2508001181
  • Open Access
  • Review

N-Heterocyclic Carbenes in Advanced Electrocatalysis: From Molecular Complexes to Hybrid Metal Nanostructures

  • Amalia Rapakousiou 1, 2

Received: 04 Aug 2025 | Revised: 26 Aug 2025 | Accepted: 27 Aug 2025 | Published: 02 Sep 2025

Abstract

N Heterocyclic carbenes (NHCs) have emerged as powerful and versatile ligands in electrocatalysis, offering a unique combination of strong σ-donor and π-acceptor properties, exceptional thermal and electrochemical stability, and broad structural tunability. This review surveys recent advances in NHC-based electrocatalytic systems across a spectrum of key energy-relevant transformations —including CO2 reduction (CO2RR), hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), ammonia oxidation, and urea electrosynthesis. From well-defined molecular complexes to nanostructured hybrids and surface-bound architectures, NHC ligands enable fine control over metal–ligand redox interplay, substrate activation, and reaction selectivity. Their covalent anchoring on conductive supports ensures strong metal–support coupling, maximized active-site exposure, and exceptional long-term durability. Mechanistic insights from operando studies and DFT simulations reveal how NHC coordination shapes charge-transfer steps, stabilizes high-valent intermediates, and enhances multielectron reactivity. Particular attention is paid to macrocyclic and redox-active NHC scaffolds, which offer new opportunities for stabilizing reactive intermediates and mediating proton-coupled electron transfer. Together, these findings highlight the broad utility of NHCs as molecular design elements bridging homogeneous and heterogeneous catalysis. We conclude by outlining emerging ligand architectures and materials integration strategies that will be key for advancing scalable, durable, and selective NHC-based electrocatalytic technologies.

References 

  • 1.
    Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. https://doi.org/10.1038/nature11475.
  • 2.
    The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide— Energy & Environmental Science (RSC Publishing) Available online: https://pubs.rsc.org/en/content/articlelanding/2010/ee/b912904a (accessed on 13 July 2025).
  • 3.
    Firouzjaie, H.A.; Mustain, W.E. Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells. ACS Catal. 2020, 10, 225–234. https://doi.org/10.1021/acscatal.9b03892.
  • 4.
    Ventura-Espinosa, D.; Martín, S.; García, H.; et al. Ligand Effects in the Stabilization of Gold Nanoparticles Anchored on the Surface of Graphene: Implications in Catalysis. J. Catal. 2021, 394, 113–120. https://doi.org/10.1016/j.jcat.2020.12.027.
  • 5.
    Shen, Y.; Mu, Y.; Wang, D.; et al. Tuning Electrode Reactivity through Organometallic Complexes. ACS Appl. Mater. Interfaces 2023, 15, 28851–28878. https://doi.org/10.1021/acsami.3c01726.
  • 6.
    N-Heterocyclic Carbenes in Late Transition Metal Catalysis | Chemical Reviews. Available online: https://pubs.acs.org/doi/10.1021/cr900074m (accessed on 13 July 2025).
  • 7.
    Dominique, N.L.; Chandran, A.; Jensen, I.M.; et al. Unmasking the Electrochemical Stability of N-Heterocyclic Carbene Monolayers on Gold. Chem.-Eur. J. 2024, 30, e202303681. https://doi.org/10.1002/chem.202303681.
  • 8.
    N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt | Chemical Reviews Available online: https://pubs.acs.org/doi/full/10.1021/acs.chemrev.8b00505?casa_token=5d6H8XuLDFsAAAAA%3A0erF_APQQ41K8fDLDIqwrkXG5F4VgQKgZjsFywvcfo41f2h3JKzGfO7NRuxPIbcjolCtNZgD5RhRoQ (accessed on 13 July 2025).
  • 9.
    Guo, W.-X.; Shen, Z.-K.; Su, Y.-F.; et al. Iron–N-Heterocyclic Carbene Complexes as Efficient Electrocatalysts for Water Oxidation under Acidic Conditions. Dalton Trans. 2022, 51, 12494–12501. https://doi.org/10.1039/D2DT01474B.
