- 1.
Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. https://doi.org/10.1038/nature11475.
- 2.
The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide— Energy & Environmental Science (RSC Publishing) Available online: https://pubs.rsc.org/en/content/articlelanding/2010/ee/b912904a (accessed on 13 July 2025).
- 3.
Firouzjaie, H.A.; Mustain, W.E. Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells. ACS Catal. 2020, 10, 225–234. https://doi.org/10.1021/acscatal.9b03892.
- 4.
Ventura-Espinosa, D.; Martín, S.; García, H.; et al. Ligand Effects in the Stabilization of Gold Nanoparticles Anchored on the Surface of Graphene: Implications in Catalysis. J. Catal. 2021, 394, 113–120. https://doi.org/10.1016/j.jcat.2020.12.027.
- 5.
Shen, Y.; Mu, Y.; Wang, D.; et al. Tuning Electrode Reactivity through Organometallic Complexes. ACS Appl. Mater. Interfaces 2023, 15, 28851–28878. https://doi.org/10.1021/acsami.3c01726.
- 6.
N-Heterocyclic Carbenes in Late Transition Metal Catalysis | Chemical Reviews. Available online: https://pubs.acs.org/doi/10.1021/cr900074m (accessed on 13 July 2025).
- 7.
Dominique, N.L.; Chandran, A.; Jensen, I.M.; et al. Unmasking the Electrochemical Stability of N-Heterocyclic Carbene Monolayers on Gold. Chem.-Eur. J. 2024, 30, e202303681. https://doi.org/10.1002/chem.202303681.
- 8.
N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt | Chemical Reviews Available online: https://pubs.acs.org/doi/full/10.1021/acs.chemrev.8b00505?casa_token=5d6H8XuLDFsAAAAA%3A0erF_APQQ41K8fDLDIqwrkXG5F4VgQKgZjsFywvcfo41f2h3JKzGfO7NRuxPIbcjolCtNZgD5RhRoQ (accessed on 13 July 2025).
- 9.
Guo, W.-X.; Shen, Z.-K.; Su, Y.-F.; et al. Iron–N-Heterocyclic Carbene Complexes as Efficient Electrocatalysts for Water Oxidation under Acidic Conditions. Dalton Trans. 2022, 51, 12494–12501. https://doi.org/10.1039/D2DT01474B.
- 10.
Gao, Y.; Tao, L.; Zhang, Y.-Y.; et al. Enhanced Catalytic Activity of N-Heterocyclic Carbene Stabilized Surface Adatoms for CO Reduction Reaction. Commun. Chem. 2023, 6, 270. https://doi.org/10.1038/s42004-023-01066-2.
- 11.
Kaeffer, N.; Liu, H.-J.; Lo, H.-K.; et al. An N-Heterocyclic Carbene Ligand Promotes Highly Selective Alkyne Semihydrogenation with Copper Nanoparticles Supported on Passivated Silica. Chem. Sci. 2018, 9, 5366–5371. https://doi.org/10.1039/C8SC01924J.
- 12.
Rapakousiou, A.; Chalkidis, S.G.; Minadakis, M.P.; et al. NHC–Ni Nanoclusters Covalently Ligated on Carbon Nanotubes: Highly Active Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2025, 13, 17489–17498. https://doi.org/10.1039/D5TA00780A.
- 13.
N-Heterocyclic Carbenes as Tunable Ligands for Catalytic Metal Surfaces | Nature Catalysis. Available online: https://www.nature.com/articles/s41929-021-00607-z (accessed on 13 July 2025).
- 14.
Thoi, V.S.; Chang, C.J. Nickel N-Heterocyclic Carbene–Pyridine Complexes That Exhibit Selectivity for Electrocatalytic Reduction of Carbon Dioxide over Water. Chem. Commun. 2011, 47, 6578–6580. https://doi.org/10.1039/C1CC10449G.
- 15.
Bertini, S.; Rahaman, M.; Dutta, A.; et al. Oxo-Functionalised Mesoionic NHC Nickel Complexes for Selective Electrocatalytic Reduction of CO2 to Formate. Green Chem. 2021, 23, 3365–3373. https://doi.org/10.1039/D1GC00388G.
- 16.
