- 1.
Suchiang, K.; Kayde, N.H. Comparative phytochemical analysis of Phlogacanthus thyrsiflorus Nees: Implications on attenuation of pro-oxidants and pathogen virulence in Caenorhabditis elegans model system. Asian J. Pharm. Clin. Res. 2017, 10, 361–367.
- 2.
Saikia, D.; Baruah, P.S.; Hasnu, S.; et al. Phytochemical screening and antioxidant activity of leaf extract of Phlogacanthus thyrsiflorus Nees.—A medicinal plant of Assam, India. Biosci. Discov. 2018, 9, 237–243.
- 3.
Bray, F.; Laversanne, M.; Sung, H.; et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2024, 74, 229–263.
- 4.
Ma, L.; Li, X.; Zhao, X.; et al. Analysis of Changes in the Burden of Nutritional Deficiencies in China, the G20, and Globally from 1990 to 2021 Based on the Global Burden of Disease 2021 Data. medRxiv 2025, 2025-04, 25326366.
- 5.
Lyu, Z.; Zhang, Y.; Sheng, C.; et al. Global burden of thyroid cancer in 2022: Incidence and mortality estimates from GLOBOCAN. Chin. Med. J. 2024, 137, 2567–2576.
- 6.
Wang, M.; Gao, X.; Zhang, L. Recent global patterns in skin cancer incidence, mortality, and prevalence. Chin. Med. J. 2025, 138, 185–192.
- 7.
Yu, W.; Zhou, D.; Meng, F.; et al. The global, regional burden of pancreatic cancer and its attributable risk factors from 1990 to 2021. BMC cancer 2025, 25, 186.
- 8.
Kim, S.; Son, Y.; Oh, J.; et al. Global burden of brain and central nervous system cancer in 185 countries, and projections up to 2050: a population-based systematic analysis of GLOBOCAN 2022. J. Neuro-Oncol. 2025, 1–13.
- 9.
Huang, J.; Pang, W.S.; Lok, V.; et al. Incidence, mortality, risk factors, and trends for Hodgkin lymphoma: a global data analysis. J. Hematol. Oncol. 2022, 15, 57.
- 10.
Hu, Q.; Zhang, W.; Wei, F.; et al. Human diet‐derived polyphenolic compounds and hepatic diseases: From therapeutic mechanisms to clinical utilization. Phytother. Res. 2024, 38, 280–304.
- 11.
Roleira, F.M.; Varela, C.L.; Costa, S.C.; et al. Phenolic derivatives from medicinal herbs and plant extracts: Anticancer effects and synthetic approaches to modulate biological activity. Stud. Nat. Prod. Chem. 2018, 57, 115–156.
- 12.
Majdalawieh, A.F.; Massri, M.; Nasrallah, G.K. A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (Sesamum indicum). Eur. J. Pharmacol. 2017, 815, 512–521.
- 13.
Choudhury, P.R.; Choudhury, M.D.; Ningthoujam, S.S.; et al. Ethnomedicinal plants used by traditional healers of North Tripura district, Tripura, North East India. J. Ethnopharmacol. 2015, 166, 135–148.
- 14.
Saha, P.; Talukdar, A.; Choudhury, M.D. Antioxidant Potential Profile of Pajanelia longifolia (Willd.) K. Schuman; Potential New Sources of Natural Antioxidant. Asian J. Pharm. Clin. Res. 2017, 6, 184–188.
- 15.
Zainab, A.; Bhat, R.; Acharya, S.; et al. Studies on antioxidant and antimicrobial activities of Pajanelia longifolia (Willd.) Schumann. Obes. Res. J. 2013, 2013, 756484.
- 16.
Chin, Y.-W.; Balunas, M.J.; Chai, H.B.; et al. Drug discovery from natural sources. AAPS J. 2006, 8, 28.
- 17.
Choudhury, S.; Choudhury, M.; Sharma, G.; et al. Antibacterial Activity of Crude Leaf Extracts of Pajanelia longifolia (Willd.) K. Schuman. Assam. Univ. J. Sci. Technol. 2010, 5, 53–57.
