Open Access
Editorial
Organometallic Science: From Fundamental Chemistry to a Cornerstone of Modern Innovations and Technological Advances
Catia Ornelas1, *
, Didier Astruc2, *
Author Information
Published: 24 Apr 2025
References
1.
Astruc, D. Organometallic Chemistry and Catalysis; Springer: Berlin/Heidelberg, Germany, 2007; EDP Science: Les Ullis, France, 2001/2013; Reverte: Barcelona, Spain, 2004. https://doi.org/10.1007/978-3-540-46129-6.
2.
Vollhardt, K.P.C. Cobalt-Mediated [2 + 2 + 2]-Cycloadditions: A Maturing Synthetic Strategy. Angew. Chem. Int. Ed. 1984, 23, 539–556. https://doi.org/10.1002/anie.198405393.
3.
Copéret, C.; Chabanas, M.; Petroff Saint‐Arroman, R.; Basset, J.M. Homogeneous and Heterogeneous Catalysis: Bridging the Gap through Surface Organometallic Chemistry. Angew. Chem. Int. Ed. 2003, 42, 156–181. https://doi.org/10.1002/anie.200390072.
4.
Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface. J. Am. Chem. Soc. 2017, 139, 3145–3152. https://doi.org/10.1021/jacs.6b12776.
5.
Jones, W.D. Carbon Capture and Conversion. J. Am. Chem. Soc. 2020, 142, 4955–4957. https://doi.org/10.1021/jacs.0c02356.
6.
Mason, A.H.; Motta, A.; Das, A.; Ma, Q.; Bedzyk, M.J.; Kratish, Y.; Marks, T.J. Rapid Atom-Efficient Polyolefin Plastics Hydrogenolysis Mediated by a Well-Defined Single-Site Electrophilic/Cationic Organo-Zirconium Catalyst. Nat. Commun. 2022, 13, 7187. https://doi.org/10.1038/s41467-022-34707-6.
7.
Yun, Y.; Shen, H.; Shi, Y.; Zhu, Y.; Wang, S.; Li, K.; Zhang, B.; Yao, T.; Sheng, H.; Yu, H.; Zhu, M. Dynamically Precise Constructing Dual-Atom Pd2 Catalyst: A Monodisperse Catalyst With High Stability For Semi-Hydrogenation of Alkyne. Adv. Mater. 2024, 36, e2409436. https://doi.org/10.1002/adma.202409436.
8.
Wang, Y.; Dana, S.; Long, H.; Xu, Y.; Li, Y.; Kaplaneris, N.; Ackermann, L. Electrochemical Late-Stage Functionalization. Chem. Rev. 2023, 123, 11269–11335. https://doi.org/10.1021/acs.chemrev.3c00158.
9.
Xie, W.; Zhang, Y.; Zheng, H.; Lyu, P.; Ke, X.; Li, T.; Fang, H.; Sun, Y.; Dong, J.; Lin, L.; Wang, C. Unlocking the Production of Biomass-Derived Plastic Monomer 2,5-Furandicarboxylic Acid at Industrial-Level Concentration. ACS Catal. 2024, 14, 17510–17524. https://doi.org/10.1021/acscatal.4c05864.
10.
Dhaini, A.; Hardouin-Duparc, V.; Alaaeddine, A.; Carpentier, J.F.; Guillaume, S.M. Recent Advances in Polyhydroxyalkanoates Degradation and Chemical Recycling. Prog. Polym. Sci. 2024, 149, 101781. https://doi.org/10.1016/j.progpolymsci.2023.101781.
11.
Chen, J.G.; Crooks, R.M.; Seefeldt, L.C.; Bren, K.L.; Bullock, R.M.; Darensbourg, M.Y.; Holland, P.L.; Hoffman, B.; Janik, M.J.; Schrock, R. R. Beyond Fossil Fuel–Driven Nitrogen Transformations. Science 2018, 360, eaar6611. https://doi.org/10.1126/science.aar6611.
12.
Zhang, J.; Wang, J.; Wei, C.; Wang, Y.; Xie, G.; Li, Y.; Li, M. Rapidly Sequence-Controlled Electrosynthesis of Organometallic Polymers. Nat. Commun. 2020, 11, 2530. https://doi.org/10.1038/s41467-020-16255-z.
