.
Allkin, B. Useful Plants—Medicines: At Least 28,187 Plant Species Are Currently Recorded as Being of Medicinal Use. In State of the World’s Plants 2017; Willis, K.J., Ed.; Royal Botanic Gardens Kew: London, UK, 2017.
- 31.
Grayer, R.J.; Kite, G.C.; Goldstone, F.J.; et al. Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry. 1996, 43, 1033–1039.
- 32.
Nazar, N.; Howard, C.; Slater, A.; et al. Challenges in Medicinal and Aromatic Plants DNA Barcoding—Lessons from the Lamiaceae. Plants 2022 11, 137.
- 33.
da Silva, L.R.R.; Ferreira, O.O.; Cruz, J.N.; et al. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid. Based Complement. Altern. Med. 2021, 2021, 6748052.
- 34.
Azizah, N.S.; Irawan, B.; Kusmoro, J.; et al. Sweet Basil (Ocimum basilicum L.)—A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. Plants 2023, 12, 4148.
- 35.
Kamelnia, E.; Mohebbati, R.; Kamelnia, R.; et al. Anti-inflammatory, immunomodulatory and anti-oxidant effects of Ocimum basilicum L. and its main constituents: A review. Iran. J. Basic. Med. Sci. 2023, 26, 617–627.
- 36.
Transparency Market Research. Basil Essential Oil Market report. Available online: https://www.transparencymarketresearch.com/basil-essential-oil-market.html (accessed on 6 July 2025).
- 37.
Helen, H. Investigation of the Cultivars of the Basil (Ocimum). Econ. Bot. 1974, 28, 63–67.
- 38.
Roberto, F.V.; Simon, J.E. Chemical Characterization of Basil (Ocimum spp.) Found in the Markets and Used in Traditional Medicine in Brazil. Econ. Bot. 2000, 54, 207–216.
- 39.
Padalia, R.C.; Verma, R.S.; Chauhan, A. Analyses of organ specific variations in essential oils of four Ocimum species. J. Essent. Oil Res. 2014, 26, 409–419.
- 40.
Svedman, C.; Engfeldt, M.; Api, A.M.; et al. Does the new standard for eugenol designed to protect against contact sensitization protect those sensitized from elicitation of the reaction? Dermatitis 2012, 23, 32–38.
- 41.
International Fragrance Association (IFRA); Research Institute for Fragrance Materials (RIFM). IFRA RIFM QRA Information Booklet, Version 7.1; Revised July 9, 2015. Available online: https://ifrafragrance.org (accessed on 9 July 2025).
- 42.
Ofenloch, R.F.; Andersen, K.E.; Foti. C.; et al. Allergic reactivity for different dilutions of eugenol in repeated open application test and patch testing. Contact Dermat. 2023, 89, 95–102.
- 43.
Mulugeta, S.M.; Pluhár, Z.; Radácsi, P. Phenotypic Variations and Bioactive Constituents among Selected Ocimum Species. Plants 2024, 13, 64.
- 44.
Srivastava, A.; Gupta, A.; Sarkar, S.; et al. Genetic and chemotypic variability in basil (Ocimum basilicum L.) germplasm towards future exploitation. Ind. Crops Prod. 2018, 112, 815–820.
- 45.
Varga, F.; Carović-Stanko, K.; Ristić, M.; et al. Morphological and biochemical intraspecific characterization of Ocimum basilicum L. Ind. Crops V. Prod. 2017, 109, 611–618.
- 46.
Avetisyan, A.; Markosian, A.; Petrosyan, M. et al. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017, 17, 60.
- 47.
Carović-Stanko, K.; Ribić, A.; Grdiša, M.; et al. Identification and discrimination of Ocimum basilicum L. morphotypes. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, 14–18 February 2011.
- 48.
Juškevičienė, D.; Radzevičius, A.; Viškelis, P.; et al. Estimation of Morphological Features and Essential Oil Content of Basils (Ocimum basilicum L.) Grown under Different Conditions. Plants 2022, 11, 1896.
- 49.
Lawrence, B.M. A further examination of the variation of Ocimum basilicum L. In Flavors and Fragrances: A World Perspective; Lawrence, B.M., Mookerjee, B.D., Willis, B.J., Eds.; Elsevier Science Publishers B.V: Amsterdam, The Netherlands, 1988; pp. 161–170.
- 50.
Muráriková, A.; Ťažký, A.; Neugebauerová, J.; et al. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method. Molecules 2017, 22, 1221.