- 18.
Sharma, P.; Mazumder, S.; Choudhury, S. Preliminary phytochemical screening and antibacterial activity of the leaves of Pajanelia longifolia (wild.) k schuman and Crataeva magna (Lour.) DC. Indo Am. J. Pharm. Res. 2013, 3, 8165–8168.
- 19.
Datta, S.; Choudhury, S.; Choudhury, M.D. Hepatoprotective Activity of Bark Extracts of Pajanelia longifolia (Willd.) K. Schuman against CCl 4 Induced Hepatic Damage in Mice. Drug Invent. Today 2012, 4, 537.
- 20.
Terstappen, G.C.; Reggiani, A. In silico research in drug discovery. Trends Pharmacol. Sci. 2001, 22, 23–26.
- 21.
Shoichet, B.K. Virtual screening of chemical libraries. Nature 2004, 432, 862–865.
- 22.
Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004, 3, 711–716.
- 23.
Chang, Y.; Hawkins, B.A.; Du, J.J.; et al. A guide to in silico drug design. Pharmaceutics 2023, 15, 49.
- 24.
Chandran, U.; Mehendale, N.; Patil, S.; et al. Network pharmacology. Innov. Approaches Drug Discov. 2016, 127.
- 25.
Hoofnagle, J.H.; Doo, E.; Liang, T.J.; et al. Management of hepatitis B: Summary of a clinical research workshop. Hepatology 2007, 45, 1056–1075.
- 26.
Lavanchy, D. The global burden of hepatitis C. Liver Int. 2009, 29, 74–81.
- 27.
Sheikh, K.A.; Amjad, M.; Irfan, M.T.; et al. Exploring TGF-β signaling in cancer progression: Prospects and therapeutic strategies. OncoTargets Ther. 2025, 18, 233–262.
- 28.
Syed, V. TGF‐β signaling in cancer. J. Cell. Biochem. 2016, 117, 1279–1287.
- 29.
Cecerska-Heryć, E.; Jerzyk, A.; Goszka, M.; et al. TGF-β Signaling in Cancer: Mechanisms of Progression and Therapeutic Targets. Int. J. Mol. Sci. 2025, 26, 7326.
- 30.
Torrealba, N.; Vera, R.; Fraile, B.; et al. TGF-β/PI3K/AKT/mTOR/NF-kB pathway. Clinicopathological features in prostate cancer. Aging Male 2020, 23, 801–811.
- 31.
Yan, X.; Zhang, L.; Miyazawa, K.; et al. TGF-β and BMP signaling in cancer. J. Cell. Biochem. 2022, 10, 1012326.
- 32.
Ionescu, V.A.; Gheorghe, G.; Bacalbasa, N.; et al. Colorectal cancer: From risk factors to oncogenesis. Medicina 2023, 59, 1646.
- 33.
Ramundo, V.; Palazzo, M.L.; Aldieri, E. TGF-β as predictive marker and pharmacological target in lung cancer approach. Cancers 2023, 15, 2295.
- 34.
Kanda, T.; Goto, T.; Hirotsu, Y.; et al. Molecular mechanisms driving progression of liver cirrhosis towards hepatocellular carcinoma in chronic hepatitis B and C infections: A review. Int. J. Mol. Sci. 2019, 20, 1358.
- 35.
Kovalic, A.J.; Cholankeril, G.; Satapathy, S.K. Nonalcoholic fatty liver disease and alcoholic liver disease: Metabolic diseases with systemic manifestations. Transl. Gastroenterol. Hepatol. 2019, 4, 65.
- 36.
Dipa, C.D.; Hossain, S.; Chy, M.M.K.; et al. In silico exploration of anticancer plant phytochemicals for EGFR-targeted lung cancer therapy. Sci. Rep. 2025, 15, 27809.
- 37.
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20.
- 38.
Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers 2021, 13, 2748.
