2601002785
  • Open Access
  • Review

High-Energy Astrophysical Tests of Lorentz Symmetry

  • Rafael Alves Batista 1, 2

Received: 05 Nov 2025 | Revised: 16 Dec 2025 | Accepted: 07 Jan 2026 | Published: 28 Jan 2026

Abstract

igh-energy cosmic messengers, such as gamma rays, neutrinos, and cosmic rays, have become indispensable tools for probing fundamental physics, providing a natural laboratory that far exceeds the reach of terrestrial particle accelerators. Owing to their extreme energies and vast propagation baselines, which can amplify tiny Planck-scale effects, these messengers offer some of the most promising avenues for testing theories of quantum gravity and for exploring the nature of spacetime itself. In this review, I present a critical synthesis of current constraints on deviations from Lorentz invariance, with emphasis on propagation-based observables such as modified interaction thresholds and time-of-flight effects. Particular attention is devoted to astrophysical uncertainties that may affect the interpretation of these observations, and to what these constraints reveal about the viability of detecting quantum-gravity--induced modifications to spacetime symmetries.

References 

  • 1.

    Lämmerzahl, C. Special Relativity and Lorentz Invariance. Ann. Phys. 2005, 517, 71–102.

  • 2.

    Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4.

  • 3.

    Stachel, J. The Early History of Quantum Gravity (1916–1940). In Black Holes, Gravitational Radiation and the Universe; Iyer, B.R., Bhawal, B., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 525–534.

  • 4.

    Rovelli, C. Notes for a Brief History of Quantum Gravity. arXiv 2000, arXiv:gr-qc/0006061.

  • 5.

    Goenner, H.F.M. On the History of Unified Field Theories. Living Rev. Relativ. 2004, 7, 2.

  • 6.

    Brown, H.R. Physical Relativity. Space-Time Structure from a Dynamical Perspective; Oxford University Press: Oxford, UK, 2005.

  • 7.

    Dieks, D. The Ontology of Spacetime; Elsevier: Amsterdam, The Netherlands, 2006.

  • 8.

    Dieks, D. The Ontology of Spacetime II; Elsevier: Amsterdam, The Netherlands, 2008.

  • 9.

    Maudlin, T. Philosophy of Physics: Space and Time; Princeton University Press: Princeton, NJ, USA, 2012.

  • 10.

    Brning, O.S.; Collier, P.; Lebrun, P.; et al. CERN Yellow Reports: Monographs. In LHC Design Report; CERN: Geneva, Switzerland, 2004.

  • 11.

    Addazi, A.; Alvarez-Muniz, J.; Alves Batista, R.; et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Prog. Part. Nucl. Phys. 2022, 125, 103948.

  • 12.

    Alves Batista, R.; Amelino-Camelia, G.; Boncioli, D.; et al. White paper and roadmap for quantum gravity phenomenology in the multi-messenger era. Class. Quantum Gravity 2025, 42, 032001.

  • 13.

    KM3NeT Collaboration. Observation of an ultra-high-energy cosmic neutrino with KM3NeT. Nature 2025, 638, 376–382.

  • 14.

    LHAASO Collaboration. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36.

  • 15.

    Fly’s Eye Collaboration. Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation. Astrophys. J. 1995, 441, 144–150.

  • 16.

    Telescope Array Collaboration. An extremely energetic cosmic ray observed by a surface detector array. Science 2023, 382, 903–907.

  • 17.

    Penzias, A.A.; Wilson, R.W. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. 1965, 142, 419–421.

  • 18.

    Partridge, R.B.; Peebles, P.J.E. Are Young Galaxies Visible? Astrophys. J. 1967, 147, 868.

  • 19.

    Puget, J.L.; Abergel, A.; Bernard, J.P.; et al. Tentative detection of a cosmic far-infrared background with COBE. Astron. Astrophys. 1996, 308, L5.

  • 20.

    Hauser, M.G.; Arendt, R.G.; Kelsall, T.; et al. The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections. Astrophys. J. 1998, 508, 25–43.

  • 21.

    Bridle, A.H. The spectrum of the radio background between 13 and 404 MHz. Mon. Not. R. Astron. Soc. 1967, 136, 219.

  • 22.

    Clark, T.A.; Brown, L.W.; Alexander, J.K. Spectrum of the Extra-galactic Background Radiation at Low Radio Frequencies. Nature 1970, 228, 847–849.

  • 23.

    Habing, H.J. The interstellar radiation density between 912 A and 2400 A. Bull. Astron. Inst. Neth. 1968, 19, 421.

  • 24.

    Mathis, J.S.; Mezger, P.G.; Panagia, N. Interstellar radiation field and dust temperatures in the diffuse interstellar medium and in giant molecular clouds. Astron. Astrophys. 1983, 128, 212–229.

  • 25.