- 51.
Gurav, T.P.; Dholakia, B.B.; Giri, A.P. A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochem. Rev. 2022, 21, 879–913.
- 52.
Padalia, R.C.; Verma, R.S.; Chauhan, A. Diurnal variations in aroma profile of Ocimum basilicum L., O. gratissimum L., O. americanum L., and O. kilimandscharicum Guerke. J. Essent. Oil Res, 2017, 29, 248–261.
- 53.
Maggio, A.; Roscigno, G.; Bruno, M.; et al. Essential-Oil Variability in a Collection of Ocimum basilicum L. (Basil) Cultivars. Chem. Biodivers. 2016, 13, 1357–1368.
- 54.
Ciriello, M.; Cirillo, V.; Formisano, L.; et al. Productive, Morpho-Physiological, and Postharvest Performance of Six Basil Types Grown in a Floating Raft System: A Comparative Study. Plants 2023, 12, 486.
- 55.
Rusu, T.; Cowden, R.J.; Moraru, P.I.; et al. Overview of Multiple Applications of Basil Species and Cultivars and the Effects of Production Environmental Parameters on Yields and Secondary Metabolites in Hydroponic Systems. Sustainability 2021, 13, 11332.
- 56.
Bazzicalupo, M.; Betuzzi, F.; Frigerio, J.; et al. Characterization of the floral traits, pollen micromorphology and DNA barcoding of the edible flowers from three basil taxa (Lamiaceae). Genet. Resour. Crop Evol. 2024, 72, 3383–3403.
- 57.
Kumar, A.; Rodrigues, V.; Saxena, A.; et al. Evaluation of the plastid and nuclear DNA barcodes in the genus Ocimum towards quality assurance in the herbal industry. Ind. Crops Prod. 2025, 224, 120399.
- 58.
Raclariu-Manolică, A.C.; Anmarkrud, J.A.; Kierczak, M.; et al. DNA Metabarcoding for Quality Control of Basil, Oregano, and Paprika. Front. Plant Sci. 2021, 12, 665618.
- 59.
Mattia, F.D.; Bruni, I.; Galimberti, A.; et al. A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Res. Int. 2011, 44, 693–702.
- 60.
Venkatesan, A.; Balaji, R.; Tanuja.; et al. Chloroplast genome of Ocimum basilicum var. purpurascens Bentham 1830 (Lamiaceae). Mitochondrial DNA B Resour. 2024, 9, 252–256.
- 61.
Rastogi, S.; Meena, S.; Bhattacharya, A.; et al. De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genom. 2014, 15, 588.
- 62.
Gonda, I.; Faigenboim, A.; Adler.; C.; et al. The genome sequence of tetraploid sweet basil, Ocimum basilicum L., provides tools for advanced genome editing and molecular breeding. DNA Res. 2020, 27, dsaa027.
- 63.
Teliban, G-C.; Burducea, M.; Mihalache, G.; et al. Morphological, Physiological and Quality Performances of Basil Cultivars under Different Fertilization Types. Agronomy 2022, 12, 3219.
- 64.
Varani, J.; Perone, P.; Spahlinger, D.M.; et al. Human skin in organ culture and human skin cells (keratinocytes and fibroblasts) in monolayer culture for assessment of chemically induced skin damage. Toxicol. Pathol. 2007, 35, 693–701.
- 65.
de Araújo-Lopes, A.; da Fonseca, F.N.; Rocha, T.M.; et al. Eugenol as a Promising Molecule for the Treatment of Dermatitis: Antioxidant and Anti-inflammatory Activities and Its Nanoformulation. Oxid. Med. Cell Longev. 2018, 2018, 194849.
- 66.
Bhamra, S.K.; Heinrich, M.; Johnson, M.R.D.; et al. The Cultural and Commercial Value of Tulsi (Ocimum tenuiflorum L.): Multidisciplinary Approaches Focusing on Species Authentication. Plants 2022, 11, 3160.
- 67.
Maddi, R.; Amani, P.; Bhavitha, S.; et al. A review on Ocimum species: Ocimum americanum L., Ocimum basilicum L., Ocimum gratissimum L. and Ocimum tenuiflorum L. Int. J. Res. Ayurveda Pharm. 2019, 10, 41–48.
- 68.
Jordan, W.C.; Courtney, M.W.; Neigel, J.E. Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in north American duckweeds (Lemnaceae). Am. J. Bot. 1996, 83, 430–439.