Therrien, J.A.; Wolf, M.O.; Patrick, B.O. Electrocatalytic Reduction of CO2 with Palladium Bis-N-Heterocyclic Carbene Pincer Complexes. Inorg. Chem. 2014, 53, 12962–12972. https://doi.org/10.1021/ic502056w.
- 17.
Therrien, J.A.; Wolf, M.O.; Patrick, B.O. Polyannulated Bis(N-Heterocyclic Carbene)Palladium Pincer Complexes for Electrocatalytic CO2 Reduction. Inorg. Chem. 2015, 54, 11721–11732. https://doi.org/10.1021/acs.inorgchem.5b01698.
- 18.
Agarwal, J.; Shaw, T.W.; Stanton, C.J. III; et al. NHC-Containing Manganese(I) Electrocatalysts for the Two-Electron Reduction of CO2. Angew. Chem. Int. Ed. 2014, 53, 5152–5155. https://doi.org/10.1002/anie.201311099.
- 19.
Vanden Broeck, S.M.P.; Cazin, C.S.J. Manganese-N-Heterocyclic Carbene (NHC) Complexes—An Overview. Polyhedron 2021, 205, 115204. https://doi.org/10.1016/j.poly.2021.115204.
- 20.
Franco, F.; Pinto, M.F.; Royo, B.; et al. A Highly Active N-Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO2 Reduction to CO. Angew. Chem. Int. Ed. 2018, 57, 4603–4606. https://doi.org/10.1002/anie.201800705.
- 21.
Richter, M.L.; Peris, E.; Gonell, S. Influence of the Bis-Carbene Ligand on Manganese Catalysts for CO2 Electroreduction. ChemSusChem 2024, 17, e202401007. https://doi.org/10.1002/cssc.202401007.
- 22.
Gonell, S.; Assaf, E.A.; Lloret-Fillol, J.; et al. An Iron Bis(Carbene) Catalyst for Low Overpotential CO2 Electroreduction to CO: Mechanistic Insights from Kinetic Zone Diagrams, Spectroscopy, and Theory. ACS Catal. 2021, 11, 15212–15222. https://doi.org/10.1021/acscatal.1c04414.
- 23.
An Iron Pyridyl-Carbene Electrocatalyst for Low Overpotential CO2 Reduction to CO | ACS Catalysis. Available online: https://pubs.acs.org/doi/10.1021/acscatal.0c03798 (accessed on 23 July 2025).
- 24.
Zeng, C.M.; Panetier, J.A. Computational Modeling of Electrocatalysts for CO2 Reduction: Probing the Role of Primary, Secondary, and Outer Coordination Spheres. Acc. Chem. Res. 2025, 58, 342–353. https://doi.org/10.1021/acs.accounts.4c00631.
- 25.
Massie, A.A.; Schremmer, C.; Rüter, I.; et al. Selective Electrocatalytic CO2 Reduction to CO by an NHC-Based Organometallic Heme Analogue. ACS Catal. 2021, 11, 3257–3267. https://doi.org/10.1021/acscatal.0c04518.
- 26.
Su, X.; McCardle, K.M.; Chen, L.; et al. Robust and Selective Cobalt Catalysts Bearing Redox-Active Bipyridyl-N-Heterocyclic Carbene Frameworks for Electrochemical CO2 Reduction in Aqueous Solutions. ACS Catal. 2019, 9, 7398–7408. https://doi.org/10.1021/acscatal.9b00708.
- 27.
Kang, P.; Chen, Z.; Nayak, A.; et al. Catalyst Electrocatalytic Reduction of CO2 in Water to H2 + CO Syngas Mixtures with Water Oxidation to O2. Energy Environ. Sci. 2014, 7, 4007–4012. https://doi.org/10.1039/C4EE01904K.
- 28.
Gonell, S.; Massey, M.D.; Moseley, I.P.; et al. The Trans Effect in Electrocatalytic CO2 Reduction: Mechanistic Studies of Asymmetric Ruthenium Pyridyl-Carbene Catalysts. J. Am. Chem. Soc. 2019, 141, 6658–6671. https://doi.org/10.1021/jacs.9b01735.
- 29.
Kearney, L.; Brandon, M.P.; Coleman, A.; et al. Ligand−Structure Effects on N−Heterocyclic Carbene Rhenium Photo− and Electrocatalysts of CO2 Reduction. Molecules 2023, 28, 4149. https://doi.org/10.3390/molecules28104149.