    Hartmann, J. Investigations on the spectrum and orbit of delta Orionis. Astrophys. J. 1904, 19, 268–286.

  • 26.

    Heger, M.L. The occurrence of stationary D lines of sodium in the spectroscopic binaries, β Scorpii and δ Orionis. Lick Obs. Bull. 1919, 326, 59–63.

  • 27.

    Strömgren, B. The Physical State of Interstellar Hydrogen. Astrophys. J. 1939, 89, 526.

  • 28.

    Meekins, J.F.; Fritz, G.; Chubb, T.A.; et al. Physical Sciences: X-rays from the Coma Cluster of Galaxies. Nature 1971, 231, 107–108.

  • 29.

    Fang, K.; Olinto, A.V. High-energy Neutrinos from Sources in Clusters of Galaxies. Astrophys. J. 2016, 828, 37.

  • 30.

    Hussain, S.; Alves Batista, R.; de Gouveia Dal Pino, E.M.; et al. High-energy neutrino production in clusters of galaxies. Mon. Not. R. Astron. Soc. 2021, 507, 1762–1774.

  • 31.

    Hussain, S.; Alves Batista, R.; de Gouveia Dal Pino, E.M.; et al. The diffuse gamma-ray flux from clusters of galaxies. Nat. Commun. 2023, 14, 2486.

  • 32.

    Weinberg, S. Universal Neutrino Degeneracy. Phys. Rev. 1962, 128, 1457–1473.

  • 33.

    Seckel, D. Neutrino-Photon Reactions in Astrophysics and Cosmology. Phys. Rev. Lett. 1998, 80, 900–903.

  • 34.

    Murase, K.; Beacom, J.F.; Takami, H. Gamma-ray and neutrino backgrounds as probes of the high-energy universe: hints of cascades, general constraints, and implications for TeV searches. J. Cosmol. Astropart. Phys. 2012, 8, 030.

  • 35.

    Di Marco, G.; Alves Batista, R.; Sánchez-Conde, M.A. Gamma rays as leptonic portals to energetic neutrinos: A new Monte Carlo approach. Astropart. Phys. 2026, 175, 103192.

  • 36.

    Nikishov, A.I. Absorption of high-energy photons in the universe. J. Exp. Theor. Phys. Lett. 1962, 14, 393.

  • 37.

    Jelley, J.V. High-Energy γ-Ray Absorption in Space by a 3.5 K Microwave Field. Phys. Rev. Lett. 1966, 16, 479–481.

  • 38.

    Gould, R.J.; Schrder, G. Opacity of the Universe to High-Energy Photons. Phys. Rev. Lett. 1966, 16, 252–254.

  • 39.

    Bjorken, J.D.; Drell, S.D. Tridents, µ Pairs, and Quantum Electrodynamics at Small Distances. Phys. Rev. 1959, 114, 1368–1374.

  • 40.

    Krass, A.S. Photoproduction of Muon Pairs. Phys. Rev. 1965, 138, 1268–1273.

  • 41.

    Arteaga-Romero, N.; Jaccarini, A.; Kessler, P.; et al. Photon-Photon Collisions, a New Area of Experimental Investigation in High-Energy Physics. Phys. Rev. D 1971, 3, 1569–1579.

  • 42.

    Terazawa, H. Two-Photon Processes for Particle Production at High Energies. Rev. Mod. Phys. 1973, 45, 615–662.

  • 43.

    Brodsky, S.J.; Kinoshita, T.; Terazawa, H. Two-Photon Mechanism of Particle Production by High-Energy Colliding Beams. Phys. Rev. D 1971, 4, 1532–1557.

  • 44.

    Cheng, H.; Wu, T.T. Cross Sections for Two-Pair Production at Infinite Energy. Phys. Rev. D 1970, 2, 2103–2104.

  • 45.

    Brown, R.W.; Hunt, W.F.; Mikaelian, K.O.; et al. Role of γ + γ → e + e+ in Photoproduction, Colliding Beams, and Cosmic Photon Absorption. Phys. Rev. D 1973, 8, 3083–3102.

  • 46.

    Compton, A.H. A Quantum Theory of the Scattering of X-rays by Light Elements. Phys. Rev. 1923, 21, 483–502.

  • 47.

    Hayakawa, S. Electron-Photon Cascade Process in Intergalactic Space. Prog. Theor. Phys. Suppl. 1966, 37, 594–597.

  • 48.

    Davies, H.; Bethe, H.A.; Maximon, L.C. Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production. Phys. Rev. 1954, 93, 788–795.

  • 49.

    Motz, J.W.; Olsen, H.A.; Koch, H.W. Pair Production by Photons. Rev. Mod. Phys. 1969, 41, 581–639.

  • 50.

    Bonometto, S.A.; Marcolungo, P. Metagalactic opacity to photons of energy larger than 1017 eV. Nuovo C. Lett. 1972, 5, 595–603.

  • 51.