- 39.
Morgillo, F.; Della Corte, C.M.; Fasano, M.; et al. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open 2016, 1, e000060.
- 40.
Deshmukh, V.G.; Sapkal, S.B.; Gadekar, S.S.; et al. EGFR inhibitors across generations: Progress, challenges, and future directions. J. Mol. Struct. 2025, 1339, 142326.
- 41.
Anagnostis, A.; Neofytou, E.; Soulitzis, N.; et al. Molecular profiling of EGFR family in chronic obstructive pulmonary disease: Correlation with airway obstruction. Eur. J. Clin. Investig. 2013, 43, 1299–1306.
- 42.
Wang, C.; He, Q.; Yin, Y.; et al. Clonorchis sinensis granulin promotes malignant transformation of hepatocyte through EGFR-mediated RAS/MAPK/ERK and PI3K/Akt signaling pathways. Front. Cell. Infect. Microbiol. 2021, 11, 734750.
- 43.
Heldin, C.-H.; Moustakas, A. Signaling receptors for TGF-β family members. Cold Spring Harb. Perspect. Biol. 2016, 8, a022053.
- 44.
Tu, S.; Huang, W.; Huang, C.; et al. Contextual regulation of TGF-β signaling in liver cancer. Cells 2019, 8, 1235.
- 45.
Rojas, A.; Zhang, P.; Wang, Y.; et al. A positive TGF-β/c-KIT feedback loop drives tumor progression in advanced primary liver cancer. Neoplasia 2016, 18, 371–386.
- 46.
Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 13.
- 47.
Kumar, U.; Kumar, I.; Singh, P.K.; et al. Total phenolic content and antioxidant activities in methanol extracts of medicinal herbs from Indo-Gangetic plains of India. J. Appl. Biol. Biotechnol. 2024, 12, 89–99.
- 48.
Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; et al. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 1994, 49, 462–468.
- 49.
Kumarasamy, Y.; Byres, M.; Cox, P.J.; et al. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 615–621.
- 50.
Mahanthesh, M.; Ranjith, D.; Yaligar, R.; et al. Swiss ADME prediction of phytochemicals present in Butea monosperma (Lam.) Taub. J. Pharmacogn. Phytochem. 2020, 9, 1799–1809.
- 51.
Nath, R.; Baishya, S.; Nath, D.; et al. Identifying druggable targets from active constituents of Azadirachta indica A. Juss. for non‐small cell lung cancer using network pharmacology and validation through molecular docking. Phytochem. Anal. 2023, 34, 855–868.
- 52.
Kanehisa, M.; Furumichi, M.; Sato, Y.; et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592.
- 53.
Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2.
- 54.
Mustafa, G.; Younas, S.; Mahrosh, H.S.; et al. Molecular docking and simulation-binding analysis of plant phytochemicals with the hepatocellular carcinoma targets epidermal growth factor receptor and caspase-9. Molecules 2023, 28, 3583.
- 55.
Makki, H.M.M.; Park, K.-H.; Huh, Y.; et al. Virtual Screening of Representative Natural Products Library for TGF-β-Mediated Liver Cirrhosis: An in silico and in vitro Multi-Target Study. Int. J. Pharmacol. 2025, 21, 521–540.
- 56.
Nath, R.; Talukdar, A.D.; Nath, D.; et al. In Silico Investigation of Pajanelia longifolia (Willd.) K. Schum Bark Extract against NSCLC Targets: Potential Involvement in Apoptotic Pathways. J. Med. Nat. Prod. 2025, 2, 100012.
- 57.
Odhiambo, D.O.; Omosa, L.K.; Njagi, E.C.; et al. In-silico Pharmacokinetics ADME/Tox Analysis of phytochemicals from genus Dracaena for their therapeutic potential. Sci. Afr. 2025, 29, e02796.
- 58.
Robert, J.; Rivory, L. Pharmacology of irinotecan. Drugs Today 1998, 34, 777–803.
- 59.
