2511002329
  • Open Access
  • Review

Clues of New Physics from Gamma-Ray Burst GRB 221009A

  • Giorgio Galanti 1,*,   
  • Marco Roncadelli 2,3,*,   
  • Fabrizio Tavecchio 3,*

Received: 10 Oct 2025 | Revised: 11 Nov 2025 | Accepted: 19 Nov 2025 | Published: 05 Dec 2025

Abstract

The discovery of the gamma-ray burst GRB 221009A is one of the most important observations in contemporary astrophysics. Not only is GRB 221009A an exceptionally bright and rare event estimated to occur once in 5000 years, but it is the gamma-ray burst observed at the highest energy so far. LHAASO detected GRB 221009A up to ∼15 TeV and Carpet even up to ∼300 TeV. Since within the standard propagation model photons are not expected to be observed above 10 TeV at the distance of GRB 221009A for any reasonable emission model—due to the interaction with background photons—such a detection also represents a milestone in the search for new physics. In the present review we show that two effects of new physics are indeed necessary to explain GRB 221009A. (1) Axion-like particles (ALPs) account for the LHAASO observations but are ineffective at Carpet energies. (2) Lorentz invariance violation (LIV) is instead complementary, being ineffective for LHAASO but explaining the Carpet detection. Therefore, GRB 221009A suggests a new physical ALP + LIV scenario in which photon-ALP oscillations take place in a LIV background.

References 

  • 1.

    de Ugarte Postigo, A.; Izzo, L.; Pugliese, G.; et al. GRB 221009A: Redshift from X-shooter/VLT. GRB Coord. Netw. Circ.
    Serv. 2022, 32648, 1.

  • 2.

    Castro-Tirado, A.J.; Sanchez-Ramirez, R.; Hu, Y.D.; et al. GRB 221009A: 10.4 m GTC spectroscopic redshift confirmation.
    GRB Coord. Netw. Circ. Serv. 2022, 32686, 1.

  • 3.

    Malesani, D.B.; Levan, A.J.; Izzo, L.; et al. The brightest GRB ever detected: GRB 221009A as a highly luminous event at
    z = 0.151. Astron. Astrophys. 2025, 701, 134.

  • 4.

    Williams, M.A.; Kennea, J.A.; Dichiara, S.; et al. [SWIFT Collaboration]. GRB 221009A: Discovery of an Exceptionally
    Rare Nearby and Energetic Gamma-Ray Burst. Astrophys. J. Lett. 2023, 946, L24.

  • 5.

    Lesage, S.; Veres, P.; Briggs, M.S.; et al. [Fermi Collaboration]. Fermi-GBM Discovery of GRB 221009A: An Extraordinarily
    Bright GRB from Onset to Afterglow. Astrophys. J. Lett. 2023, 952, L42.

  • 6.

    Axelsson, M.; Ajello, M.; Arimoto, M.; et al. [Fermi Collaboration]. GRB 221009A: The B.O.A.T. Burst that Shines in
    Gamma Rays. Astrophys. J. Suppl. 2025, 227, 24.

  • 7.

    Burns, E.; Svinkin, D.; Fenimore, E.; et al. GRB 221009A: The BOAT. Astrophys. J. Lett. 2023, 946, L31.

  • 8.

    Galanti, G.; Nava, L.; Roncadelli, M.; et al. Observability of the Very-High-Energy Emission from GRB 221009A. Phys.
    Rev. Lett. 2023, 131, 251001.

  • 9.

    Galanti, G.; Roncadelli, M. Is Lorentz invariance violation found? arXiv 2025, arXiv:2504.01830.

  • 10.

    Piran, T. Gamma-ray bursts and the fireball model. Phys. Rep. 1999, 314, 575.

  • 11.

    Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 2004, 76, 1143.

  • 12.

    Nava, L. Gamma-ray Bursts at the Highest Energies. Universe 2021, 7, 503.

  • 13.

    Cao, Z; Aharonian, F.; An, Q. [LHAASO Collaboration]. Very high-energy gamma-ray emission beyond 10 TeV from
    GRB 221009A. Science Adv. 2023, 9, eadj2778.

  • 14.

    Huang, Y.; Hu, S.; Chen, S.; et al. [LHAASO Collaboration]. LHAASO observed GRB 221009A with more than 5000
    VHE photons up to around 18 TeV. GRB Coord. Netw. Circ. Serv. 2022, 32677, 1.

  • 15.

    Cao, Z.; Aharonian, F.; An, Q.; et al. [LHAASO Collaboration]. A tera–electron volt afterglow from a narrow jet in an
    extremely bright gamma-ray burst. Science 2023, 380, adg9328.

  • 16.

    Dzhappuev, D.D.; Afashokov, Y.Z.; Dzaparova, I.M.; et al. [Carpet-2 Collaboration]. Swift J1913.1 + 1946/GRB 221009A:
    Detection of a 250-TeV photon-like air shower by Carpet-2. ATEL 2022, 15669, 1.

  • 17.

    Dzhappuev, D.D.; Dzaparova, I.M.; Dzhatdoev, T.A.; et al. [Carpet-3 Collaboration]. Carpet-3 detection of a photonlike air
    shower with estimated primary energy above 100 TeV in a spatial and temporal coincidence with GRB 221009A. Phys.
    Rev. D 2025, 111, 102005.

  • 18.

    Dwek, E.; Krennrich, F. The extragalactic background light and the gamma-ray opacity of the universe. Astropart. Phys.
    2013, 43, 112.

  • 19.

    Breit, G.; Wheeler, J.A. Collision of two light quanta. Phys. Rev. 1934, 46, 1087.

  • 20.

    Heitler, W. The Quantum Theory of Radiation; Oxford University Press: Oxford, UK, 1960.

  • 21.