    Bonometto, S.A.; Lucchin, F.; Marcolungo, P. Induced Pair Production and Opacity Due to Black-body Radiation. Astron. Astrophys. 1974, 31, 41.

  • 52.

    Bethe, H.; Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proc. R. Soc. Lond. Ser. 1934, 146, 83–112.

  • 53.

    Blumenthal, G.R. Energy Loss of High-Energy Cosmic Rays in Pair-Producing Collisions with Ambient Photons. Phys. Rev. D 1970, 1, 1596–1602.

  • 54.

    Chodorowski, M.J.; Zdziarski, A.A.; Sikora, M. Reaction Rate and Energy-Loss Rate for Photopair Production by Relativistic Nuclei. Astrophys. J. 1992, 400, 181.

  • 55.

    Greisen, K. End to the Cosmic-Ray Spectrum? Phys. Rev. Lett. 1966, 16, 748–750.

  • 56.

    Zatsepin, G.T.; Kuz’min, V.A. Upper Limit of the Spectrum of Cosmic Rays. Sov. J. Exp. Theor. Phys. Lett. 1966, 4, 78.

  • 57.

    Karakula, S.; Tkaczyk, W. The formation of the cosmic ray energy spectrum by a photon field. Astropart. Phys. 1993, 1, 229–237.

  • 58.

    Morejon, L.; Fedynitch, A.; Boncioli, D.; et al. Improved photomeson model for interactions of cosmic ray nuclei. J. Cosmol. Astropart. Phys. 2019, 11, 007.

  • 59.

    HiRes Collaboration. First Observation of the Greisen-Zatsepin-Kuzmin Suppression. Phys. Rev. Lett. 2008, 100, 101101.

  • 60.

    Pierre Auger Collaboration. Observation of the Suppression of the Flux of Cosmic Rays above 4×1019 eV. Phys. Rev. Lett. 2008, 101, 061101.

  • 61.

    Stecker, F.W. Photodisintegration of Ultrahigh-Energy Cosmic Rays by the Universal Radiation Field. Phys. Rev. 1969, 180, 1264–1266.

  • 62.

    Puget, J.L.; Stecker, F.W.; Bredekamp, J.H. Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences. Astrophys. J. 1976, 205, 638–654.

  • 63.

    Alves Batista, R.; Boncioli, D.; di Matteo, A.; et al. Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp. J. Cosmol. Astropart. Phys. 2015, 10, 063.

  • 64.

    Boncioli, D.; Fedynitch, A.; Winter, W. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays. Sci. Rep. 2017, 7, 4882.

  • 65.

    Soriano, J.F.; Anchordoqui, L.A.; Torres, D.F. Photo-disintegration of 4He on the cosmic microwave background is less severe than earlier thought. Phys. Rev. D 2018, 98, 043001.

  • 66.

    Alves Batista, R.; Boncioli, D.; di Matteo, A.; et al. Secondary neutrino and gamma-ray fluxes from SimProp and CRPropa. J. Cosmol. Astropart. Phys. 2019, 5, 006.

  • 67.

    Dicus, D.A.; Repko, W.W. Photon neutrino scattering. Phys. Rev. D 1993, 48, 5106–5108.

  • 68.

    Abbasabadi, A.; Devoto, A.; Dicus, D.A.; et al. High energy photon-neutrino interactions. Phys. Rev. D 1998, 59, 013012.

  • 69.

    Abbasabadi, A.; Devoto, A.; Repko, W.W. High energy photon-neutrino elastic scattering. Phys. Rev. D 2001, 63, 093001.

  • 70.

    Bahcall, J.N. Neutrino Opacity I. Neutrino-Lepton Scattering. Phys. Rev. 1964, 136, 1164–1171.

  • 71.

    Yoshida, S. Propagation of ultrahigh energy neutrinos in the black-body neutrino field. Astropart. Phys. 1994, 2, 187–198.

  • 72.

    Pontecorvo, B. Mesonium and Antimesonium. Sov. J. Exp. Theor. Phys. 1958, 6, 429.

  • 73.

    Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the Unified Model of Elementary Particles. Prog. Theor. Phys. 1962, 28, 870–880.

  • 74.

    Giunti, C.; Kim, C.W. Coherence of neutrino oscillations in the wave packet approach. Phys. Rev. D 1998, 58, 017301.

  • 75.

    Giunti, C. Coherence and Wave Packets in Neutrino Oscillations. Found. Phys. Lett. 2004, 17, 103–124.

  • 76.

    Beuthe, M. Oscillations of neutrinos and mesons in quantum field theory. Phys. Rep. 2003, 375, 105–218.

  • 77.

    Akhmedov, E.K.; Smirnov, A.Y. Paradoxes of neutrino oscillations. Phys. At. Nucl. 2009, 72, 1363–1381.

  • 78.

    Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; et al. NuFit-6.0: updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2024, 12, 216.