- 30.
Myren, T.H.T.; Alherz, A.; Stinson, T.A.; et al. Metalloradical Intermediates in Electrocatalytic Reduction of CO2 to CO: Mn versus Re Bis-N-Heterocyclic Carbene Pincers. Dalton Trans. 2020, 49, 2053–2057. https://doi.org/10.1039/C9DT04691G.
- 31.
Friães, S.; Realista, S.; Mourão, H.; et al. N-Heterocyclic and Mesoionic Carbenes of Manganese and Rhenium in Catalysis. Eur. J. Inorg. Chem. 2022, 2022, e202100884. https://doi.org/10.1002/ejic.202100884.
- 32.
Huang, C.; Liu, J.; Huang, H.-H.; et al. Recent Progress in Electro- and Photo-Catalytic CO2 Reduction Using N-Heterocyclic Carbene Transition Metal Complexes. Polyhedron 2021, 203, 115147. https://doi.org/10.1016/j.poly.2021.115147.
- 33.
Cao, Z.; Kim, D.; Hong, D.; et al. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction. J. Am. Chem. Soc. 2016, 138, 8120–8125. https://doi.org/10.1021/jacs.6b02878.
- 34.
Vickers, J.W.; Alfonso, D.; Kauffman, D.R. Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials. Energy Technol. 2017, 5, 775–795. https://doi.org/10.1002/ente.201600580.
- 35.
Cao, Z.; Derrick, J.S.; Xu, J.; et al. Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO2 Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. Angew. Chem. Int. Ed. 2018, 57, 4981–4985. https://doi.org/10.1002/anie.201800367.
- 36.
Luo, Q.; Duan, H.; McLaughlin, M.C.; et al. Why Surface Hydrophobicity Promotes CO2 Electroreduction: A Case Study of Hydrophobic Polymer N-Heterocyclic Carbenes. Chem. Sci. 2023, 14, 9664–9677. https://doi.org/10.1039/D3SC02658B.
- 37.
Chen, Y.; Wei, K.; Duan, H.; et al. N-Heterocyclic Carbene Polymer-Stabilized Au Nanowires for Selective and Stable Reduction of CO2. J. Am. Chem. Soc. 2025, 147, 14845–14855. https://doi.org/10.1021/jacs.5c04742.
- 38.
Kolding, K.N.; Bretlau, M.; Zhao, S.; et al. NHC-CDI Ligands Boost Multicarbon Production in Electrocatalytic CO2 Reduction by Increasing Accumulated Charged Intermediates and Promoting *CO Dimerization on Cu. J. Am. Chem. Soc. 2024, 146, 13034–13045. https://doi.org/10.1021/jacs.3c14306.
- 39.
Narouz, M.R.; Osten, K.M.; Unsworth, P.J.; et al. N-Heterocyclic Carbene-Functionalized Magic-Number Gold Nanoclusters. Nat. Chem. 2019, 11, 419–425. https://doi.org/10.1038/s41557-019-0246-5.
- 40.
Chen, Z.; Zuo, D.; Zhao, L.; et al. Electrochemical Dechlorination Promotes Syngas Production in N-Heterocyclic Carbene Protected Au13 Nanoclusters. Chem. Sci. 2025, 16, 10397–10413. https://doi.org/10.1039/D5SC00896D.
- 41.
Kulkarni, V.K.; Khiarak, B.N.; Takano, S.; et al. N-Heterocyclic Carbene-Stabilized Hydrido Au24 Nanoclusters: Synthesis, Structure, and Electrocatalytic Reduction of CO2. J. Am. Chem. Soc. 2022, 144, 9000–9006. https://doi.org/10.1021/jacs.2c00789.
- 42.
Levchenko, T.I.; Yi, H.; Aloisio, M.D.; et al. Electrocatalytic CO2 Reduction with Atomically Precise Au13 Nanoclusters: Effect of Ligand Shell on Catalytic Performance. ACS Catal. 2024, 14, 4155–4163. https://doi.org/10.1021/acscatal.3c06114.
- 43.
Tappan, B.A.; Chen, K.; Lu, H.; Sharada, S.M.; Brutchey, R.L. Synthesis and Electrocatalytic HER Studies of Carbene-Ligated Cu3–xP Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 16394–16401. https://doi.org/10.1021/acsami.0c00025.