Reyhanoglu, G.; Smith, T. Irinotecan. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL., USA, 2023.
- 60.
Saide, A.; Lauritano, C.; Ianora, A. Pheophorbide a: State of the Art. Mar. Drugs 2020, 18, 257.
- 61.
Mukherjee, P.K. Evidence-Based Validation of Herbal Medicine: Translational Research on Botanicals; Elsevier: Amsterdam, The Netherlands, 2022.
- 62.
Naguib, S.; Aly, O.; Abourhma, G.; et al. Synthesis, Molecular Modeling and Anticancer Activity of New Rescinnamine Derivatives as MMR-Inducers. Octahedron Drug Res. 2023, 2, 21–35.
- 63.
Nyiredy, S.; Samu, Z.; Szücs, Z.; et al. New insight into the biosynthesis of flavanolignans in the white-flowered variant of Silybum marianum. J. Chromatogr. Sci. 2008, 46, 93–96.
- 64.
Usui, T.; Ikeda, Y.; Tagami, T.; et al. The phytochemical lindleyin, isolated from Rhei rhizoma, mediates hormonal effects through estrogen receptors. J. Endocrinol. 2002, 175, 289–296.
- 65.
Ahmed, S.; Mobashir, M.; Al-Keridis, L.A.; et al. A network-guided approach to discover phytochemical-based anticancer therapy: Targeting MARK4 for hepatocellular carcinoma. Front. Oncol. 2022, 12, 914032.
- 66.
Bishayee, A.; J. Thoppil, R.; Waghray, A.; et al. Dietary phytochemicals in the chemoprevention and treatment of hepatocellular carcinoma: In vivo evidence, molecular targets, and clinical relevance. Curr. Cancer Drug Targets 2012, 12, 1191–1232.
- 67.
Subrahmanya Padyana, S.P.; Akhila Zainab, A.Z.; Ashalatha, M.; et al. Antioxidant and antibacterial properties of Pajanelia longifolia (Willd.) K. Schum. Ann. Biol. Res. 2011, 21, 11–18.
- 68.
Al-Awadhi, S.S.A.; Patil, P.; Shetty, P.; et al. Potential role of epidermal growth factor receptors (EGFR) signaling in the pathogenesis and management of hepatocellular carcinoma. BioImpacts BI 2025, 15, 30905.
- 69.
Naik, H.N.; Kanjariya, D.; Parveen, S.; et al. Dalbergia sissoo phytochemicals as EGFR inhibitors: An in vitro and in silico approach. J. Biomol. Struct. Dyn. 2024, 42, 5415–5427.
- 70.
Janakiramulu, P.; Mamidala, E. In Silico Evaluation of Phytochemical Interactions with EGFR: Potential Alternatives in Cancer Therapy. In Proceedings of the Two-Day National Seminar on RTAB-2024 (ISBN: 978-81-982510-5-3), Warangal, India, 25–26 September 2024; pp. 162–171.
- 71.
Ishabiyi, F.O.; Omotosho‐Sanni, R.Y.; Baammi, S.; et al. In silico Assessment of Phytochemicals from Selected Plants as Prospective TGF‐β1 Inhibitors for Prostate Cancer Therapy. ChemistrySelect 2024, 9, e202401413.
- 72.
Zhao, Y.; Ma, J.; Fan, Y.; et al. TGF‐β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol. Oncol. 2018, 12, 305–321.
- 73.
López-Luque, J.; Bertran, E.; Crosas-Molist, E.; et al. Downregulation of Epidermal Growth Factor Receptor in hepatocellular carcinoma facilitates Transforming Growth Factor-β-induced epithelial to amoeboid transition. Cancer Lett. 2019, 464, 15–24.
- 74.
Reza, R.; Morshed, N.; Samdani, M.N.; et al. Pharmacophore mapping approach to find anti-cancer phytochemicals with metformin-like activities against transforming growth factor (TGF)-beta receptor I kinase: An in silico study. PLoS ONE 2023, 18, e0288208.