  • 79.

    Bhattacharjee, P.; Sigl, G. Origin and propagation of extremely high energy cosmic rays. Phys. Rep. 2000, 327, 109–247.

  • 80.

    Neronov, A.; Semikoz, D.V. Sensitivity of γ-ray telescopes for detection of magnetic fields in the intergalactic medium. Phys. Rev. D 2009, 80, 123012.

  • 81.

    Lipari, P.; Vernetto, S. Diffuse Galactic gamma-ray flux at very high energy. Phys. Rev. D 2018, 98, 043003.

  • 82.

    Di Marco, G.; Alves Batista, R.; Sánchez-Conde, M.Á. Revisiting the propagation of highly-energetic gamma rays in the Galaxy. Phys. Rev. D 2025, 111, 083004.

  • 83.

    Shapiro, I.I. Fourth Test of General Relativity. Phys. Rev. Lett. 1964, 13, 789–791.

  • 84.

    Alves Batista, R.; Dundovic, A.; Erdmann, M.; et al. CRPropa 3—A public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles. J. Cosmol. Astropart. Phys. 2016, 5, 038.

  • 85.

    Alves Batista, R.; Becker Tjus, J.; Dörner, J.; et al. CRPropa 3.2—An advanced framework for high-energy particle propagation in extragalactic and galactic spaces. J. Cosmol. Astropart. Phys. 2022, 09, 035.

  • 86.

    Kachelrieß, M.; Ostapchenko, S.; Tomàs, R. ELMAG: A Monte Carlo simulation of electromagnetic cascades on the extragalactic background light and in magnetic fields. Comput. Phys. Commun. 2012, 183, 1036–1043.

  • 87.

    Blytt, M.; Kachelrieß, M.; Ostapchenko, S. ELMAG 3.01: A three-dimensional Monte Carlo simulation of electromagnetic cascades on the extragalactic background light and in magnetic fields. Comput. Phys. Commun. 2020, 252, 107163.

  • 88.

    Kalashev, O.; Korochkin, A.; Neronov, A.; et al. Modeling the propagation of very-high-energy γ-rays with the CRbeam code: Comparison with CRPropa and ELMAG codes. Astron. Astrophys. 2023, 675, A132.

  • 89.

    Settimo, M.; De Domenico, M. Propagation of extragalactic photons at ultra-high energy with the EleCa code. Astropart. Phys. 2015, 62, 92–99.

  • 90.

    Armengaud, E.; Sigl, G.; Beau, T.; et al. CRPropa: A numerical tool for the propagation of UHE cosmic rays, γ-rays and neutrinos. Astropart. Phys. 2007, 28, 463–471.

  • 91.

    Kampert, K.H.; Kulbartz, J.; Maccione, L.; et al. CRPropa 2.0—A public framework for propagating high energy nuclei, secondary gamma rays and neutrinos. Astropart. Phys. 2013, 42, 41–51.

  • 92.

    Aloisio, R.; Boncioli, D.; Grillo, A.F.; et al. SimProp: a simulation code for ultra high energy cosmic ray propagation. J. Cosmol. Astropart. Phys. 2012, 10, 007.

  • 93.

    Aloisio, R.; Boncioli, D.; di Matteo, A.; et al. SimProp v2r4: Monte Carlo simulation code for UHECR propagation. J. Cosmol. Astropart. Phys. 2017, 11, 009.

  • 94.

    Moskalenko, I. GALPROP Code for Galactic Cosmic Ray Propagation and Associated Photon Emissions. In Proceedings of the 32nd International Cosmic Ray Conference (ICRC2011), Beijing, China, 11–18 August, 2011; Volume 6, p. 279.

  • 95.

    Porter, T.A.; Jóhannesson, G.; Moskalenko, I.V. The GALPROP Cosmic-ray Propagation and Nonthermal Emissions Framework: Release v57. Astrophys. J. Suppl. Ser. 2022, 262, 30.

  • 96.

    Evoli, C.; Gaggero, D.; Vittino, A.; et al. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients. J. Cosmol. Astropart. Phys. 2017, 2, 015.

  • 97.

    Evoli, C.; Gaggero, D.; Vittino, A.; et al. Cosmic-ray propagation with DRAGON2: II. Nuclear interactions with the interstellar gas. J. Cosmol. Astropart. Phys. 2018, 7, 006.

  • 98.

    Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002.

  • 99.

    Earman, J.; Glymour, C.; Rynasiewicz, R. On Writing the History of Special Relativity. In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association; Cambridge University Press: Cambridge, UK, 1982; pp. 403–416.

  • 100.

    Will, C.M. Special Relativity: A Centenary Perspective. In Einstein, 1905–2005: Poincar Seminar 2005; Damour, T., Darrigol, O., Duplantier, B., et al., Eds.; Birkhuser: Basel, Switzerland, 2006; Volume 47, p. 33.