  • 10.
    Gao, Y.; Tao, L.; Zhang, Y.-Y.; et al. Enhanced Catalytic Activity of N-Heterocyclic Carbene Stabilized Surface Adatoms for CO Reduction Reaction. Commun. Chem. 2023, 6, 270. https://doi.org/10.1038/s42004-023-01066-2.
  • 11.
    Kaeffer, N.; Liu, H.-J.; Lo, H.-K.; et al. An N-Heterocyclic Carbene Ligand Promotes Highly Selective Alkyne Semihydrogenation with Copper Nanoparticles Supported on Passivated Silica. Chem. Sci. 2018, 9, 5366–5371. https://doi.org/10.1039/C8SC01924J.
  • 12.
    Rapakousiou, A.; Chalkidis, S.G.; Minadakis, M.P.; et al. NHC–Ni Nanoclusters Covalently Ligated on Carbon Nanotubes: Highly Active Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2025, 13, 17489–17498. https://doi.org/10.1039/D5TA00780A.
  • 13.
    N-Heterocyclic Carbenes as Tunable Ligands for Catalytic Metal Surfaces | Nature Catalysis. Available online: https://www.nature.com/articles/s41929-021-00607-z (accessed on 13 July 2025).
  • 14.
    Thoi, V.S.; Chang, C.J. Nickel N-Heterocyclic Carbene–Pyridine Complexes That Exhibit Selectivity for Electrocatalytic Reduction of Carbon Dioxide over Water. Chem. Commun. 2011, 47, 6578–6580. https://doi.org/10.1039/C1CC10449G.
  • 15.
    Bertini, S.; Rahaman, M.; Dutta, A.; et al. Oxo-Functionalised Mesoionic NHC Nickel Complexes for Selective Electrocatalytic Reduction of CO2 to Formate. Green Chem. 2021, 23, 3365–3373. https://doi.org/10.1039/D1GC00388G.
  • 16.
    Therrien, J.A.; Wolf, M.O.; Patrick, B.O. Electrocatalytic Reduction of CO2 with Palladium Bis-N-Heterocyclic Carbene Pincer Complexes. Inorg. Chem. 2014, 53, 12962–12972. https://doi.org/10.1021/ic502056w.
  • 17.
    Therrien, J.A.; Wolf, M.O.; Patrick, B.O. Polyannulated Bis(N-Heterocyclic Carbene)Palladium Pincer Complexes for Electrocatalytic CO2 Reduction. Inorg. Chem. 2015, 54, 11721–11732. https://doi.org/10.1021/acs.inorgchem.5b01698.
  • 18.
    Agarwal, J.; Shaw, T.W.; Stanton, C.J. III; et al. NHC-Containing Manganese(I) Electrocatalysts for the Two-Electron Reduction of CO2. Angew. Chem. Int. Ed. 2014, 53, 5152–5155. https://doi.org/10.1002/anie.201311099.
  • 19.
    Vanden Broeck, S.M.P.; Cazin, C.S.J. Manganese-N-Heterocyclic Carbene (NHC) Complexes—An Overview. Polyhedron 2021, 205, 115204. https://doi.org/10.1016/j.poly.2021.115204.
  • 20.
    Franco, F.; Pinto, M.F.; Royo, B.; et al. A Highly Active N-Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO2 Reduction to CO. Angew. Chem. Int. Ed. 2018, 57, 4603–4606. https://doi.org/10.1002/anie.201800705.
  • 21.
    Richter, M.L.; Peris, E.; Gonell, S. Influence of the Bis-Carbene Ligand on Manganese Catalysts for CO2 Electroreduction. ChemSusChem 2024, 17, e202401007. https://doi.org/10.1002/cssc.202401007.
  • 22.