- 69.
QIAGEN Bioinformatics. CLC Main Workbench. Available online: https://www.qiagenbioinformatics.com/products/clc-main-workbench/ (accessed on 17 March 2025).
- 70.
Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Bio Evol. 2021, 38, 3022–3027.
- 71.
Kumar, A.; Mishra, P.; Rodrigues, V.; et al. Delineation of Ocimum gratissimum L. complex combining morphological, molecular and essential oils analysis. Ind. Crops Prod. 2019, 139, 111536.
- 72.
Partovi, R.; Iranbakhsh, A.; Sheidai, M.; et al. The use of DNA barcoding to avoid adulteration in olive plant leaf products. Asian J. For. 2021, 5. https://doi.org/10.13057/asianjfor/r050106.
- 73.
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177.
- 74.
Chase, M.W.; Salamin, N.; Wilkinson, M.; et al. Land plants and DNA barcodes: Short-term and long-term goals. Philos. Trans. R. Soc. B 2005, 360, 1889–1895.
- 75.
Jürges, G.; Beyerle, K.; Tossenberger, M.; et al. Development and validation of microscopical diagnostics for ‘Tulsi’ (Ocimum tenuiflorum L.) in Ayurvedic preparations. Eur. Food Res. Technol. 2009, 229, 99–106.
- 76.
Zhang, S.Y.; Yan, H.F.; Wei, L.; et al. Plastid genome and its phylogenetic implications of Asiatic Spiraea (Rosaceae). BMC Plant Biol. 2024, 24, 23.
- 77.
Awad, M.; Fahmy, R.M.; Mosa, K.A.; et al. Identification of effective DNA barcodes for Triticum plants through chloroplast genome-wide analysis. Comput. Biol. Chem. 2017, 71, 20–31.
- 78.
Qian, Z.H.; Munywoki, J.M.; Wang, Q.F.; et al. Molecular Identification of African Nymphaea Species (Water Lily) Based on ITS, trnT-trnF and rpl16. Plants 2022, 11, 2431.
- 79.
Wang, A.K.; Lu, Q.F.; Zhu. Z.X; et al. Exploring phylogenetic relationships within the subgenera of Bambusa based on DNA barcodes and morphological characteristics. Sci. Rep. 2022, 12, 8018.
- 80.
Yesuthason, R.S.; Balaji, R.; Tanuja, P.M. The complete chloroplast genome and phylogenetic analysis of Ocimum kilimandscharicum Gurke (Camphor Basil) from India. Mitochondrial DNA B Resour. 2021, 6, 2164–2165.
- 81.
Balaji, R.; Ravichandiran, K.; Tanuja, P.M. The complete chloroplast genome of Ocimum gratissimum from India—A medicinal plant in the Lamiaceae. Mitochondrial DNA B Resour. 2021, 6, 948–950.
- 82.
Wong, K.H.; Zheng, T.; Yue, G.G. et al. A Systematic Approach for Authentication of Medicinal Patrinia Species Using an Integration of Morphological, Chemical and Molecular Methods. Sci. Rep. 2024, 14, 6566.
- 83.
de Vere, N.; Rich, T.C.; Trinder, S.A.; et al. DNA barcoding for plants. Methods Mol. Biol. 2015, 1245,101–118.
- 84.
Letsiou, S.; Madesis, P.; Vasdekis, E.; et al. DNA Barcoding as a Plant Identification Method. Appl. Sci. 2024, 14, 1415.
- 85.
Li, H.; Xiao, W.; Tong, T.; et al. The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Sci. Rep. 2021, 11, 1424.
- 86.
- 87.
Christina, V.L.; Annamalai, A. Nucleotide based validation of Ocimum species by evaluating three candidate barcodes of the chloroplast region. Mol. Ecol. Resour. 2014, 14, 60–68.
- 88.
Wu, H-Y.; Shaw, P-C. Strategies for Molecular Authentication of Herbal Products: From Experimental Design to Data Analysis. Chin. Med. 2022, 17, 38.
- 89.
Jurges, G.; Sahi, V.; Rodriguez, D.R.; et al. Product authenticity versus globalisation—The Tulsi case. PLoS ONE 2018, 13, e0207763.
- 90.
Loera-Sánchez, M.; Studer, B.; Kölliker, R. DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Res. Notes 2020, 13, 35.
- 91.