  • 101.

    Schwarz, J.H. Superstring theory. Phys. Rep. 1982, 89, 223–322.

  • 102.

    Polchinski, J. String duality. Rev. Mod. Phys. 1996, 68, 1245–1258.

  • 103.

    Aharony, O.; Gubser, S.S.; Maldacena, J.; et al. Large N field theories, string theory and gravity. Phys. Rep. 2000, 323, 183–386.

  • 104.

    Mukhi, S. String theory: a perspective over the last 25 years. Class. Quantum Gravity 2011, 28, 153001.

  • 105.

    Polchinski, J. TASI Lectures on D-Branes. arXiv 1996, arXiv:hep-th/9611050.

  • 106.

    Scherk, J.; Schwarz, J.H. Dual models for non-hadrons. Nucl. Phys. B 1974, 81, 118–144.

  • 107.

    Witten, E. String theory dynamics in various dimensions. Nucl. Phys. B 1995, 443, 85–126.

  • 108.

    Maldacena, J.M. The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 1998, 2, 231.

  • 109.

    Hubeny, V.E. The AdS/CFT correspondence. Class. Quantum Gravity 2015, 32, 124010.

  • 110.

    Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683–685.

  • 111.

    Kostelecký, V.A.; Samuel, S. Gravitational phenomenology in higher-dimensional theories and strings. Phys. Rev. D 1989, 40, 1886–1903.

  • 112.

    Kostelecký, V.A.; Samuel, S. Phenomenological gravitational constraints on strings and higher-dimensional theories. Phys. Rev. Lett. 1989, 63, 224–227.

  • 113.

    Potting, R. Symmetry breaking in string theory. Phys. At. Nucl. 1998, 61, 1914–1917.

  • 114.

    Frey, A.R. String theoretic bounds on Lorentz-violating warped compactification. J. High Energy Phys. 2003, 4, 012.

  • 115.

    Sudarsky, D.; Urrutia, L.; Vucetich, H. Bounds on stringy quantum gravity from low energy existing data. Phys. Rev. D 2003, 68, 024010.

  • 116.

    Mavromatos, N.E. Quantum-gravity induced Lorentz violation and dynamical mass generation. Phys. Rev. D 2011, 83, 025018.

  • 117.

    Chang, Z.; Wang, S. Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime. Eur. Phys. J. C 2012, 72, 2165.

  • 118.

    Ellis, G.; Silk, J. Scientific method: Defend the integrity of physics. Nature 2014, 516, 321–323.

  • 119.

    Ritson, S.; Camilleri, K. Contested Boundaries: The String Theory Debates and Ideologies of Science. Perspect. Sci. 2015, 23, 192–227.

  • 120.

    Hewett, J.L.; Rizzo, T.G. Low-energy phenomenology of superstring-inspired E6 models. Phys. Rep. 1989, 183, 193–381.

  • 121.

    Vafa, C. The String Landscape and the Swampland. arXiv 2005, arXiv:hep-th/0509212.

  • 122.

    Acharya, B.S.; Kane, G.; Kumar, P. Compactified String Theories – Generic Predictions for Particle Physics. Int. J. Mod. Phys. A 2012, 27, 1230012.

  • 123.

    Halverson, J.; Langacker, P. TASI Lectures on Remnants from the String Landscape. arXiv 2018, arXiv:1801.03503.

  • 124.

    Dawid, R. String Theory and the Scientific Method; Cambridge University Press: Cambridge, UK, 2013.

  • 125.

    Dawid, R. The Significance of Non-Empirical Confirmation in Fundamental Physics. In Why Trust a Theory? Epistemology of Fundamental Physics; Cambridge University Press: Cambridge, UK, 2019; pp. 99–119.

  • 126.

    Carroll, S.M., Beyond Falsifiability: Normal Science in a Multiverse. In Why Trust a Theory? Epistemology of Fundamental Physics; Cambridge University Press: Cambridge, UK, 2019; pp. 300–314.

  • 127.

    Greenberg, O.W. CPT Violation Implies Violation of Lorentz Invariance. Phys. Rev. Lett. 2002, 89, 231602.

  • 128.

    Mavromatos, N.E. Lorentz Symmetry Violation in String-Inspired Effective Modified Gravity Theories. In Modified and Quantum Gravity: From Theory to Experimental Searches on All Scales; Springer: Cham, Switzerland, 2023; Volume 1017, pp. 3–48.

  • 129.

    Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 9, 032.

  • 130.

    Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 1995, 172, 187–220.

  • 131.

    Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep. 2003, 378, 207–299.

  • 132.

    Connes, A. Noncommutative geometry and reality. J. Math. Phys. 1995, 36, 6194–6231.

  • 133.

    Snyder, H.S. Quantized Space-Time. Phys. Rev. 1947, 71, 38–41.

  • 134.