    Gonell, S.; Assaf, E.A.; Lloret-Fillol, J.; et al. An Iron Bis(Carbene) Catalyst for Low Overpotential CO2 Electroreduction to CO: Mechanistic Insights from Kinetic Zone Diagrams, Spectroscopy, and Theory. ACS Catal. 2021, 11, 15212–15222. https://doi.org/10.1021/acscatal.1c04414.
  • 23.
    An Iron Pyridyl-Carbene Electrocatalyst for Low Overpotential CO2 Reduction to CO | ACS Catalysis. Available online: https://pubs.acs.org/doi/10.1021/acscatal.0c03798 (accessed on 23 July 2025).
  • 24.
    Zeng, C.M.; Panetier, J.A. Computational Modeling of Electrocatalysts for CO2 Reduction: Probing the Role of Primary, Secondary, and Outer Coordination Spheres. Acc. Chem. Res. 2025, 58, 342–353. https://doi.org/10.1021/acs.accounts.4c00631.
  • 25.
    Massie, A.A.; Schremmer, C.; Rüter, I.; et al. Selective Electrocatalytic CO2 Reduction to CO by an NHC-Based Organometallic Heme Analogue. ACS Catal. 2021, 11, 3257–3267. https://doi.org/10.1021/acscatal.0c04518.
  • 26.
    Su, X.; McCardle, K.M.; Chen, L.; et al. Robust and Selective Cobalt Catalysts Bearing Redox-Active Bipyridyl-N-Heterocyclic Carbene Frameworks for Electrochemical CO2 Reduction in Aqueous Solutions. ACS Catal. 2019, 9, 7398–7408. https://doi.org/10.1021/acscatal.9b00708.
  • 27.
    Kang, P.; Chen, Z.; Nayak, A.; et al. Catalyst Electrocatalytic Reduction of CO2 in Water to H2 + CO Syngas Mixtures with Water Oxidation to O2. Energy Environ. Sci. 2014, 7, 4007–4012. https://doi.org/10.1039/C4EE01904K.
  • 28.
    Gonell, S.; Massey, M.D.; Moseley, I.P.; et al. The Trans Effect in Electrocatalytic CO2 Reduction: Mechanistic Studies of Asymmetric Ruthenium Pyridyl-Carbene Catalysts. J. Am. Chem. Soc. 2019, 141, 6658–6671. https://doi.org/10.1021/jacs.9b01735.
  • 29.
    Kearney, L.; Brandon, M.P.; Coleman, A.; et al. Ligand−Structure Effects on N−Heterocyclic Carbene Rhenium Photo− and Electrocatalysts of CO2 Reduction. Molecules 2023, 28, 4149. https://doi.org/10.3390/molecules28104149.
  • 30.
    Myren, T.H.T.; Alherz, A.; Stinson, T.A.; et al. Metalloradical Intermediates in Electrocatalytic Reduction of CO2 to CO: Mn versus Re Bis-N-Heterocyclic Carbene Pincers. Dalton Trans. 2020, 49, 2053–2057. https://doi.org/10.1039/C9DT04691G.
  • 31.
    Friães, S.; Realista, S.; Mourão, H.; et al. N-Heterocyclic and Mesoionic Carbenes of Manganese and Rhenium in Catalysis. Eur. J. Inorg. Chem. 2022, 2022, e202100884. https://doi.org/10.1002/ejic.202100884.
  • 32.
    Huang, C.; Liu, J.; Huang, H.-H.; et al. Recent Progress in Electro- and Photo-Catalytic CO2 Reduction Using N-Heterocyclic Carbene Transition Metal Complexes. Polyhedron 2021, 203, 115147. https://doi.org/10.1016/j.poly.2021.115147.
  • 33.
    Cao, Z.; Kim, D.; Hong, D.; et al. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction. J. Am. Chem. Soc. 2016, 138, 8120–8125. https://doi.org/10.1021/jacs.6b02878.
  • 34.
    Vickers, J.W.; Alfonso, D.; Kauffman, D.R. Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials. Energy Technol. 2017, 5, 775–795. https://doi.org/10.1002/ente.201600580.