    Nikishov, A. Absorption of high energy photons in the universe. Sov. Phys. JETP 1962, 14, 393.

  • 22.

    Gould, R.J.; Schreder, G.P. Pair production in photon-photon collisions. Phys. Rev. 1967, 155, 1404.

  • 23.

    Fazio, G.G.; Stecker, F.W. Predicted High Energy Break in the Isotropic Gamma Ray Spectrum: A Test of Cosmological
    Origin. Nature 1970, 226, 135.

  • 24.

    Stecker, F.W.; De Jager, O.C.; Salamon, M.H. TeV gamma rays from 3C 279: A possible probe of origin and intergalactic
    infrared radiation fields. Astrophys. J. 1992, 390, L49.

  • 25.

    Stecker, F.W.; Scully, S.T.; Malkan, M.A. An Empirical Determination of the Intergalactic Background Light from UV to FIR
    Wavelengths Using FIR Deep Galaxy Surveys and the Gamma-Ray Opacity of the Universe. Astrophys. J. 2016, 827, 6.

  • 26.

    Saldana-Lopez, A.; Domınguez, A.; P´erez-Gonzalez, P.G.; et al. An observational determination of the evolving extragalactic
    background light from the multiwavelength HST/CANDELS survey in the Fermi and CTA era. Mon. Not. R. Astron.
    Soc. 2021, 507, 5144.

  • 27.

    Coriano, C.; Irges, N. Windows over a new low energy axion. Phys. Lett. B 2007, 651, 298.

  • 28.

    Coriano, C.; Irges, N.; Morelli, S. Stuckelberg axions and the effective action of anomalous abelian models 1. A unitarity
    analysis of the Higgs-axion mixing. JHEP 2007, 07, 008.

  • 29.

    Baer, H.; Krami, S.; Sekmen, S.; et al. Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs. JHEP
    2008, 03, 056.

  • 30.

    Baer, H.; Summy, H. SO (10) SUSY GUTs, the gravitino problem, non-thermal leptogenesis and axino dark matter. Phys.
    Lett. B 2008, 666, 5.

  • 31.

    Baer, H.; Haider, M.; Kraml, S.; et al. Cosmological consequences of Yukawa-unified SUSY with mixed axion/axino cold
    and warm dark matter. JCAP 2009, 02, 002.

  • 32.

    Chang, S.; Tazawa, S.; Yamaguchi,M. Axion model in extra dimensions with TeV scale gravity. Phys. Rev. D 2000, 61, 084005.

  • 33.

    Dienes, K.R.; Dudas, E.; Gherghetta, T. Invisible axions and large-radius compactifications. Phys. Rev. D 2000, 62,

  • 34.

    Jaeckel, J.; Ringwald, A. The Low-Energy Frontier of Particle Physics. Ann. Rev. Nucl. Part. Sci. 2010, 60, 405–437.

  • 35.

    Ringwald, A. Exploring the role of axions and other WISPs in the dark universe. Phys. Dark Univ. 2012, 1, 116–135.

  • 36.

    Galanti, G.; Roncadelli, M. Axion-like Particles Implications for High-Energy Astrophysics. Universe 2022, 8, 253.

  • 37.

    Galanti, G. Axion-like Particle Effects on Photon Polarization in High-Energy Astrophysics. Universe 2024, 10, 312.

  • 38.

    Galanti, G. Blazars as Probes for Fundamental Physics. Universe 2025, 11, 327.

  • 39.

    Turok, N. Almost-Goldstone Bosons from Extra-Dimensional Gauge Theories. Phys. Rev. Lett. 1996, 76, 1015.

  • 40.

    Witten, E. Some properties of O(32) superstrings. Phys. Lett. B 1984, 149, 351.

  • 41.

    Conlon, J.P. The QCD axion and moduli stabilisation. JHEP 2006, 2006, 078.

  • 42.

    Svrcek, P.; Witten, E. Axions in string theory. JHEP 2006, 2006, 051.

  • 43.

    Conlon, J.P. Seeing an Invisible Axion in the Supersymmetric Particle Spectrum. Phys. Rev. Lett. 2006, 97, 261802.

  • 44.

    Choi, K.-S.; Kim, I.-W.; Kim, J.E. String compactification, QCD axion and axion–photon–photon coupling. JHEP 2007,
    2007, 116.

  • 45.

    Arvanitaki, A.; Dimopoulos, S; Dubovsky, S; et al. String axiverse. Phys. Rev. D 2010, 81, 123530.

  • 46.

    Acharya, B.S.; Bobkov, K.; Kumar, P. An M theory solution to the strong CP-problem, and constraints on the axiverse.
    JHEP 2010, 11, 105.

  • 47.

    Cicoli, M.; Goodsell, M.; Ringwald, A. The type IIB string axiverse and its low-energy phenomenology. JHEP 2012, 10, 146.

  • 48.

    Dias, A.G.; Machado, A.C.B.; Nishi, C.C.; et al. The quest for an intermediate-scale accidental axion and further ALPs.
    JHEP 2014, 2014, 037.

  • 49.

    Cicoli, M. Global D-brane models with stabilised moduli and light axions. Phys. J. Conf. Ser. 2014, 485, 012064.

  • 50.

    Conlon, J.C.; Day, F. 3.55 keV photon lines from axion to photon conversion in the MilkyWay and M31. JCAP 2014, 11, 033.

  • 51.

    Cicoli, M.; Conlon, J.C.; Marsh, M.C.D.; et al. 3.55 keV photon line and its morphology from a 3.55 keV axionlike particle
    line. Phys. Rev. D 2014, 90, 023540.

  • 52.

    Kralijc, D.; Rummel, M.; Conlon, J.C. ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster.
    JCAP 2015, 2015, 011.

  • 53.

    Cicoli, M.; Diaz, V.A.; Guidetti, V.; et al. The 3.5 keV line from stringy axions. JHEP 2017, 10, 192.