    Carroll, S.M.; Harvey, J.A.; Kostelecký, V.A.; et al. Noncommutative Field Theory and Lorentz Violation. Phys. Rev. Lett. 2001, 87, 141601.

  • 135.

    Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977–1029.

  • 136.

    Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A status report. Class. Quantum Gravity 2004, 21, R53–R152.

  • 137.

    Oriti, D. The microscopic dynamics of quantum space as a group field theory. In Foundations of Space and Time; Murugan, J., Weltman, A., Ellis, G.F.R., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 257–320.

  • 138.

    Rovelli, C. Loop Quantum Gravity. Living Rev. Relativ. 2008, 11, 5.

  • 139.

    Ashtekar, A.; Bianchi, E. A short review of loop quantum gravity. Rep. Prog. Phys. 2021, 84, 042001.

  • 140.

    Ashtekar, A.; Fairhurst, S.; Willis, J.L. Quantum gravity, shadow states and quantum mechanics. Class. Quantum Gravity 2003, 20, 1031–1061.

  • 141.

    Ashtekar, A.; Rovelli, C.; Smolin, L. Weaving a classical metric with quantum threads. Phys. Rev. Lett. 1992, 69, 237–240.

  • 142.

    Rovelli, C.; Smolin, L. Spin networks and quantum gravity. Phys. Rev. D 1995, 52, 5743–5759.

  • 143.

    Bojowald, M. Absence of a Singularity in Loop Quantum Cosmology. Phys. Rev. Lett. 2001, 86, 5227–5230.

  • 144.

    Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang. Phys. Rev. Lett. 2006, 96, 141301.

  • 145.

    Gambini, R.; Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 1999, 59, 124021.

  • 146.

    Alfaro, J.; Morales-Técotl, H.A.; Urrutia, L.F. Loop quantum gravity and light propagation. Phys. Rev. D 2002, 65, 103509.

  • 147.

    Bojowald, M.; Paily, G.M. Deformed general relativity. Phys. Rev. D 2013, 87, 044044.

  • 148.

    Freidel, L. Group Field Theory: An Overview. Int. J. Theor. Phys. 2005, 44, 1769–1783.

  • 149.

    Reisenberger, M.P.; Rovelli, C. “Sum over surfaces” form of loop quantum gravity. Phys. Rev. D 1997, 56, 3490–3508.

  • 150.

    Girelli, F.; Konopka, T.; Kowalski-Glikman, J.; et al. Free particle in deformed special relativity. Phys. Rev. D 2006, 73, 045009.

  • 151.

    Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; et al. Relative locality and the soccer ball problem. Phys. Rev. D 2011, 84, 087702.

  • 152.

    Surya, S. The causal set approach to quantum gravity. Living Rev. Relativ. 2019, 22, 5.

  • 153.

    Bombelli, L.; Lee, J.; Meyer, D.; et al. Space-time as a causal set. Phys. Rev. Lett. 1987, 59, 521–524.

  • 154.

    Ambjørn, J.; Jurkiewicz, J.; Loll, R. Causal dynamical triangulations and the quest for quantum gravity. In Foundations of Space and Time; Cambridge University Press: Cambridge, UK, 2012; pp. 321–337.

  • 155.

    Loll, R. Quantum gravity from causal dynamical triangulations: a review. Class. Quantum Gravity 2020, 37, 013002.

  • 156.

    Tawfik, A.; Diab, A. Generalized uncertainty principle: Approaches and applications. Int. J. Mod. Phys. D 2014, 23, 1430025.

  • 157.

    Bosso, P.; Gaetano Luciano, G.; Petruzziello, L.; et al. 30 years in: Quo vadis generalized uncertainty principle? Class. Quantum Gravity 2023, 40, 195014.

  • 158.

    Maggiore, M. A generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, 304, 65–69.

  • 159.

    Maggiore, M. Quantum groups, gravity, and the generalized uncertainty principle. Phys. Rev. D 1994, 49, 5182–5187.

  • 160.

    Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118.

  • 161.

    Garay, L.J. Quantum Gravity and Minimum Length. Int. J. Mod. Phys. A 1995, 10, 145–165.

  • 162.

    Ali, A.F.; Das, S.; Vagenas, E.C. Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 2009, 678, 497–499.

  • 163.

    Eichhorn, A. An asymptotically safe guide to quantum gravity and matter. Front. Astron. Space Sci. 2018, 5, 47.

  • 164.

    Eichhorn, A.; Schiffer, M., Asymptotic Safety of Gravity with Matter. In Handbook of Quantum Gravity; Bambi, C., Modesto, L., Shapiro, I., Eds.; Springer Nature: Singapore, 2024; pp. 915–1001.

  • 165.

    Platania, A. From renormalization group flows to cosmology. Front. Phys. 2020, 8, 188.

  • 166.

    Weinberg, S. Ultraviolet divergences in quantum theories of gravitation. In General Relativity; Cambridge University Press: Cambridge, UK, 1979; pp. 790–831.

