2512002489
  • Open Access
  • Review

The Rise of Astroparticle Physics

  • Alessandro Bettini

Received: 23 Oct 2025 | Revised: 18 Nov 2025 | Accepted: 11 Dec 2025 | Published: 18 Dec 2025

Abstract

Astroparticle is a relatively young but broad field of physics. It links particle and nuclear physics, astrophysics and cosmology, in a fruitful cross-fertilisation both of theoretical ideas and experimental techniques. The latter have been transferred, with adaptation, from accelerator-based experiments, such as charged-particles tracking, gamma-ray detectors, calorimeters, cryogenic techniques. The most diverse observatories have been developed, on the Earth’s surface and deep underground, beneath the Oceans and the ice of South Pole, on high-altitude mountain plateaus, and in space, on dedicated satellites and on the International Space Station. In this article the rise of astroparticle physics will be described, on a number of examples, including elements concerning the origin of the name and on the scientific policy actions that guided the process at both community and government levels.

References 

  • 1.

    Pagel, B.E.J.; De Rujula, A.; Nanopoulos, N.V.; et al. A Unified View of the Macro- and Micro-Cosmos; De Rujula, D., Nanopoulos, D., Shaver, P., Eds.; World Scientific: Singapore, 1989.

  • 2.

    Burbidge, B.; Burbidge, G. Fowler, and Hoyle. Rev. Mod. Phys. 1957, 29, 547.

  • 3.

    Cameron, G. Chalk River Report, CRL-41. 1957. Available online: https://sgp.fas.org/eprint/CRL-41.pdf (accessed on 11 December 2025).

  • 4.

    Steigman, G. Inflationary cosmology. Nature 1984, 309, 473–474.

  • 5.

    Carlson, P.; De Angelis, A. Nationalism and internationalism in science: The case of the discovery of cosmic rays. Eur. Phys. J. H 2011, 35, 309. https://doi.org/10.1140/epjh/e2011-10033-6.

  • 6.

    Pacini, D. Penetrating Radiation at the Surface of and in Water. Nuovo Cim. 1912, 8, 93–100.

  • 7.

    Victor, F. Hess: The origins of penetrating radiation. Phys. Zeit. 1913, 14, 612–617.

  • 8.

    Millikan, R.A.; Cameron, G.H. The origin of cosmic rays. Phys. Rev. 1925, 32, 533.

  • 9.

    Anderson, D. The positive electron. Phys. Rev. 1933, 43, 491.

  • 10.

    Street, J.C.; Stevenson, E.C. New evidence for the existence of a particle of mass intermediate between the proton and electron. Phys. Rev. 1937, 52, 1003.

  • 11.

    Anderson, D.; Neddermeyer, S.H. Note on the nature of cosmic-ray particles. Phys. Rev. 1937, 51, 884.

  • 12.

    Anderson, D.; Neddermeyer, S.H. Cosmic-ray particles of intermediate mass. Phys. Rev. 1938, 54, 88.

  • 13.

    Rochester, G.D.; Butler, C.C. Discovery of the kaon. Nature 1947, 160, 855.

  • 14.

    Lattes, M.G.; Muirhead, H.; Occhialini, G.P.; et al. Processes involving charged mesons. Nature 1947, 159, 694–697.

  • 15.

    Niu, K.; Mikumo, E.; Maeda, Y. A possible decay in flight of a new type particle. Prog. Theor. Phys. 1971, 46, 1644.

  • 16.

    Hayashi, T.; Kawai, E.I.; Matsuda, M.; et al. A Possible Interpretation of the New Event in the Cosmic Ray Experiment. II. Prog. Theor. Phys. 1972, 47, 280.

  • 17.

    Niu, K. Nuclear Emulsion Techniques. In Proceedings of the 1st International Workshop on Nuclear Emulsions Techniques, Nagoya, Japan, 12–14 June 1998.

  • 18.

    Fakirov, D. On interactions of the High-Energy Cosmic Ray Neutrinos with a Substance. Diploma Thesis, Department of Physics Moskow State University, Moskow, Russian; Faculty of Science Sofia, Sofia, Bulgaria, 1958. (In Bulgarian)

  • 19.