Frigerio. J.; Agostinetto. G.; Mezzasalma, V.; et al. DNA-Based Herbal Teas’ Authentication: An ITS2 and psbA-trnH Multi-Marker DNA Metabarcoding Approach. Plants 2021, 10, 2120.
- 92.
Besse, P.; Da Silva, D.; Grisoni, M. Plant DNA Barcoding Principles and Limits: A Case Study in the Genus Vanilla. Methods Mol. Biol. 2021, 2222, 131–148.
- 93.
Zhang, W.; Sun, Y.; Liu, J.; et al. DNA barcoding of Oryza: Conventional, specific, and super barcodes. Plant Mol. Biol. 2021, 105, 215–228.
- 94.
Chen, S, Yin, X.; Han, J.; et al. DNA barcoding in herbal medicine: Retrospective and prospective. J. Pharm. Anal. 2023, 13, 431–441.
- 95.
Samarina, L.S.; Koninskaya, N.G.; Shkhalakhova, R.M.; et al. DNA-Barcoding for Cultivar Identification and Intraspecific Diversity Analysis of Agricultural Crops. Int. J. Mol. Sci. 2025, 26, 6808.
- 96.
Huang, S.; Kirchoff, B.K.; Liao, J. The Capitate and Peltate Glandular Trichomes of Lavandula pinnata L. (Lamiaceae): Histochemistry, Ultrastructure, and Secretion. J. Torrey Bot. Soc. 2008, 135, 155–167.
- 97.
Santos, T.L.R.D.; De Melo, S.S.C.; Rodrigues, T.M. Non-Glandular Trichomes in Lamiaceae and Verbenaceae Species: Morphological and Histochemical Features Indicate More than Physical Protection. N. Z. J. Bot. 2016, 54, 446–457.
- 98.
Gostin, I.N. Glandular and Non-Glandular Trichomes from Phlomis herba-venti subsp. pungens Leaves: Light, Confocal, and Scanning Electron Microscopy and Histochemistry of the Secretory Products. Plants 2023, 12, 2423.
- 99.
Serrato-Valenti, G.; Bisio, A.; Cornara, L.; et al. Structural and histochemical investigation of the glandular trichomes of Salvia aurea L. leaves, and chemical analysis of the essential oil. Ann. Bot. 1997, 79, 329–336.
- 100.
Gul, S.; Ahmad, M.; Zafar, M.; et al. Foliar epidermal anatomy of Lamiaceae with special emphasis on their trichomes diversity using scanning electron microscopy. Microsc. Res. Tech. 2019, 82, 206–223.
- 101.
Karabourniotis, G.; Liakopoulos, G.; Nikolopoulos, D.; et al. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. J. For. Res. 2020, 31, 1–12.
- 102.
Mahmoud, S.S.; Maddock, S.; Adal, A.M. Isoprenoid Metabolism and Engineering in Glandular Trichomes of Lamiaceae. Front. Plant Sci. 2021, 12, 699157.
- 103.
Wang, X.; Shen, C.; Meng, P.; et al. Analysis and review of trichomes in plants. BMC Plant Biol. 2021, 21, 70.
- 104.
Tirillini, B.; Maggi, F. Volatile Organic Compounds of the Glandular Trichomes of Ocimum basilicum and Artifacts during the Distillation of the Leaves. Appl. Sci. 2021, 11, 7312.
- 105.
Schilmiller, A.L.; Last, R.L.; Pichersky, E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 2008, 54, 702–711.
- 106.
Weathers, P.J.; Arsenault, P.R.; Covello, P.S.; et al. Artemisinin production in Artemisia annua: Studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem. Rev. 2011, 10, 173–183.
- 107.
Moon, H-K.; Hong, S-P.; Smets, E.; et al. Phylogenetic Significance of Leaf Micromorphology and Anatomy in the Tribe Mentheae (Nepetoideae: Lamiaceae). Bot. J. Linn. Soc. 2009, 160, 211–231.
- 108.
Abu-Assab, M.S.; Cantino, P.D. Phylogenetic Implications of Leaf Anatomy in Subtribe Melittidinae (Labiatae) and Related Taxa. J. Arnold Arbor. 1987, 68, 1–34.
- 109.
Khosroshahi E.E.; Salmaki, Y. Evolution of trichome types and its systematic significance in the genus Phlomoides (Lamioideae–Lamiaceae). Nord. J. Bot. 2019, 37. https://doi.org/10.1111/njb.02132.
- 110.