  • 54.

    Scott, M.J.; Marsh, D.J.E.; Pongkitivanichkul, C.; et al. Spectrum of the axion dark sector. Phys. Rev. D 2017, 96, 083510.

  • 55.

    Conlon, J.P. Searches for 3.5 keV absorption features in cluster AGN spectra. Mon. Not. R. Astron. Soc. 2018, 1, 348–352.

  • 56.

    Cisterna, A.; Hassaine, M.; Oliva, J.; et al. Axionic black branes in the k-essence sector of the Horndeski model. Phys. Rev.
    D 2017, 96, 124033.

  • 57.

    Cisterna, A.; Erices, C.; Kuang, X.-M.; et al. Axionic black branes with conformal coupling. Phys. Rev. D 2018, 97, 124052.

  • 58.

    Kim, J.H. Light pseudoscalars, particle physics and cosmology. Phys. Rep. 1987, 150, 1–177.

  • 59.

    Cheng, H.Y. The strong CP problem revisited. Phys. Rep. 1988, 158, 1–89.

  • 60.

    Kim, J.E.; Carosi, G. Axions and the strong CP problem. Rev. Mod. Phys. 2010, 82, 557.

  • 61.

    Maiani, L.; Petronzio, R.; Zavattini, E. Effects of nearly massless, spin-zero particles on light propagation in a magnetic
    field. Phys. Let. B 1986, 175, 359.

  • 62.

    De Angelis, A.; Roncadelli, M.; Mansutti, O. Evidence for a new light spin-zero boson from cosmological gamma-ray
    propagation? Phys. Rev. D 2007, 76, 121301.

  • 63.

    Simet, M.; Hooper, D.; Serpico, P.D. Milky Way as a kiloparsec-scale axionscope. Phys. Rev. D 2008, 77, 063001.

  • 64.

    Sanchez-Conde, M.A.; Paneque, D.; Bloom, E.; et al. Hints of the existence of axionlike particles from the gamma-ray
    spectra of cosmological sources. Phys. Rev. D 2009, 79, 123511.

  • 65.

    De Angelis, A.; Galanti, G.; Roncadelli, M. Relevance of axionlike particles for very-high-energy astrophysics. Phys. Rev.
    D 2011, 84, 105030; Erratum in Phys. Rev. D 2013, 87, 109903.

  • 66.

    Tavecchio, F.; Roncadelli, M.; Galanti, G.; et al. Evidence for an axion-like particle from PKS 1222+216? Phys. Rev. D
    2012, 86, 085036.

  • 67.

    Wouters, D.; Brun, P. Irregularity in gamma ray source spectra as a signature of axionlike particles. Phys. Rev. D 2012, 86,
    043005.

  • 68.

    Tavecchio, F.; Roncadelli, M.; Galanti, G. Photons to axion-like particles conversion in Active Galactic Nuclei. Phys. Lett. B 2015, 744, 375–379.

  • 69.

    Kohri, K.; Kodama, H. Axion-like particles and recent observations of the cosmic infrared background radiation. Phys. Rev.
    D 2017, 96, 051701.

  • 70.

    Galanti, G.; Tavecchio, F.; Roncadelli, M.; et al. Blazar VHE spectral alterations induced by photon-ALP oscillations. Mon.
    Not. R. Astron. Soc. 2019, 487, 123.

  • 71.

    Galanti, G.; Roncadelli, M.; De Angelis, A.; et al. Hint at an axion-like particle from the redshift dependence of blazar
    spectra. Mon. Not. R. Astron. Soc. 2020, 493, 1553.

  • 72.

    Jain, P.; Panda, S.; Sarala, S. Electromagnetic polarization effects due to axion-photon mixing. Phys. Rev. D 2002, 66, 085007.

  • 73.

    Bassan, N.; Mirizzi, A.; Roncadelli, M. Axion-like particle effects on the polarization of cosmic high-energy gamma
    sources. JCAP 2010, 05, 010.

  • 74.

    Agarwal, N.; Kamal, A.; Jain, P. Alignments in quasar polarizations: Pseudoscalar-photon mixing in the presence of
    correlated magnetic fields. Phys. Rev. D 2011, 83, 065014.

  • 75.

    Payez, A.; Cudell, J.R.; Hutsemekers, D. Can axionlike particles explain the alignments of the polarizations of light from
    quasars? Phys. Rev. D 2011, 84, 085029.

  • 76.

    Perna, R.; Ho, W.C.G.; Verde, L.; et al. Signatures of photon-axion conversion in the thermal spectra and polarization of
    neutron stars. Astrophys. J. 2012, 748, 116.

  • 77.

    Day, F.; Krippendorf, S. Searching for axion-like particles with X-ray polarimeters. Galaxies 2018, 6, 45.

  • 78.

    Galanti, G. Photon-ALP interaction as a measure of initial photon polarization. Phys. Rev. D 2022, 105, 083022.

  • 79.

    Galanti, G. Photon-ALP oscillations inducing modifications to photon polarization. Phys. Rev. D 2023, 107, 043006.

  • 80.

    Galanti, G.; Roncadelli, M.; Tavecchio, F.; et al. ALP induced polarization effects on photons from galaxy clusters. Phys.
    Rev. D 2023, 107, 103007.

  • 81.

    Galanti, G.; Roncadelli, M.; Tavecchio, F. ALP-induced polarization effects on photons from blazars. Phys. Rev. D 2023,
    108, 083017.

  • 82.

    Raffelt, G.G.; Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 1988, 37, 1237.

  • 83.

    Galanti, G.; Roncadelli, M. Extragalactic photon–axion-like particle oscillations up to 1000 TeV. JHEAp 2018, 20, 1–17.

  • 84.