    Zheleznykh, I.M. On Possible Studies of High-Energy Neutrino Interactions at Accelerators. Diploma Thesis, Department of Physics Moskow State University, Moskow, Russian, 1958.

  • 20.

    Zheleznykh, I.M.; Markov, M.A. High Energy Neutrino Physics; D-577: Dubna, Russian, 1960.

  • 21.

    Markov, M.A.; Zheleznykh, I.M. On high energy neutrino physics in cosmic rays. Nucl. Phys. 1961, 27, 385. (In Russian)

  • 22.

    Zheleznykh, I.M. Early years of high-energy neutrino physics in cosmic rays and neutrino astronomy (1957–1962). Int. J. Mod. Phys. 2006, 21, 1–11.

  • 23.

    Markov, M.A. Early Development of Weak Interactions in the USSR; Nauka Publisher, Central Depatment of Oriental Literature: Moscow, Russia, 1985.

  • 24.

    Halzen, F.; Klein, S.R. Astronomy and astrophysics with neutrinos. Phys. Today 2008, 61, 29–35.

  • 25.

    Halzen, F. The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter. Available online: https://arxiv.org/abs/hep-ex/9804007?utm_source=chatgpt.com (accessed on 11 December 2025).

  • 26.

    Preparatory Phase for a Deep Sea Facility in the Mediterranean for Neutrino Astronomy and Associated Sciences. Available online: https://cordis.europa.eu/project/id/212525?utm_source=chatgpt.com (accessed on 11 December 2025).

  • 27.

    Bagley, P.; Craig, J.; Holford, A.; et al. KM3NeT: Technical Design Report for a Deep-Sea Research Infrastructure in the Mediterranean Sea Incorporating a Very Large Volume Neutrino Telescope. 2009. Available online: https://www.km3net.org/wp-content/uploads/2023/05/KM3NeT_DS_TDR-published-in-2010.pdf?utm_source=chatgpt.com (accessed on 11 December 2025).

  • 28.

    Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; et al. Letter of Intent for KM3NeT 2.0. arXiv 2016, arXiv:1601.07459.

  • 29.

    KM3NET Collaboration. Observation of an ultra-high-energy cosmic neutrino with KM3NeT. Nature 2025, 638, 376–395.

  • 30.

    Achar, C.V.; Menon, M.G.K.; Narasimham, V.S.; et al. Detection of muons produced by cosmic ray neutrinos deep underground. Phys. Lett. 1965, 18, 196.

  • 31.

    Reines, F.; Crouch, M.F.; Jenkins, T.L.; et al. Evidence of high-energy cosmic-rays neutrino interactions. Phys. Rev. Lett. 1965, 15, 42.

  • 32.

    Davis, R. Solar Neutrinos. II. Experimental. Phys. Rev. Lett. 1964, 13, 303–304.

  • 33.

    Bahcall, N. Solar Neutrinos. I. Theoretical. Phys. Rev. Lett. 1964, 13, 300–302.

  • 34.

    Davis, R.; Harmer, D.S.; Hoffman, K.C. A search for neutrinos from the Sun. Phys. Rev. Lett. 1968, 20, 1205–1209.

  • 35.

    Chen, M.; Novikov, V.M.; Dougherty, B.L. Ryazhskaya, private communication. Nucl. Instrum. Methods A 1993, 336, 232.

  • 36.

    Ryazhskaya, G. Calculation of a curve of dependence of nuclear effects initiated by µ-mezons (sic!) on a ground depth. Lebedev. Phys. Inst. 1966.

  • 37.

    Fiorini, E. on behalf of Frascati, Milano, Rome and Torino Groups, Preprint EP/EF/mm 17.06.1980. Letter of intent of a second generation experiment on nucleon decay.

  • 38.

    Zichichi, A.; Barnabei, O.; Pupillo, P.; et al. Subnuclear Physics: The First 50 Years: Highlights from Erice to ELN; World Scientific: Singapore, 2000.

  • 39.

    Bettini, A. The world deep underground laboratories. Eur. Phys. J. Plus 2012, 127, 114.

  • 40.

    Betrou, X. The ANDES underground laboratory. Eur. Phys. J. Plus 2012, 127, 104.

  • 41.