  • 35.
    Cao, Z.; Derrick, J.S.; Xu, J.; et al. Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO2 Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. Angew. Chem. Int. Ed. 2018, 57, 4981–4985. https://doi.org/10.1002/anie.201800367.
  • 36.
    Luo, Q.; Duan, H.; McLaughlin, M.C.; et al. Why Surface Hydrophobicity Promotes CO2 Electroreduction: A Case Study of Hydrophobic Polymer N-Heterocyclic Carbenes. Chem. Sci. 2023, 14, 9664–9677. https://doi.org/10.1039/D3SC02658B.
  • 37.
    Chen, Y.; Wei, K.; Duan, H.; et al. N-Heterocyclic Carbene Polymer-Stabilized Au Nanowires for Selective and Stable Reduction of CO2. J. Am. Chem. Soc. 2025, 147, 14845–14855. https://doi.org/10.1021/jacs.5c04742.
  • 38.
    Kolding, K.N.; Bretlau, M.; Zhao, S.; et al. NHC-CDI Ligands Boost Multicarbon Production in Electrocatalytic CO2 Reduction by Increasing Accumulated Charged Intermediates and Promoting *CO Dimerization on Cu. J. Am. Chem. Soc. 2024, 146, 13034–13045. https://doi.org/10.1021/jacs.3c14306.
  • 39.
    Narouz, M.R.; Osten, K.M.; Unsworth, P.J.; et al. N-Heterocyclic Carbene-Functionalized Magic-Number Gold Nanoclusters. Nat. Chem. 2019, 11, 419–425. https://doi.org/10.1038/s41557-019-0246-5.
  • 40.
    Chen, Z.; Zuo, D.; Zhao, L.; et al. Electrochemical Dechlorination Promotes Syngas Production in N-Heterocyclic Carbene Protected Au13 Nanoclusters. Chem. Sci. 2025, 16, 10397–10413. https://doi.org/10.1039/D5SC00896D.
  • 41.
    Kulkarni, V.K.; Khiarak, B.N.; Takano, S.; et al. N-Heterocyclic Carbene-Stabilized Hydrido Au24 Nanoclusters: Synthesis, Structure, and Electrocatalytic Reduction of CO2. J. Am. Chem. Soc. 2022, 144, 9000–9006. https://doi.org/10.1021/jacs.2c00789.
  • 42.
    Levchenko, T.I.; Yi, H.; Aloisio, M.D.; et al. Electrocatalytic CO2 Reduction with Atomically Precise Au13 Nanoclusters: Effect of Ligand Shell on Catalytic Performance. ACS Catal. 2024, 14, 4155–4163. https://doi.org/10.1021/acscatal.3c06114.
  • 43.
    Tappan, B.A.; Chen, K.; Lu, H.; Sharada, S.M.; Brutchey, R.L. Synthesis and Electrocatalytic HER Studies of Carbene-Ligated Cu3–xP Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 16394–16401. https://doi.org/10.1021/acsami.0c00025.
  • 44.
    Brinda, K.N.; Małecki, J.G.; Yhobu, Z.; et al. Novel Carbene Anchored Molecular Catalysts for Hydrogen Evolution Reactions. J. Phys. Chem. C 2021, 125, 3793–3803. https://doi.org/10.1021/acs.jpcc.0c06701.
  • 45.
    Markandeya, G.B.; Yhobu, Z.; Małecki, J.G.; et al. Palladium(II)–N-Heterocyclic Carbene Complex-Based Electrocatalysts for Hydrogen Evolution Reaction. Energy Fuels 2023, 37, 2237–2244. https://doi.org/10.1021/acs.energyfuels.2c04124.
  • 46.
    Brinda, K.N.; Yhobu, Z.; Małecki, J.G.; et al. Novel Coumarin Substituted N–Heterocyclic Carbene Ag(I), Au(I) and Ni(II) Complexes as Electrocatalysts in Hydrogen Evolution Reactions from Water. Int. J. Hydrogen Energy 2023, 48, 10911–10921. https://doi.org/10.1016/j.ijhydene.2022.12.124.