    Dessert, C.; Dunsky, D.; Safdi, B.R. Upper limit on the axion-photon coupling from magnetic white dwarf polarization.
    Phys. Rev. D 2022, 105, 103034.

  • 85.

    Levan, A.J.; Lamb, G.P.; Schneider, B.; et al. The First JWST Spectrum of a GRB Afterglow: No Bright Supernova in
    Observations of the Brightest GRB of all Time, GRB 221009A. Astrophys. J. Lett. 2023, 946, L28.

  • 86.

    Blanchard, P.K.; Villar, V.A.; Chornock, R.; et al. JWST Observations of the Extraordinary GRB 221009A Reveal an
    Ordinary Supernova Without Signs of r-Process Enrichment in a Low-Metallicity Galaxy. Nature Astron. 2024, 8, 774.

  • 87.

    Derishev, E. Relating quasi-stationary one zone emission models to expanding relativistic shocks. Mon. Not. R. Astron. Soc.
    2023, 519, 377.

  • 88.

    Blanchard, P.K.; Berger, E.; Fong, W. The Offset and Host Light Distributions of Long Gamma-Ray Bursts: A New View
    from HST Observations of Swift Bursts. Astrophys. J. 2016, 817, 144.

  • 89.

    Lyman, J.D.; Levan, A.J.; Tanvir, N.R.; et al. The host galaxies and explosion sites of long-duration gamma-ray bursts:
    Hubble Space Telescope near-infrared imaging. Mon. Not. R. Astron. Soc. 2017, 467, 1795–1817.

  • 90.

    Elmegreen, B.G.; Scalo, J. Interstellar Turbulence I: Observations and Processes. Annu. Rev. Astron. Astrophys. 2004, 42, 211.

  • 91.

    Pshirkov, M.S.; Tinyakov, P.G.; Urban, F.R. New Limits on Extragalactic Magnetic Fields from Rotation Measures. Phys.
    Rev. Lett. 2016, 116, 191302.

  • 92.

    Alves Batista, R.; Saveliev, A. The Gamma-Ray Window to Intergalactic Magnetism. Universe 2021, 7, 223.

  • 93.

    Neronov, A.; Vovk, I. Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars. Science
    2010, 328, 5974.

  • 94.

    Tavecchio, F.; Ghisellini, G.; Foschini, L.; et al. The intergalactic magnetic field constrained by Fermi/Large Area Telescope
    observations of the TeV blazar 1ES0229+200. Mon. Not. R. Astron. Soc. 2010, 406, L70.

  • 95.

    Tavecchio, F.; Ghisellini, G.; Bonnoli, G.; et al. Extreme TeV blazars and the intergalactic magnetic field. Mon. Not. R.
    Astron. Soc. 2011, 414, 3566.

  • 96.

    Dolag, K.; Kachelriess, M.; Ostapchenko, S.; et al. Lower Limit on the Strength and Filling Factor of Extragalactic
    Magnetic Fields. Astrophys. J. Lett. 2011, 727, L4.

  • 97.

    Dermer, C.D.; Cavadini, M.; Razzaque, S.; et al. Time Delay of Cascade Radiation for TeV Blazars and the Measurement
    of the Intergalactic Magnetic Field. Astrophys. J. 2011, 733, L21.

  • 98.

    Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; et al. Search for extended γ-ray emission around AGN with H.E.S.S. and
    Fermi-LAT. Astron. Astrophys. 2014, 562, 145.

  • 99.

    Archambault, S.; Archer, A.; Benbow, W.; et al. Search for Magnetically Broadened Cascade Emission from Blazars with
    VERITAS. Astrophys. J. 2017, 835, 288.

  • 100.

    Aharonian, F.; Aschersleben, J.; Backes, M.; et al. [H.E.S.S. Collaboration]. Constraints on the Intergalactic Magnetic
    Field Using Fermi-LAT and H.E.S.S. Blazar Observations. Astrophys. J. Lett. 2023, 950, L16.

  • 101.

    Kronberg, P.P. Extragalactic magnetic fields. Rept. Prog. Phys. 1994, 57, 325.

  • 102.

    Grasso, D.; Rubinstein, H.R. Magnetic fields in the early Universe. Phys. Rep. 2001, 348, 163.

  • 103.

    Rees, M.J.; Setti, G. Model for the Evolution of Extended Radio Sources. Nature 1968, 219, 127.

  • 104.

    Hoyle, F. Magnetic Fields and Highly Condensed Objects. Nature 1969, 223, 936.

  • 105.

    Kronberg, P.P.; Lesch, H.; Hopp, U. Magnetization of the Intergalactic Medium by Primeval Galaxies. Astrophys. J. 1999,
    511, 56.

  • 106.

    Furlanetto, S.; Loeb, A. Intergalactic Magnetic Fields from Quasar Outflows. Astrophys. J. 2001, 556, 619.

  • 107.

    Galanti, G.; Roncadelli, M. Behavior of axionlike particles in smoothed out domainlike magnetic fields. Phys. Rev. D 2018,
    98, 043018.

  • 108.

    Kartavtsev, A.; Raffelt, G.; Vogel, H. Extragalactic photon-ALP conversion at CTA energies. JCAP 2017, 01, 024.

  • 109.

    Dobrynina, A.; Kartavtsev, A.; Raffelt, G. Photon-photon dispersion of TeV gamma rays and its role for photon-ALP
    conversion. Phys. Rev. D 2015, 91, 083003; Erratum in IBID 2015, 91, 109902.

  • 110.

    Jansson, R.; Farrar, G.R. A New Model of the Galactic Magnetic Field. Astrophys. J. 2012, 757, 14.

  • 111.

    Jansson, R.; Farrar, G.R. The Galactic Magnetic Field. Astrophys. J. 2012, 761, L11.

  • 112.