    Kuzminov, V.V. The Baksan neutrino observatory. Eur. Phys. J. Plus 2012, 127, 113.

  • 42.

    Chen, H. Underground laboratory in China. Eur. Phys. J. Plus 2012, 127, 105.

  • 43.

    Bettini, A. The Canfranc underground laboratory (LSC). Eur. Phys. J. Plus 2012, 127, 112.

  • 44.

    Mondal, N.K. India-based neutrino observatory (INO). Eur. Phys. J. Plus 2012, 127, 106.

  • 45.

    Suzuki, Y.; Inoue, K. Kamioka underground observatories. Eur. Phys. J. Plus 2012, 127, 111.

  • 46.

    Votano, L. The Gran Sasso laboratory. Eur. Phys. J. Plus 2012, 127, 109.

  • 47.

    Piquemal, F. Modane underground laboratory: Status and project. Eur. Phys. J. Plus 2012, 127, 110.

  • 48.

    Smith, N.J.T. The SNOLAB deep underground facility. Eur. Phys. J. Plus 2012, 127, 108.

  • 49.

    Lesko, K.T. The Sanford underground research facility at Homestake. Eur. Phys. J. Plus 2012, 127, 107.

  • 50.

    Rossi, B. Method of Registering Multiple Simultaneous Impulses of Several Geiger’s Counters. Nature 1930, 125, 636.

  • 51.

    Giacconi, R.; Gursky, H.; Paolini, F.R.; et al. Evidence of X rays from sources outside the solar system. Phys. Rev. Lett. 1962, 9, 439.

  • 52.

    Blackett, P.M.S. A possible contribution to the light of the night sky from the Cerenkov radiation emitted by cosmic rays. In Emission Spectra of Night Sky and Aurorae; The Physical Society: London, UK, 1948; pp. 34–35.

  • 53.

    Galbraith, W.; Jelley, J.V. Light pulses from the night sky associated with cosmic rays. Nature 1953, 171, 349.

  • 54.

    Cudakov, A.E.; Nesterova, N.M. Cerenkov Radiation of Extensive Air Showers. Nuovo C. Suppl. 1958, 8, 606.

  • 55.

    Weekes, T.C.; Turver, K.E. Recent Advances in Gamma-Ray Astronomy, in Proceedings of 12th ESLAB Symposium Frascati, Italy, 24–27 May 1977; European Space Agency: Frascati, France, 1977; ESA SP-124; p. 279.

  • 56.

    Weekes, T.C.; Cawley, M.F.; Fegan, D.J.; et al. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cherenkov imaging technique. Astrophys. J. 1989, 342, 379–395.

  • 57.

    Fowler, W.A. What Cooks with Solar Neutrinos? Nature 1972, 238, 24.

  • 58.

    Bonetti, R.; Broggini, C.; Camapjola, L.; et al. First Measurement of the 3He(3He, 2p)4He Cross Section down to the Lower Edge of the Solar Gamow Peak Phys. Rev. Lett. 1999, 82, 5295.

  • 59.

    Broggini, F. 33 anni di LUNA, Sole e altre stelle. Il Nuovo Saggiatore 2025, 41, 19–26.

  • 60.

    Formicola, A.; Imbriani, G.; Costantini, H.; et al. Astrophysical S-factor of 14N (p, γ) 15O. Phys. Lett. B 2004, 591, 61–68.

  • 61.

    WG.4: Particle and Nuclear Astrophysics and Gravitation International Committee (PaNAGIC). Available online: https://archive.iupap.org/wg/panagic/index.html (accessed on 11 December 2025).

  • 62.

    Gravitational Wave International Committee (GWIC). Available online: https://archive.iupap.org/wg/panagic/gwic/index.html (accessed on 11 December 2025).

  • 63.

    High Energy Neutrino Astrophysics Panel (HENAP). Available online: https://archive.iupap.org/wg/panagic/henap/index.html (accessed on 11 December 2025).

  • 64.

    Report of the Working Group on Astroparticle Physics. Available online: https://kipac.stanford.edu/sites/default/files/inline-files/47598026.pdf (accessed on 11 December 2025).

Share this article:
How to Cite
Bettini, A. The Rise of Astroparticle Physics. Physics and the Cosmos 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.