  • 47.
    Shahadat, H.M.; Ahmad, N.; Khattak, Z.A.K.; et al. Highly Active Macrocyclic Nickel(II) Complex for Hydrogen Evolution Reaction in Neutral Aqueous Conditions. Int. J. Hydrogen Energy 2023, 48, 33927–33936. https://doi.org/10.1016/j.ijhydene.2023.05.192.
  • 48.
    Vijayakumar, M.; Małecki, J.G.; Nagaraju, D.H.; et al. Impact of Ligand Modification on the Hydrogen Evolution Reaction of Highly Active Silver(I)- and Ruthenium(II)-N-Heterocyclic Carbene-Based Electrocatalysts: Comprehension from the Hydrogen Oxidation Reaction. ACS Appl. Energy Mater. 2024, 7, 4813–4825. https://doi.org/10.1021/acsaem.4c00523.
  • 49.
    Yhobu, Z.; Markandeya, G.B.; Małecki, J.G.; et al. Enhancing Electrochemical Hydrogen Evolution Performance of N-Heterocyclic Carbene-Coordinated Palladium(II) Complexes with Conductive Carbon: Insights from Hydrogen Oxidation Reactions. ACS Appl. Energy Mater. 2024, 7, 1202–1211. https://doi.org/10.1021/acsaem.3c02779.
  • 50.
    Si, S.; Song, W.; Chen, J.; et al. Neutral Nickel Complexes with Tetradentate N-Heterocyclic Carbene Amidate Ligands for Electrocatalytic Hydrogen Evolution. Dalton Trans. 2024, 53, 19088–19092. https://doi.org/10.1039/D4DT02746A.
  • 51.
    Yhobu, Z.; Patel, M.J.; Małecki, J.G.; et al. Mono- vs. Tri-Nuclear Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes/Metallacycles as Free-Standing Carbon Cloth Electrodes for Hydrogen Evolution Reaction in Alkaline Medium. Energy Fuels 2024, 38, 23058–23067. https://doi.org/10.1021/acs.energyfuels.4c04103.
  • 52.
    Mandal, S.K.; Sunil, C.; Choudhury, J. [Fe]-Hydrogenase-Inspired Proton-Shuttle Installation in a Molecular Cobalt Complex for High-Efficiency H2 Evolution Reaction. ACS Catal. 2024, 14, 2058–2070. https://doi.org/10.1021/acscatal.3c04879.
  • 53.
    Rapakousiou, A.; Minadakis, M.P.; Chalkidis, S.G.; et al. Nanoarchitectured N-Heterocyclic Carbene-Pt Nanoparticles on Carbon Nanotubes: Toward Advanced Electrocatalysis in the Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2025, 17, 28138–28150. https://doi.org/10.1021/acsami.5c02182.
  • 54.
    Shahadat, H.M.; Younus, H.A.; Ahmad, Net al. Homogenous Electrochemical Water Oxidation by a Nickel(II) Complex Based on a Macrocyclic N-Heterocyclic Carbene/Pyridine Hybrid Ligand. Catal. Sci. Technol. 2019, 9, 5651–5659. https://doi.org/10.1039/C9CY01485C.
  • 55.
    Sánchez-Page, B.; Pérez-Mas, A.M.; González-Ingelmo, M.; et al. Influence of Graphene Sheet Properties as Supports of Iridium-Based N-Heterocyclic Carbene Hybrid Materials for Water Oxidation Electrocatalysis. J. Organomet. Chem. 2020, 919, 121334. https://doi.org/10.1016/j.jorganchem.2020.121334.
  • 56.
    González-Ingelmo, M.; Álvarez, P.; Granda, M.; et al. On the Study of the Preparation of Graphene-Anchored NHC-Iridium Catalysts from a Coke-like Waste with Application in Water Splitting. Appl. Surf. Sci. 2024, 655, 159556. https://doi.org/10.1016/j.apsusc.2024.159556.