    Beck, M.C.; Beck, A.M.; Beck, R.; et al. New constraints on modeling the random magnetic field of the MW. JCAP 2016,
    05, 056.

  • 113.

    Pshirkov, M.S.; Tinyakov, P.G.; Kronberg, P.P.; et al. Deriving the Global Structure of the Galactic Magnetic Field from
    Faraday Rotation Measures of Extragalactic Sources. Astrophys. J. 2011, 738, 192.

  • 114.

    Yao, J.M.; Manchester, R.N.; Wang, N. A New Electron-density Model for Estimation of Pulsar and FRB Distances.
    Astrophys. J. 2017, 835, 29.

  • 115.

    Aghanim, N.; Akrami, Y.; Ashdown, M.; et al. [PLANCK Collaboration]. Planck 2018 results. VI. Cosmological parameters.
    Astron. Astrophys. 2020, 641, A6.

  • 116.

    Aiola, S; Calabrese, E.; Maurin, L.; et al. [ACT Collaboration]. The Atacama Cosmology Telescope: DR4 maps and
    cosmological parameters. JCAP 2020, 12, 047.

  • 117.

    Balkenhol, L.; Dutcher, D.; Ade, P.A.R.; et al. [SPT-3G Collaboration]. Constraints on ΛCDM extensions from the SPT-3G
    2018 EE and TE power spectra. Phys. Rev. D 2021, 104, 083509.

  • 118.

    Efstathiou, G.; Gratton, S. The evidence for a spatially flat Universe. Mon. Not. R. Astron. Soc. 2020, 496, L91.

  • 119.

    Ross, A.J.; Samushia, L.; Howlett, C.; et al. The clustering of the SDSS DR7 main Galaxy sample—I. A 4 per cent distance
    measure at z = 0.15. Mon. Not. R. Astron. Soc. 2015, 449, 835.

  • 120.

    Alam, S.; Ata,M.; Bailey, S.; et al. [BOSS Collaboration]. The clustering of galaxies in the completed SDSS-III Baryon Oscillation
    Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617.

  • 121.

    Brieden, S.; Gil-Mar´ın, H.; Verde, L. Model-agnostic interpretation of 10 billion years of cosmic evolution traced by BOSS
    and eBOSS data. JCAP 2022, 08, 024.

  • 122.

    Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347.

  • 123.

    Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99.

  • 124.

    Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and
    primordial monopole problems. Phys. Lett. B 1982, 108, 389.

  • 125.

    Amelino-Camelia, G.; Ellis, J.R.; Mavromatos, N.E.; et al. Tests of quantum gravity from observations of γ-ray bursts.
    Nature 1998, 393, 763.

  • 126.

    Liberati, S.; Maccione, L. Lorentz Violation: Motivation and new constraints. Ann. Rev. Nucl. Part. Sci. 2009, 59, 245.

  • 127.

    Ellis, J.; Farakos, K.; Mavromatos, N.E.; et al. Astrophysical Probes of the Constancy of the Velocity of Light. Astrophys.
    J. 2000, 535, 139.

  • 128.

    Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Rel. 2013, 16, 5.

  • 129.

    Liberati, S. Tests of Lorentz invariance: A 2013 update. Class. Quant. Grav. 2013, 30, 133001.

  • 130.

    Galanti, G.; Tavecchio, F.; Landoni, M. Fundamental physics with blazar spectra: A critical appraisal. Mon. Not. R. Astron.
    Soc. 2020, 491, 5268.

  • 131.

    Addazi, A.; Alvarez-Muniz, J.; Alves Batista, R.; et al. Quantum gravity phenomenology at the dawn of the multi-messenger
    era—A review. Progr. in Part. and Nucl. Phys. 2022, 125, 103948.

  • 132.

    Alves Batista, R.; Amelino-Camelia, G.; Boncioli, D.; et al. White paper and roadmap for quantum gravity phenomenology
    in the multi-messenger era. Class. Quant. Grav. 2025, 42, 032001.

  • 133.

    Gonzales-Mestres, L. Superluminal Particles and High-energy Cosmic Rays. arXiv 1997, arXiv:9706022.

  • 134.

    Coleman, S.; Glashow, S.L. High-energy tests of Lorentz invariance. Phy. Rev. D 1999, 59, 116008.

  • 135.

    Kifune, T. Invariance Violation Extends the Cosmic-Ray Horizon? Astrophys. J. Lett. 1999, 518, L21.

  • 136.

    Aloisio, R.; Blasi, P.; Ghia, P.L.; et al. Probing the structure of space-time with cosmic rays. Phy. Rev. D 2000, 62, 053010.

  • 137.

    Kifune, T. Detection Method and Observed Data of High-Energy Gamma Rays under the Influence of Quantum Gravity.
    Astrophys. J. 2014, 787, 4.

  • 138.

    Fairbairn, M.; Nilsson, A.; Ellis, J.; et al. The CTA sensitivity to Lorentz-violating effects on the gamma-ray horizon. JCAP
    2014, 06, 005.

  • 139.

    Tavecchio, F.; Bonnoli, G. On the detectability of Lorentz invariance violation through anomalies in the multi-TeV γ-ray
    spectra of blazars. Astron. Astrophys. 2016, 585, A25.

  • 140.

    Jacob, U.; Piran, T. Lorentz-violation-induced arrival delays of cosmological particles. JCAP 2008, 01, 031.

  • 141.

    Stecker, F.W.; Glashow, S.L. New tests of Lorentz invariance following from observations of the highest energy cosmic
    γ-rays. Astropart. Phys. 2001, 16, 97.

  • 142.

    Finke, J.D.; Razzaque, S. Possible Evidence for Lorentz Invariance Violation in Gamma-Ray Burst 221009A. Astrophys. J.
    2023, 942, L21.

  • 143.