- 44.
Brinda, K.N.; Małecki, J.G.; Yhobu, Z.; et al. Novel Carbene Anchored Molecular Catalysts for Hydrogen Evolution Reactions. J. Phys. Chem. C 2021, 125, 3793–3803. https://doi.org/10.1021/acs.jpcc.0c06701.
- 45.
Markandeya, G.B.; Yhobu, Z.; Małecki, J.G.; et al. Palladium(II)–N-Heterocyclic Carbene Complex-Based Electrocatalysts for Hydrogen Evolution Reaction. Energy Fuels 2023, 37, 2237–2244. https://doi.org/10.1021/acs.energyfuels.2c04124.
- 46.
Brinda, K.N.; Yhobu, Z.; Małecki, J.G.; et al. Novel Coumarin Substituted N–Heterocyclic Carbene Ag(I), Au(I) and Ni(II) Complexes as Electrocatalysts in Hydrogen Evolution Reactions from Water. Int. J. Hydrogen Energy 2023, 48, 10911–10921. https://doi.org/10.1016/j.ijhydene.2022.12.124.
- 47.
Shahadat, H.M.; Ahmad, N.; Khattak, Z.A.K.; et al. Highly Active Macrocyclic Nickel(II) Complex for Hydrogen Evolution Reaction in Neutral Aqueous Conditions. Int. J. Hydrogen Energy 2023, 48, 33927–33936. https://doi.org/10.1016/j.ijhydene.2023.05.192.
- 48.
Vijayakumar, M.; Małecki, J.G.; Nagaraju, D.H.; et al. Impact of Ligand Modification on the Hydrogen Evolution Reaction of Highly Active Silver(I)- and Ruthenium(II)-N-Heterocyclic Carbene-Based Electrocatalysts: Comprehension from the Hydrogen Oxidation Reaction. ACS Appl. Energy Mater. 2024, 7, 4813–4825. https://doi.org/10.1021/acsaem.4c00523.
- 49.
Yhobu, Z.; Markandeya, G.B.; Małecki, J.G.; et al. Enhancing Electrochemical Hydrogen Evolution Performance of N-Heterocyclic Carbene-Coordinated Palladium(II) Complexes with Conductive Carbon: Insights from Hydrogen Oxidation Reactions. ACS Appl. Energy Mater. 2024, 7, 1202–1211. https://doi.org/10.1021/acsaem.3c02779.
- 50.
Si, S.; Song, W.; Chen, J.; et al. Neutral Nickel Complexes with Tetradentate N-Heterocyclic Carbene Amidate Ligands for Electrocatalytic Hydrogen Evolution. Dalton Trans. 2024, 53, 19088–19092. https://doi.org/10.1039/D4DT02746A.
- 51.
Yhobu, Z.; Patel, M.J.; Małecki, J.G.; et al. Mono- vs. Tri-Nuclear Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes/Metallacycles as Free-Standing Carbon Cloth Electrodes for Hydrogen Evolution Reaction in Alkaline Medium. Energy Fuels 2024, 38, 23058–23067. https://doi.org/10.1021/acs.energyfuels.4c04103.
- 52.
Mandal, S.K.; Sunil, C.; Choudhury, J. [Fe]-Hydrogenase-Inspired Proton-Shuttle Installation in a Molecular Cobalt Complex for High-Efficiency H2 Evolution Reaction. ACS Catal. 2024, 14, 2058–2070. https://doi.org/10.1021/acscatal.3c04879.
- 53.
Rapakousiou, A.; Minadakis, M.P.; Chalkidis, S.G.; et al. Nanoarchitectured N-Heterocyclic Carbene-Pt Nanoparticles on Carbon Nanotubes: Toward Advanced Electrocatalysis in the Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2025, 17, 28138–28150. https://doi.org/10.1021/acsami.5c02182.
- 54.
Shahadat, H.M.; Younus, H.A.; Ahmad, Net al. Homogenous Electrochemical Water Oxidation by a Nickel(II) Complex Based on a Macrocyclic N-Heterocyclic Carbene/Pyridine Hybrid Ligand. Catal. Sci. Technol. 2019, 9, 5651–5659. https://doi.org/10.1039/C9CY01485C.
- 55.