13.
Zhou, Z.H.; Chen, K.H.; Gao, S.; Yang, Z.W.; He, L.N. Ionic Liquid-Modified Porous Organometallic Polymers as Efficient and Selective Photocatalysts for Visible-Light-Driven CO2 Reduction. Research 2020, 2020, 9398285. https://doi.org/10.34133/2020/9398285.
14.
Ye, J.H.; Ju, T.; Huang, H.; Liao, L.L.; Yu, D.G. Radical Carboxylative Cyclizations and Carboxylations with CO2. Acc. Chem. Res. 2021, 54, 2518–2531. https://doi.org/10.1021/acs.accounts.1c00135.
15.
Singh, C.; Mukhopadhyay, S.; Hod, I. Metal–Organic Framework Derived Nanomaterials for Electrocatalysis: Recent Developments for CO2 and N2 Reduction. Nano Converg. 2021, 8, 1. https://doi.org/10.1186/s40580-020-00251-6.
16.
Wang, S.; Wang, L.; Wang, D.; Li, Y. Recent Advances of Single-Atom Catalysts in CO2 Conversion. Energy Environ. Sci. 2023, 16, 2759–2803. https://doi.org/10.1039/D3EE00037K.
17.
Alli, Y.A.; Oladoye, P.O.; Ejeromedoghene, O.; Bankole, O.M.; Alimi, O.A.; Omotola, E.O.; Olanrewaju, C.A.; Philippot, K.; Adeleye, A.S.; Ogunlaja, A.S. Nanomaterials as Catalysts for CO2 Transformation into Value-Added Products: A Review. Sci. Total Environ. 2023, 868, 161547. https://doi.org/10.1016/j.scitotenv.2023.161547.
18.
Woldu, A.R.; Talebi, P.; Yohannes, A.G.; Xu, J.; Wu, X.D.; Siahrostami, S.; Hu, L.; Huang, X.C. Insights into Electrochemical CO2 Reduction on SnS2: Main Product Switch from Hydrogen to Formate by Pulsed Potential Electrolysis. Angew. Chem. Int. Ed. 2023, 62, e202301621. https://doi.org/10.1002/anie.202301621.
19.
Dhar, S.; Gu, F.X.; Langer, R.; Farokhzad, O.C.; Lippard, S.J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proc. Nat. Acad. Sci. USA 2008, 105, 17356–17361. https://doi.org/10.1073/pnas.0809154105.
20.
Ornelas, C. Application of Ferrocene and its Derivatives in Cancer Research. New J. Chem. 2011, 35, 1973–1985. https://doi.org/10.1039/c1nj20172g.
21.
Jaouen, G.; Vessières, A.; Top, S. Ferrocifen Type Anti Cancer Drugs. Chem. Soc. Rev. 2015, 44, 8802–8817. https://doi.org/10.1039/C5CS00486A.
22.
Vessières, A.; McGlinchey, M. Bioorganometallic Chemistry—The early years. J. Organomet. Chem. 2023, 287, 122623. 10.1016/j.jorganchem.2023.122623.
23.
Ong, Y.C.; Gasser, G. Organometallic Compounds in Drug Discovery: Past, Present and Future. Drug Discov. Today Technol. 2020, 37, 117–124. https://doi.org/10.1016/j.ddtec.2019.06.001.
24.
Perli, G.; Wang, Q.; Braga, C.B.; Bertuzzi, D.L.; Fontana, L.A.; Soares, M.C.; Ruiz, J.; Megiatto, J.D., Jr.; Astruc, D.; Ornelas, C. Self-Assembly of a Triazolylferrocenyl Dendrimer in Water Yields Nontraditional Intrinsic Green Fluorescent Vesosomes for Nanotheranostic Applications. J. Am. Chem. Soc. 2021, 143, 12948–12954. https://doi.org/10.1021/jacs.1c05551.
25.
Thomas, S.R.; Casini, A. N-Heterocyclic Carbenes as “Smart” Gold Nanoparticle Stabilizers: State-Of-The Art and Perspectives for Biomedical Applications. J. Organomet. Chem. 2021, 938, 121743. https://doi.org/10.1016/j.jorganchem.2021.121743.