    Piran, T.; Ofengeim, D.D. Lorentz invariance violation limits from GRB 221009A. Phys. Rev. D 2024, 109, L081501.

  • 144.

    Yang, Y.-M.; Bi, X.-J.; Yin, P.-F. Constraints on Lorentz invariance violation from the LHAASO observation of GRB
    221009A. JCAP 2024, 04, 060.

  • 145.

    Cao, Z.; Aharonian, F.; Axikegu Bai, Y.X.; et al. [LHAASO Collaboration]. Stringent Tests of Lorentz Invariance Violation
    from LHAASO Observations of GRB 221009A. Phys. Rev. Lett. 2024, 133, 071501.

  • 146.

    Ofengeim, D.D.; Piran, T. The 300 TeV photon from GRB 221009A: A Hint at Non-Linear Lorentz Invariance Violation?
    Phys. Rev. D 2025, 112, 083055.

  • 147.

    Maraschi, L.; Ghisellini, G.; Celotti, A. A JetModel for the Gamma-Ray—emitting Blazar 3C 279. Astrophys. J. 1992, 397, L5.

  • 148.

    Dermer, C.; Schleickeiser, R. Model for the High-Energy Emission from Blazars. Astrophys. J. 1993, 416, 458.

  • 149.

    Sikora, M.; Begelman, M.; Rees, M.J. Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of
    Gamma Rays from Blazars? Astrophys. J. 1994, 421, 153.

  • 150.

    Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67.

  • 151.

    Mannheim, K. TeVgamma-rays from proton blazars. Space Sci. Rev. 1996, 75, 331.

  • 152.

    Liu, H.T.; Bai, J.M. Absorption of 10–200 GeV Gamma Rays by Radiation from Broad-Line Regions in Blazars. Astrophys.
    J. Phys. 2006, 653, 1089.

  • 153.

    Tavecchio, F.; Mazin, D. Intrinsic absorption in 3C 279 at GeV-TeV energies and consequences for estimates of the
    extragalactic background light. Mon. Not. R. Astron. Soc. 2009, 392, L40.

  • 154.

    Poutanen, J.; Stern, B. GeV Break in blazars as a result of gamma-ray absorption within the broad-line region. Astrophys. J.
    2010, 717, L118.

  • 155.

    Albert, J.; Aliu, E.; Anderhub, H.; et al. Very-high-energy gamma rays from a distant quasar: How transparent is the
    universe? Science 2008, 320, 1752.

  • 156.

    Wagner, S.; Behera, B. [H.E.S.S. Collaboration]. Hess Observations Of Quasars. Bull. Am. Astron. Soc. 2010, 41, 660.

  • 157.

    Aleksic, J.; Antonelli, L.A.; Antoranz, P.; et al. MAGIC Discovery of Very High Energy Emission from the FSRQ PKS
    1222+21. Astrophys. J. 2011, 730, L8.

  • 158.

    Tanaka, Y.T.; Thompson, D.J.; D’Ammando, F.; et al. Fermi Large Area Telescope Detection of Bright γ-Ray Outbursts
    from the Peculiar Quasar 4C +21.35. Astrophys. J. 2011, 733, 19.

  • 159.

    Tavecchio, F.; Becerra-Gonzalez, J.; Ghisellini, G.; et al. On the origin of the γ-ray emission from the flaring blazar PKS
    1222+216. Astron. Astrophys. 2011, 534, 86.

  • 160.

    Nalewajko, K.; Begelman, M.C.; Cerutti, B.; et al. Sikora, Energetic constraints on a rapid gamma-ray flare in PKS
    1222+216. Mon. Not. R. Astron. Soc. 2012, 425, 2519.

  • 161.

    Dermer, C.; Murase, K.; Takami, H. Variable gamma-ray emission induced bu ultra-high-energy neutral beams: Applocation
    to 4C +21.35. Astrophys. J. 2012, 755, 147.

  • 162.

    Franceschini, A.; Rodighiero, G. The extragalactic background light revisited and the cosmic photon-photon opacity.
    Astron. Astrophys. 2017, 603, 34.

  • 163.

    Baktash, A.; Horns, D.; Meyer, M. Interpretation of multi-TeV photons from GRB 221009A. arXiv 2022, arXiv:2210.07172.

  • 164.

    Carenza, P.; Marsh, M.C.D. On ALP scenarios and GRB 221009A. arXiv 2022, arXiv:2211.02010.

  • 165.

    Troitsky, S.V. Parameters of Axion-Like Particles Required to Explain High-Energy Photons from GRB 221009A. JETP
    Letters 2022, 116, 767.

  • 166.

    Wang, L.; Ma, B.-Q. Axion-photon conversion of GRB221009A. Phys. Rev. D 2023, 108, 023002.

  • 167.

    Zhang, G.; Ma, B.-Q. Axion-Photon Conversion of LHAASO Multi-TeV and PeV Photons Chinese Phys. Lett. 2023, 40,
    011401.

  • 168.

    Troitsky, S.V. Towards a model of photon-axion conversion in the host galaxy of GRB 221009A. JCAP 2024, 01, 013.

  • 169.

    Gonzalez, M.M.; Rojas, D.A.; Pratts, A.; et al. GRB 221009A: A Light Dark Matter Burst or an Extremely Bright Inverse
    Compton Component? Astrophys. J. 2023, 944, 178.

  • 170.

    Nakagawa, S.; Takahashi, F.; Yamada, M.; et al. Axion dark matter from first-order phase transition, and very high energy
    photons from GRB 221009A. Phys. Lett. B 2023, 839, 137824.

  • 171.

    Avila Rojas, D.; Hernandez-Cadena, S.; Gonzalez, M.M.; et al. GRB 221009A: Spectral Signatures Based on ALPs
    Candidates Astrophys. J. 2024, 966, 114.

  • 172.