  • 167.

    Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971–985.

  • 168.

    Niedermaier, M. The asymptotic safety scenario in quantum gravity: An introduction. Class. Quantum Gravity 2007, 24, R171–R230.

  • 169.

    Eichhorn, A.; Held, A.; Wetterich, C. Predictive power of grand unification from quantum gravity. J. High Energy Phys. 2020, 8, 111.

  • 170.

    Reuter, M.; Weyer, H. Quantum gravity at astrophysical distances? J. Cosmol. Astropart. Phys. 2004, 12, 001.

  • 171.

    Eichhorn, A.; Platania, A.; Schiffer, M. Lorentz invariance violations in the interplay of quantum gravity with matter. Phys. Rev. D 2020, 102, 026007.

  • 172.

    Donoghue, J.F. Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 1994, 72, 2996–2999.

  • 173.

    Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874–3888.

  • 174.

    Donoghue, J.F. Quantum General Relativity and Effective Field Theory. In Handbook of Quantum Gravity; Bambi, C., Modesto, L., Shapiro, I., Eds.; Springer Nature: Singapore, 2024; pp. 3–26.

  • 175.

    Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009.

  • 176.

    Chaichian, M.; Dolgov, A.D.; Novikov, V.A.; et al. CPT violation does not lead to violation of Lorentz invariance and vice versa. Phys. Lett. B 2011, 699, 177–180.

  • 177.

    Coleman, S.; Glashow, S.L. High-energy tests of Lorentz invariance. Phys. Rev. D 1999, 59, 116008.

  • 178.

    Mattingly, D. Modern Tests of Lorentz Invariance. Living Rev. Relativ. 2005, 8, 5.

  • 179.

    Liberati, S.; Maccione, L. Lorentz Violation: Motivation and New Constraints. Annu. Rev. Nucl. Part. Sci. 2009, 59, 245–267.

  • 180.

    Tasson, J.D. What do we know about Lorentz invariance? Rep. Prog. Phys. 2014, 77, 062901.

  • 181.

    Amelino-Camelia, G. Testable scenario for relativity with minimum length. Phys. Lett. B 2001, 510, 255–263.

  • 182.

    Amelino-Camelia, G. Relativity: Special treatment. Nature 2002, 418, 34–35.

  • 183.

    Kowalski-Glikman, J.; Nowak, S. Doubly special relativity theories as different bases of κ-Poincar algebra. Phys. Lett. B 2002, 539, 126–132.

  • 184.

    Magueijo, J.; Smolin, L. Lorentz Invariance with an Invariant Energy Scale. Phys. Rev. Lett. 2002, 88, 190403.

  • 185.

    Magueijo, J.; Smolin, L. Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 2003, 67, 044017.

  • 186.

    Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; et al. Principle of relative locality. Phys. Rev. D 2011, 84, 084010.

  • 187.

    Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; et al. Relative locality: a deepening of the relativity principle. Gen. Relativ. Gravit. 2011, 43, 2547–2553.

  • 188.

    Kowalski-Glikman, J. Introduction to Doubly Special Relativity. In Planck Scale Effects in Astrophysics and Cosmology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 669, p. 131.

  • 189.

    Amelino-Camelia, G. Doubly-Special Relativity: Facts, Myths and Some Key Open Issues. Symmetry 2010, 2, 230–271.

  • 190.

    Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 5.

  • 191.

    Arzano, M.; Gubitosi, G.; Relancio, J.J. Deformed Relativistic Symmetry Principles. In Modified and Quantum Gravity: From Theory to Experimental Searches on All Scales; Springer: Cham, Switzerland, 2023; Volume 1017, pp. 49–103.

  • 192.

    Jacobson, T.; Liberati, S.; Mattingly, D. Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics. Phys. Rev. D 2003, 67, 124011.

  • 193.

    Lehnert, R. Threshold analyses and Lorentz violation. Phys. Rev. D 2003, 68, 085003.

  • 194.

    Mattingly, D.; Jacobson, T.; Liberati, S. Threshold configurations in the presence of Lorentz violating dispersion relations. Phys. Rev. D 2003, 67, 124012.

  • 195.

    Heyman, D.; Major, S.; Hinteleitner, F. Reaction thresholds in doubly special relativity. Phys. Rev. D 2004, 69, 105016.

  • 196.

    Baccetti, V.; Tate, K.; Visser, M. Lorentz violating kinematics: Threshold theorems. J. High Energy Phys. 2012, 2012, 87.

  • 197.

    Amelino-Camelia, G. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries. In CPT and Lorentz Symmetry; Kostelecký, V.A., Ed.; World Scientific: Singapore, 2002, pp. 254–261.

  • 198.

    Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11–32.

  • 199.

    Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008.

  • 200.

    Magueijo, J.; Smolin, L. Gravity’s rainbow. Class. Quantum Gravity 2004, 21, 1725–1736.