26.
Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–92. https://doi.org/10.1021/cr940472u.
27.
Jochmann, P.; Davin, J.P.; Spaniol, T.P.; Maron, L.; Okuda, J. A Cationic Calcium Hydride Cluster Stabilized by Cyclen-Derived Macrocyclic N,N,N,N Ligands. Angew. Chem. Int. Ed. 2012, 51, 4452–4455. https://doi.org/10.1002/anie.201200690.
28.
Peris, E.; Crabtree, R.H. Key Factors in Pincer Ligand Design. Chem. Soc. Rev. 2018, 47, 1959–1968. https://doi.org/10.1039/C7CS00693D.
29.
Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J.R. Multidentate Unsymmetrically-Substituted Schiff Bases and Their Metal Complexes: Synthesis, Functional Materials Properties, and Applications to Catalysis. Coord. Chem. Rev. 2018, 357, 144–172. https://doi.org/10.1016/j.ccr.2017.11.030.
30.
Cesari, C.; Shon, J.H.; Zacchini, S.; Berben, L.A. Metal Carbonyl Clusters of Groups 8–10: Synthesis and Catalysis. Chem. Soc. Rev. 2021, 50, 9503–9539. https://doi.org/10.1039/D1CS00161B.
31.
Liu, T.; Bai, S.; Zhang, L.; Hahn, F.E.; Han, Y.F. N-Heterocyclic Carbene-Stabilized Metal Nanoparticles Within Porous Organic Cages for Catalytic Application. Nat. Sci. Rev. 2022, 9, nwac067. https://doi.org/10.1093/nsr/nwac067.
32.
Gao, Y.; Tao, L.; Zhang, Y.Y.; Du, S. Enhanced Catalytic Activity of N-Heterocyclic Carbene Stabilized Surface Adatoms for CO Reduction Reaction. Commun. Chem. 2023, 6, 270. https://doi.org/10.1038/s42004-023-01066-2.
33.
Ghosh, M.; Khan, S. N-Heterocyclic Carbenes Capped Metal Nanoparticles: An Overview of Their Catalytic Scope. ACS Catalysis 2023, 13, 9313–9325. https://doi.org/10.1021/acscatal.3c01824.
34.
Nguyen, D.T.; Salek, S.; Shultz‐Johnson, L.R.; Bélanger‐Bouliga, M.; Jurca, T.; Byers, J.C.; Nazemi, A. Poly(N-Heterocyclic Carbene)-Capped Alloy and Core-Shell AuAg Bimetallic Nanoparticles. Angew. Chem. Int. Ed. 2024, 63, e202409800. https://doi.org/10.1002/anie.202409800.
35.
Astruc, D. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020, 120, 461–463. https://doi.org/10.1021/acs.chemrev.8b00696.
36.
Lu, X.F.; Fang, Y.; Luan, D.; Lou, X.W.D. Metal–Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Lett. 2021, 21, 1555–1565. https://doi.org/10.1021/acs.nanolett.0c04898.
37.
Rohland, P.; Schröter, E.; Nolte, O.; Newkome, G.R.; Hager, M.D.; Schubert, U.S. Redox-Active Polymers: The Magic Key Towards Energy Storage—A Polymer Design Guideline Progress in Polymer Science. Prog. Polym. Sci. 2022, 125, 101474. https://doi.org/10.1016/j.progpolymsci.2021.101474.
38.
Yao, Q.; Zhang, X.; Lu, Z.H.; Xu, Q. Metal-Organic Framework-Based Catalysts for Hydrogen Production from Liquid-Phase Chemical Hydrides. Coord. Chem. Rev. 2023, 493, 215302. https://doi.org/10.1016/j.ccr.2023.215302.
39.
Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8, 355–381. https://doi.org/10.1007/s12274-014-0644-3.
40.
Tegou, E.; Magana, M.; Katsogridaki, A.E.; Ioannidis, A.; Raptis, V.; Jordan, S.; Chatzipanagiotou, S.; Chatzandroulis, S.; Ornelas, C.; Tegos, G.P. Terms of Endearment: Bacteria Meet Graphene Nanosurfaces. Biomaterials 2016, 89, 38–55. https://doi.org/10.1016/j.biomaterials.2016.02.030.