    Gao, L.-Q.; Bi, X.-J.; Li, J.; et. al Constraints on Axion-like Particles from the Observation of GRB 221009A by LHAASO.
    JCAP 2024, 01, 026.

  • 173.

    Balaji, S.; Ramirez-Quezada, M.E.; Silk, J.; et al. Light scalar explanation for 18 TeV GRB 221009A. Phys. Rev. D 2023, 107, 083038.

  • 174.

    Batista, R.A. GRB 221009A: A potential source of ultra-high-energy cosmic rays. arXiv 2022, arXiv:2210.12855.

  • 175.

    Mirabal, N. Secondary GeV-TeV emission from ultra-high-energy cosmic rays accelerated by GRB 221009A. Mon. Not. R.
    Astron. Soc. 2023, 519, L85.

  • 176.

    Das, S.; Razzaque, S. Ultrahigh-energy cosmic-ray signature in GRB 221009A. Astron. Astrophys. 2023, 670, L12.

  • 177.

    Smirnov, A.Y.; Trautner, A. GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos? Phys. Rev. Lett.
    2023, 131, 021002.

  • 178.

    Barnal, L.; Farzan, Y.; Smirnov, A.Y. Neutrinos from GRB 221009A: Producing ALPs and explaining LHAASO anomalous
    γ event. JCAP 2023, 11, 098.

  • 179.

    Meszaros, P.; Rees, M.J. Delayed GEV Emission from Cosmological Gamma-Ray Bursts - Impact of a Relativistic Wind
    on External Matter. Mon. Not. R. Astron. Soc. 1994, 269, L41.

  • 180.

    Sari, R.; Piran, T. Predictions for the very early Afterglow and the Optical Flash. Astrophys. J. 1999, 520, 641.

  • 181.

    Dermer, C.D.; Chiang, J.; Mitkam, K.E. Beaming, Baryon Loading, and the Synchrotron Self-Compton Component in
    Gamma-Ray Bursts. Astrophys. J. 2000, 537, 785.

  • 182.

    Zhang, B.; Meszaros, P. High-Energy Spectral Components in Gamma-Ray Burst Afterglows. Astrophys. J. 2001, 559, 110.

  • 183.

    Foffato, L.; Tavani, M.; Piano, G. Theoretical modeling of the exceptional GRB 221009A afterglow. Astrophys. J. Lett.
    2024, 973, L44.

  • 184.

    Wang, X.-Y.; Li, Z.; Meszaros, P. GeV-TeV and X-Ray Flares from Gamma-Ray Bursts. Astrophys. J. 2006, 641, L89.

  • 185.

    Murase, K.; Toma, K.; Yamazaki, R.; et al. On the Implications of Late Internal Dissipation for Shallow-decay Afterglow
    Emission and Associated High-energy Gamma-ray Signals. Astrophys. J. 2011, 732, 77.

  • 186.

    Zhang, B.T.; Murase, K.; Yuan, C.; et al. External Inverse-Compton Emission Associated with Extended and Plateau
    Emission of Short Gamma-Ray Bursts: Application to GRB 160821B. Astrophys. J. Lett. 2021, 908, L36.

  • 187.

    Murase, K.; Kunihito, I.; Shigehiro, N.; et al. High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray
    bursts and implications for multimessenger astronomy. Phys. Rev. D 2008, 78, 023005.

  • 188.

    Waxman, E.; Bahcall J.N. Neutrino Afterglow from Gamma-Ray Bursts: ∼1018 eV. Astrophys. J. 2000, 541, 707.

  • 189.

    Zhang, B.T.; Murase, K.; Kimura, S.S.; et al. Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic
    ray nuclei. Phys. Rev. D 2018, 97, 083010.

  • 190.

    Zhang, B.T.; Murase, K.; Ioka, K.; et al. External Inverse-compton and Proton Synchrotron Emission from the Reverse
    Shock as the Origin of VHE Gamma Rays from the Hyper-bright GRB 221009A. Astrophys. J. Lett. 2023, 947, L14.

  • 191.

    Sari, R.; Piran, T. Hydrodynamic Timescales and Temporal Structure of Gamma-Ray Bursts. Astrophys. J. Lett. 1995, 455, L143.

  • 192.

    Essey, W.; Kusenko, A. A new interpretation of the gamma-ray observations of distant active galactic nuclei. Astropart.
    Phys. 2010, 33, 81.

  • 193.

    Essey, W.; Kalashev, O.; Kusenko, A.; et al. Line-of-sight Cosmic-ray Interactions in Forming the Spectra of Distant
    Blazars in TeV Gamma Rays and High-energy Neutrinos. Astrophys. J. 2011, 731, 51.

  • 194.

    Murase, K.; Dermer, C.D.; Takami, H.; et al. Blazars as Ultra-high-energy Cosmic-ray Sources: Implications for TeV
    Gamma-Ray Observations. Astrophys. J. 2012, 749, 63.

  • 195.

    Kalashev, O.; Aharonian, F.; Essey, W.; et al. Possibility of multi-TeV secondary gamma rays from GRB221009A. Phys.
    Rev. D 2025, 112, 023022.

  • 196.

    Michalowski, M.J.; Gentile, G.; Hjorth, J.; et al. Massive stars formed in atomic hydrogen reservoirs: HI observations of
    gamma-ray burst host galaxies. Astron. Astrophys. 2015, 582, 78.

  • 197.

    de Ugarte Postigo, A.; Michalowski, M.; Thoene, C.C.; et al. HI and CO spectroscopy of the unusual host of GRB 171205A:
    A grand design spiral galaxy with a distorted HI field. arXiv 2024, arXiv:2406.16726.

  • 198.

    Thone, C.C.; de Ugarte Postigo, A.; Izzo, L.; et al. The host of GRB 171205A in 3D—A resolved multiwavelength study
    of a rare grand-design spiral GRB host. Astron. Astrophys. 2024, 690, 66.