Sánchez-Page, B.; Pérez-Mas, A.M.; González-Ingelmo, M.; et al. Influence of Graphene Sheet Properties as Supports of Iridium-Based N-Heterocyclic Carbene Hybrid Materials for Water Oxidation Electrocatalysis. J. Organomet. Chem. 2020, 919, 121334. https://doi.org/10.1016/j.jorganchem.2020.121334.
- 56.
González-Ingelmo, M.; Álvarez, P.; Granda, M.; et al. On the Study of the Preparation of Graphene-Anchored NHC-Iridium Catalysts from a Coke-like Waste with Application in Water Splitting. Appl. Surf. Sci. 2024, 655, 159556. https://doi.org/10.1016/j.apsusc.2024.159556.
- 57.
Yhobu, Z.; Markandeya, G.B.; Małecki, J.G.; et al. Pyridine-Functionalized N-Heterocyclic Carbene Gold(I) Binuclear Complexes as Molecular Electrocatalysts for Oxygen Evolution Reactions. Appl. Organomet. Chem. 2022, 36, e6837. https://doi.org/10.1002/aoc.6837.
- 58.
Vijayakumar, M.; Yhobu, Z.; Małecki, J.G.; et al. Comprehensive Enhancement in Electrocatalytic Oxygen Evolution Performance of Nickel and Cobalt Complexes Derived from π-Conjugated N-Heterocyclic Carbene Ligands through Carbon Composite Strategy. Catal. Sci. Technol. 2024, 14, 2489–2502. https://doi.org/10.1039/D3CY01732J.
- 59.
Sampatkumar, H.G.; Patra, A.; Antony, A.M.; et al. A Sustainable Anchoring of Palladium Nanoparticles on Waste Plastic Derived Functionalized Robust Carbon: There of Application in Sensing of Genotoxic Bio-Thiol Compound and Oxygen Evolution Activity. Chem. Eng. Sci. 2025, 307, 121334. https://doi.org/10.1016/j.ces.2025.121334.
- 60.
Yhobu, Z.; Patel, M.J.; Małecki, J.G.; et al. Non-Covalent Immobilization of Metal N-Heterocyclic Carbene Complexes onto Carbon Cloth as Bifunctional Electrodes for Overall Water Splitting in Alkaline Medium. ACS Appl. Energy Mater. 2024, 7, 9500–9511. https://doi.org/10.1021/acsaem.4c02127.
- 61.
Vijayakumar, M.; Achar, G.; Yhobu, Z.; et al. Augmenting the Electrocatalytic Activities of Metal–N-Heterocyclic Carbene Complexes as Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions by Carbon Composite Strategy. Energy Fuels 2024, 38, 5421–5432. https://doi.org/10.1021/acs.energyfuels.3c04793.
- 62.
Daniel, S.; Vijayakumar, M.; Gandigawad, A.; et al. Nickel(II)–N-Heterocyclic Carbene Complex and Its Carbon Nanotube Composites as Efficient Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions and Mercury-Sensing Applications. Energy Fuels 2024, 38, 14632–14644. https://doi.org/10.1021/acs.energyfuels.4c01848.
- 63.
Liu, L.; Johnson, S.I.; Appel, A.M.; et al. Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis. Angew. Chem. Int. Ed. 2024, 63, e202402635. https://doi.org/10.1002/anie.202402635.
- 64.
Zhang, J.; Zhang, Y.; Qin, Z.; et al. How Carbene Ligands Transform AuAg Alloy Nanoclusters for Electrocatalytic Urea Synthesis. Angew. Chem. Int. Ed. 2025, 64, e202420993. https://doi.org/10.1002/anie.202420993.
- 65.
Su, X.; McCardle, K.M.; Panetier, J.A.; et al. Electrocatalytic CO2 Reduction with Nickel Complexes Supported by Tunable Bipyridyl-N-Heterocyclic Carbene Donors: Understanding Redox-Active Macrocycles. Chem. Commun. 2018, 54, 3351–3354. https://doi.org/10.1039/C8CC00266E.
- 66.
Weder, N.; Probst, B.; Sévery, L.; et al. Mechanistic Insights into Photocatalysis and over Two Days of Stable H2 Generation in Electrocatalysis by a Molecular Cobalt Catalyst Immobilized on TiO2. Catal. Sci. Technol. 2020, 10, 2549–2560. https://doi.org/10.1039/D0CY00330A.