41.
Kazemi, A.; Manteghi, F.; Tehrani, Z. Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS Omega 2024, 9, 7310–7335. https://doi.org/10.1021/acsomega.3c07911.
42.
Perumal, S.; Pokhrel, I.; Muhammad, U.; Shao, X.; Han, Y.; Kim, M.; Lee, H. Recent Advances in Electrochemical Water Splitting Electrocatalysts: Categorization by Parameters and Catalyst Types. ACS Mater. Lett. 2024, 6, 3625–3666. https://doi.org/10.1021/acsmaterialslett.4c00587.
43.
Molnar, G.; Rat, S.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Spin Crossover Nanomaterials : From Fundamental Concepts to Devices. Adv. Mater. 2018, 30, 17003862. 10.1002/adma.201703862.
44.
Li, D.X.; Yadav, A.; Zhou, H.; Roy, K.; Thanasekaran, P.; Lee, C.K. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. Global Challenges 2024, 8, 2300244. https://doi.org/10.1002/gch2.202300244
45.
Lledós, A. Computational Organometallic Catalysis: Where We Are, Where We Are Going. Eur. J. Inorg. Chem. 2021, 2021, 2547–2555. https://doi.org/10.1002/ejic.202100330.
46.
Rajabi, A.; Grotjahn, R.; Rappoport, D.; Furche, F. A DFT Perspective on Organometallic Lanthanide Chemistry. Dalton Trans. 2024, 53, 410–417. https://doi.org/10.1039/D3DT03221C.
47.
Zhang, M.M.; Dong, X.Y.; Wang, Y.J.; Zang, S.Q.; Mak, T.C. Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coord. Chem. Rev. 2022, 453, 214315. https://doi.org/10.1016/j.ccr.2021.214315.
48.
Barik, S.K.; Rao, M.S.K.; Jali, B.R.; Halet, J.F.; Jena, H.S. Helical Self-Assemblies of Molecule-Like Coinage Metal Nanoclusters and their Emerging Applications. Coord. Chem. Rev. 2025, 525, 216341. https://doi.org/10.1016/j.ccr.2024.216341.
49.
Bühler, R.; Schütz, M.; Andriani, K.F.; Quiles, M.G.; de Mendonça, J.P.A.; Ocampo-Restrepo, V.K.; Stephan, J.; Ling, S.; Kahlal, S.; Saillard, J.Y.; Gemel, C. A Living Library Concept to Capture the Dynamics and Reactivity of Mixed-Metal Clusters for Catalysis. Nat. Chem. 2025. https://doi.org/10.1038/s41557-024-01726-3.
50.
Park, T.; Song, J.; Jeong, J.; Kang, S.; Kim, J.; Won, J.; Han, J.; Min, K. Interpretable Machine Learning Boosting the Discovery of Targeted Organometallic Compounds with Optimal Bandgap. Mater. Today Adv. 2024, 23, 100520. https://doi.org/10.1016/j.mtadv.2024.100520.
51.
Mace, S.; Xu, Y.; Nguyen, B.N. Automated Transition Metal Catalysts Discovery and Optimisation with AI and Machine Learning. ChemCatChem 2024, 16, e202301475. https://doi.org/10.1002/cctc.202301475.
52.
Kang, Y.; Kim, J. ChatMOF: An Artificial Intelligence System for Predicting and Generating Metal-Organic Frameworks Using Large Language Models. Nat. Commun. 2024, 15, 4705. https://doi.org/10.1038/s41467-024-48998-4.
Issue
Volume 1, Issue 1How to Cite
Ornelas, C., & Astruc, D. (2025). Organometallic Science: From Fundamental Chemistry to a Cornerstone of Modern Innovations and Technological Advances. Organometallic Science, 1(1), 1. https://www.sciltp.com/journals/os/articles/2504000563
RIS
BibTex
Copyright & License

Copyright (c) 2025 by the authors.
This work is licensed under a Creative Commons Attribution 4.0 International License.