  • 199.

    Dermer, C.D.; Razzaque, S.; Finke, J.D.; et al. Ultra High Energy Cosmic Rays from Black Hole Jets of Radio Galaxies.
    New J. Phys. 2009, 11, 065016.

  • 200.

    Fletcher, A. The Dynamic Interstellar Medium: A Celebration of the Canadian Galactic Plane Survey. Astron. Soc. Pac.
    Conf. Series 2010, 438, 197.

  • 201.

    Vall´ee, J.P. Magnetic fields in the galactic Universe, as observed in supershells, galaxies, intergalactic and cosmic realms.
    New. Astron. Rev. 2011, 55, 91.

  • 202.

    Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 2016, 24, 4.

  • 203.

    Kronberg, P.P. Cosmic Magnetic Fields; Cambridge University Press: Cambridge, UK, 2016.

  • 204.

    Heesen, V.; Klocke, T.L.; Br¨uggen, M.; et al. Nearby galaxies in the LOFAR Two-metre Sky Survey. II. The magnetic
    field-gas relation. Astron. Astrophys. 2023, 669, 8.

  • 205.

    Dermer, C.D.; Atoyan, A. Neutral beam model for the anomalous gamma-ray emission component in GRB 941017. Astron.
    Astrophys. 2004, 418, L5.

  • 206.

    Abbasi, R.; Ackermann, M.; Adams, J.; et al. Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using
    the IceCube Neutrino Observatory. Astrophys. J. Lett. 2023, 946, L26.

  • 207.

    Kruiswijk, K.; Brinson, B.; Procter-Murphy, R.; et al. IceCube search for neutrinos from GRB 221009A. arXiv 2023,
    arXiv:2307.16354.

  • 208.

    Zheng, Y.G.; Kang, S.J.; Zhu, K.R.; et al. Expected Signature For the Lorentz Invariance Violation Effects on γ − γ
    Absorption. Phys. Rev. D 2023, 107, 083001.

  • 209.

    Vardanyan, V.; Takhistov, V.; Ata, M.; et al. Revisiting Tests of Lorentz Invariance with Gamma-ray Bursts: Effects of
    Intrinsic Lags. Phys. Rev. D 2023, 108, 123023.

  • 210.

    Li, H.; Ma, B.-Q. Revisiting Lorentz invariance violation from GRB 221009A. JCAP 2023, 10, 061.

  • 211.

    Li, H.; Ma, B.-Q. Lorentz invariance violation induced threshold anomaly versus very-high energy cosmic photon emission
    from GRB 221009A. Astropart. Phys. 2023, 148, 102831.

  • 212.

    Li, H.; Ma, B.-Q. Lorentz invariance violation from GRB221009A. Mod. Phys. Lett. A 2024, 39, 2350201.

  • 213.

    Vercellone, S.; Bigongiari, C.; Burtovoi, A.; et al. ASTRI Mini-Array core science at the Observatorio del Teide. J. High
    Energy Astrophys. 2022, 35, 1.

  • 214.

    CTAO. Available online: https://www.cta-observatory.org/ (accessed on 27 August 2025).

  • 215.

    Egorov, A.E.; Topchiev, N.P.; Galper, A.M.; et al. Dark matter searches by the planned gamma-ray telescope GAMMA-400.
    JCAP 2020, 11, 049.

  • 216.

    HAWC. Available online: https://www.hawc-observatory.org/ (accessed on 27 August 2025).

  • 217.

    Huang, X.; Lamperstorfer, A.S.; Tsai, Y.L.S.; et al. Perspective of monochromatic gamma-ray line detection with the High
    Energy cosmic-Radiation Detection (HERD) facility onboard China’s space station. Astropart. Phys. 2016, 78, 35–42.

  • 218.

    Cao, Z.; della Volpe, D.; Liu, S.; et al. The Large High Altitude Air Shower Observatory (LHAASO) Science Book (2021
    Edition). Chin. Phys. C 2022, 46, 035001–035007.

  • 219.

    TAIGA-HiSCORE. Available online: https://taiga-experiment.info/taiga-hiscore/ (accessed on 27 August 2025).

  • 220.

    Bahre, R.; Dobrich, B.; Dreyling-Eschweiler, J.; et al. Any light particle search II—Technical design report. J. Instrum.
    2013, 8, T09001.

  • 221.

    Armengaud, E.; Atti´e, D.; Basso, S.; et al. Physics potential of the international axion observatory (IAXO). JCAP 2019, 06, 047.

  • 222.

    Capparelli, L.M.; Cavoto, G.; Ferretti, J.; et al. Axion-like particle searches with sub-THz photons. Phys. Dark Univ. 2016,
    12, 37.

  • 223.

    Kahn, Y.; Safdi, B.R.; Thaler, J. Broadband and resonant approaches to axion dark matter detection. Phys. Rev. Lett. 2016,
    117, 141801.

  • 224.

    Avignone, F.T., III. Potential for large germanium detector arrays for solar-axion searches utilizing the axio-electric effect
    for detection. Phys. Rev. D 2009, 79, 035015.

  • 225.

    Avignone, F.T., III; Crewick, R.J.; Nussinov, S. Can large scintillators be used for solar-axion searches to test the
    cosmological axion–photon oscillation proposal? Phys. Lett. B 2009, 681, 122.

  • 226.

    Avignone, F. T. III; Crewick, R. J.; Nussinov, S. The experimental challenge of detecting solar axion-like particles to test
    the cosmological ALP-photon oscillation hypotheses. Astropart. Phys. 2011, 34, 640.

Share this article:
How to Cite
Galanti, G.; Roncadelli, M.; Tavecchio, F. Clues of New Physics from Gamma-Ray Burst GRB 221009A. Physics and the Cosmos 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.