  • 57.
    Yhobu, Z.; Markandeya, G.B.; Małecki, J.G.; et al. Pyridine-Functionalized N-Heterocyclic Carbene Gold(I) Binuclear Complexes as Molecular Electrocatalysts for Oxygen Evolution Reactions. Appl. Organomet. Chem. 2022, 36, e6837. https://doi.org/10.1002/aoc.6837.
  • 58.
    Vijayakumar, M.; Yhobu, Z.; Małecki, J.G.; et al. Comprehensive Enhancement in Electrocatalytic Oxygen Evolution Performance of Nickel and Cobalt Complexes Derived from π-Conjugated N-Heterocyclic Carbene Ligands through Carbon Composite Strategy. Catal. Sci. Technol. 2024, 14, 2489–2502. https://doi.org/10.1039/D3CY01732J.
  • 59.
    Sampatkumar, H.G.; Patra, A.; Antony, A.M.; et al. A Sustainable Anchoring of Palladium Nanoparticles on Waste Plastic Derived Functionalized Robust Carbon: There of Application in Sensing of Genotoxic Bio-Thiol Compound and Oxygen Evolution Activity. Chem. Eng. Sci. 2025, 307, 121334. https://doi.org/10.1016/j.ces.2025.121334.
  • 60.
    Yhobu, Z.; Patel, M.J.; Małecki, J.G.; et al. Non-Covalent Immobilization of Metal N-Heterocyclic Carbene Complexes onto Carbon Cloth as Bifunctional Electrodes for Overall Water Splitting in Alkaline Medium. ACS Appl. Energy Mater. 2024, 7, 9500–9511. https://doi.org/10.1021/acsaem.4c02127.
  • 61.
    Vijayakumar, M.; Achar, G.; Yhobu, Z.; et al. Augmenting the Electrocatalytic Activities of Metal–N-Heterocyclic Carbene Complexes as Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions by Carbon Composite Strategy. Energy Fuels 2024, 38, 5421–5432. https://doi.org/10.1021/acs.energyfuels.3c04793.
  • 62.
    Daniel, S.; Vijayakumar, M.; Gandigawad, A.; et al. Nickel(II)–N-Heterocyclic Carbene Complex and Its Carbon Nanotube Composites as Efficient Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions and Mercury-Sensing Applications. Energy Fuels 2024, 38, 14632–14644. https://doi.org/10.1021/acs.energyfuels.4c01848.
  • 63.
    Liu, L.; Johnson, S.I.; Appel, A.M.; et al. Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis. Angew. Chem. Int. Ed. 2024, 63, e202402635. https://doi.org/10.1002/anie.202402635.
  • 64.
    Zhang, J.; Zhang, Y.; Qin, Z.; et al. How Carbene Ligands Transform AuAg Alloy Nanoclusters for Electrocatalytic Urea Synthesis. Angew. Chem. Int. Ed. 2025, 64, e202420993. https://doi.org/10.1002/anie.202420993.
  • 65.
    Su, X.; McCardle, K.M.; Panetier, J.A.; et al. Electrocatalytic CO2 Reduction with Nickel Complexes Supported by Tunable Bipyridyl-N-Heterocyclic Carbene Donors: Understanding Redox-Active Macrocycles. Chem. Commun. 2018, 54, 3351–3354. https://doi.org/10.1039/C8CC00266E.
  • 66.
    Weder, N.; Probst, B.; Sévery, L.; et al. Mechanistic Insights into Photocatalysis and over Two Days of Stable H2 Generation in Electrocatalysis by a Molecular Cobalt Catalyst Immobilized on TiO2. Catal. Sci. Technol. 2020, 10, 2549–2560. https://doi.org/10.1039/D0CY00330A.
Share this article:
How to Cite
Rapakousiou, A. N-Heterocyclic Carbenes in Advanced Electrocatalysis: From Molecular Complexes to Hybrid Metal Nanostructures. Organometallic Science 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.