Majeed, J.; Shaheen, S.; Waheed, M.; et al. Morpho-anatomical studies of family lamiaceae species of district Lahore, Punjab: A revision to flora of Pakistan. BMC Plant Biol. 2024, 24, 694.
- 111.
Maurya, S.; Chandra, M.; Yadav, R.K.; et al. Interspecies comparative features of trichomes in Ocimum reveal insights for biosynthesis of specialized essential oil metabolites. Protoplasma 2019, 256, 893–907.
- 112.
Gang, D.R.; Simon, J.; Lewinsohn, E.; et al. Peltate Glandular Trichomes of Ocimum basilicum L. (Sweet Basil) Contain High Levels of Enzymes Involved in the Biosynthesis of Phenylpropenes. J. Herbs Spices Med. Plants 2002, 9, 189–195.
- 113.
Punja, Z.K.; Sutton, D.B.; Kim, T. Glandular trichome development, morphology, and maturation are influenced by plant age and genotype in high THC-containing cannabis (Cannabis sativa L.) inflorescences. J. Cannabis Res. 2023, 5, 12.
- 114.
Di Cesare, L.F.; Forni, E.; Viscardi, D.; et al. Changes in the chemical composition of Basil caused by different drying procedures. J. Agric. Food Chem. 2003, 51, 3575–3581.
- 115.
Das, P.C.; Vista, A.R.; Tabil, L.G.; et al. Postharvest operations of Cannabis and their effect on cannabinoid content: A Review. Bioengineering 2022, 9, 364.
- 116.
Mokhtarikhah, G., Ebadi, M-T., Ayyari, M. Qualitative changes of spearmint essential oil as affected by drying methods. Ind. Crops Prod. 2020, 153, 112492.
- 117.
El-Gamal, R.; Song, C.; Rayan, A.M.; et al. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580.
- 118.
dos Santos Tozin, L.R.; Tatiane, M.R. Glandular trichomes in the tree-basil (Ocimum gratissimum L., Lamiaceae): Morphological features with emphasis on the cytoskeleton. Flora 2019, 259, 151459.
- 119.
Huchelmann, A.; Boutry, M.; Hachez, C. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. Plant Physiol. 2017, 175, 6–22.
- 120.
Han, G.; Li, Y.; Yang, Z.; et al. Molecular Mechanisms of Plant Trichome Development. Front. Plant Sci. 2022, 13, 910228.
- 121.
Watts, S.; Kariyat, R. Morphological characterization of trichomes shows enormous variation in shape, density and dimensions across the leaves of 14 Solanum species. AoB Plants, 2021, 13, plab071.
- 122.
Feng, Z.; Bartholomew, E.S.; Liu, Z.; et al. Glandular trichomes: New focus on horticultural crops. Hortic. Res. 2021, 8, 158.
- 123.
De Masi, L., Siviero, P.; Esposito, C.; et al. Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.) Eur. Food Res. Technol. 2006, 223, 273–281.
- 124.
Ciriello, M.; Pannico, A.; El-Nakhel, C.; et al. Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. Plants 2020, 9, 1786.
- 125.
Tammannavar, P.; Pushpalatha, C.; Jain, S.; et al. An unexpected positive hypersensitive reaction to eugenol. BMJ Case Rep. 2013, bcr2013009464. https://doi.org/10.1136/bcr-2013-009464.
- 126.
Iijima, Y.; Davidovich-Rikanati, R.; Fridman, E.; et al. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 2004, 136, 3724–3736.
- 127.
Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of Plant Volatiles: Nature’s Diversity and Ingenuity. Science 2006, 311, 808–811.
- 128.
Kısa, D.; Ceylan, Y.; İmamoğlu, R. Accumulation of phenolic compounds and expression of phenylpropanoid biosynthesis-related genes in leaves of basil transformed with A. rhizogenes strains. Physiol. Mol. Biol. Plants 2023, 29, 629–640.
- 129.
Gang, D.R.; Lavid, N.; Zubieta, C.; et al. Characterization of phenylpropene O-methyltransferases from sweet basil: Facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 2002, 14, 505–519.
- 130.
Tremmel, R.; Herrmann, K.; Engst, W.; et al. Methyleugenol DNA adducts in human liver are associated with SULT1A1 copy number variations and expression levels. Arch. Toxicol. 2017, 91, 3329–3339.
- 131.
European Commission Health & Consumer Protection Directorate-General. Opinion of the Scientific Committee on Food on Estragole (1-Allyl-4-methoxybenzene); Scientific Committee on Food: Brussel, Belgium, 2001.
- 132.
National Toxicology Program (NTP). Toxicology and Carcinogenesis Studies of Methyleugenol (CAS No. 93-15-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies); Technical Report Series No. 491; NTP: Research Triangle Park, NC, USA, 2000.
- 133.
Vural, N. Chemometrics data analysis and controversial carcinogenic effect of Ocimum basilicum L. rich in methyl eugenol. Food Meas. 2021, 15, 4825–4837.
- 134.
Kofidis, G.; Bosabalidis, A.; Kokkini, S. Seasonal Variation of Essential Oils in a Linalool-Rich Chemotype of Mentha spicata Grown Wild in Greece. J. Essent. Oil Res. 2004, 16, 469–472.
- 135.
Anand, A.; Jayaramaiah, R.H.; Beedkar, S.D.; et al. Comparative functional characterization of eugenol synthase from four different Ocimum species: Implications on eugenol accumulation. Biochim. Biophys. Acta 2016, 1864, 1539–1547.
- 136.
Kamatou, G.P.P.; Viljoen, A.M. Linalool—A Review of a Biologically Active Compound of Commercial Importance. Nat. Prod. Commun. 2008, 3, 1183–1192.
- 137.
Dos Santos, É.R.Q.; Maia, J.G.S.; Fontes-Júnior, E.A.; et al. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr. Neuropharmacol. 2022, 20,1073–1092.
- 138.
Radulović, N.S.; Blagojević, P.D.; Miltojević, A.B. α-Linalool—A marker compound of forged/synthetic sweet basil (Ocimum basilicum L.) essential oils. J. Sci. Food Agric. 2013, 93, 3292–3303.
- 139.
Mączka, W.; Duda-Madej, A.; Grabarczyk, M.; et al. Natural Compounds in the Battle against Microorganisms—Linalool. Molecules 2022, 27, 6928.
- 140.
Türkmen, M. The effect of different Phenological periods and harvest times on the essential oil ratio and components of basil genotypes. J. Essent. Oil-Bear. Plants. 2021, 24, 94–109.
- 141.
Hazrati, S.; Mousavi, Z.; Nicola, S. Harvest time optimization for medicinal and aromatic plant secondary metabolites. Plant Physiol. Biochem. 2024, 212, 108735.
- 142.
Bai, C.; Yang, J.; Cao, B.; et al. Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of Scutellaria baicalensis. Ind. Crops Prod. 2020, 158, 112985.
- 143.
Xing, Z.; Bi, G.; Li, T.; et al. Effect of Harvest Time on Growth and Bioactive Compounds in Salvia miltiorrhiza. Plants 2024, 13, 1788.
- 144.
Heinrich, M.; Barnes, J.; Prieto-Garcia, J.; et al. Fundamentals of Pharmacognosy and Phytotherapy: Fundamentals of Pharmacognosy and Phytotherapy E-Book, 3rd ed.; Elsevier Health Sciences: London, UK, 2017.
- 145.
De Vincenzi, M.; Silano, M.; Maialetti, F.; et al. Constituents of aromatic plants: II. Estragole. Fitoterapia. 2001, 71, 725–729.
- 146.
Upton R.; David, B.; Gafner, S.; et al. Botanical Ingredient Identification and Quality Assessment: Strengths and Limitations of Analytical Techniques. Phytochem. Rev. 2020, 19, 1157–1177.
- 147.
Simmler, C.; Chen, S.N.; Anderson, J.; et al. Botanical Integrity: The Importance of the Integration of Chemical, Biological, and Botanical Analyses, and the Role of DNA Barcoding. HerbalGram 2015, 106, 58–60.
- 148.
Dawan, J.; Ahn, J. Application of DNA barcoding for ensuring food safety and quality. Food Sci. Biotechnol. 2022, 31, 1355–1364.
- 149.
Ragupathy, S.; Thirugnanasambandam, A.; Henry, T.; et al. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Food 2024, 13, 1862.
- 150.
Mück, F.; Scotti, F.; Mauvisseau, Q.; et al. Three-Tiered Authentication of Herbal Traditional Chinese Medicine Ingredients Used in Women’s Health Provides Progressive Qualitative and Quantitative Insight. Front. Pharmacol. 2024, 15, 1353434.
- 151.
Kress, W.J.; Wurdack, K.J.; Zimmer, E.A.; et al. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8369–8374.