  • 201.

    Amelino-Camelia, G. Phenomenology of Planck-scale Lorentz-symmetry test theories. New J. Phys. 2004, 6, 188.

  • 202.

    Lukierski, J.; Ruegg, H.; Nowicki, A.; et al. q-deformation of Poincar algebra. Phys. Lett. B 1991, 264, 331–338.

  • 203.

    Majid, S.; Ruegg, H. Bicrossproduct structure of κ-Poincare group and non-commutative geometry. Phys. Lett. B 1994, 334, 348–354.

  • 204.

    Lukierski, J. Kappa-deformations: historical developments and recent results. J. Phys. Conf. Ser. 2017, 804, 012028.

  • 205.

    Girelli, F.; Liberati, S.; Sindoni, L. Planck-scale modified dispersion relations and Finsler geometry. Phys. Rev. D 2007, 75, 064015.

  • 206.

    Barcaroli, L.; Brunkhorst, L.K.; Gubitosi, G.; et al. Hamilton geometry: Phase space geometry from modified dispersion relations. Phys. Rev. D 2015, 92, 084053.

  • 207.

    Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511–536.

  • 208.

    Hawking, S.W. Spacetime foam. Nucl. Phys. B 1978, 144, 349–362.

  • 209.

    Carlip, S. Spacetime foam: A review. Rep. Prog. Phys. 2023, 86, 066001.

  • 210.

    Jack Ng, Y.; van Dam, H. Limit to Space-Time Measurement. Mod. Phys. Lett. A 1994, 9, 335–340.

  • 211.

    Schreck, M.; Sorba, F.; Thambyahpillai, S. Simple model of pointlike spacetime defects and implications for photon propagation. Phys. Rev. D 2013, 88, 125011.

  • 212.

    Hossenfelder, S. Phenomenology of space-time imperfection. II. Local defects. Phys. Rev. D 2013, 88, 124031.

  • 213.

    Borowiec, A.; Pachol, A. κ-Minkowski Spacetimes and DSR Algebras: Fresh Look and Old Problems. Symmetry Integr. Geom. Methods Appl. 2010, 6, 086.

  • 214.

    Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Relativistic deformed kinematics from locality conditions in a generalized spacetime. Phys. Rev. D 2020, 101, 044057.

  • 215.

    Amelino-Camelia, G.; Ahluwalia, D.V. Relativity in Spacetimes with Short-Distance Structure Governed by an Observer- Independent (Planckian) Length Scale. Int. J. Mod. Phys. D 2002, 11, 35–59.

  • 216.

    Kosiski, P.; Lukierski, J.; Sobczyk, J.; et al. The Classical Basis for κ-deformed Poincar Algebra and Superalgebra. Mod. Phys. Lett. A 1995, 10, 2599–2606.

  • 217.

    Saveliev, A.; Alves Batista, R. Simulating electromagnetic cascades with Lorentz invariance violation. Class. Quantum Gravity 2024, 41, 115011.

  • 218.

    Saldana-Lopez, A.; Domnguez, A.; Pérez-González, P.G.; et al. An observational determination of the evolving extragalactic background light from the multiwavelength HST/CANDELS survey in the Fermi and CTA era. Mon. Not. R. Astron. Soc. 2021, 507, 5144–5160.

  • 219.

    Anchordoqui, L.A.; Soriano, J.F. New test of Lorentz symmetry using ultrahigh-energy cosmic rays. Phys. Rev. D 2018, 97, 043010.

  • 220.

    Li, H.; Ma, B.Q. Threshold anomalies of ultra-high energy cosmic photons due to Lorentz invariance violation. J. High Energy Astrophys. 2021, 32, 1–5.

  • 221.

    Burde, G.I. Particle dynamics and GZK limit in relativity with a preferred frame. Astropart. Phys. 2021, 126, 102526.

  • 222.

    Burde, G.I. Lorentz Violation by the Preferred Frame Effects and Cosmic and Gamma Ray Propagation. Galaxies 2021, 9, 119.

  • 223.

    He, P.; Ma, B.Q. Abnormal threshold behaviors of photo-pion production off the proton in the GZK region. Eur. Phys. J. C 2024, 84, 401.

  • 224.

    Pierre Auger Collaboration. Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2022, 1, 023.

  • 225.

    Galaverni, M.; Sigl, G. Lorentz violation and ultrahigh-energy photons. Phys. Rev. D 2008, 78, 063003.

  • 226.

    Saveliev, A.; Maccione, L.; Sigl, G. Lorentz invariance violation and chemical composition of ultra high energy cosmic rays. J. Cosmol. Astropart. Phys. 2011, 3, 046.

  • 227.

    Lang, R.G.; Martínez-Huerta, H.; de Souza, V. Ultra-High-Energy Astroparticles as Probes for Lorentz Invariance Violation. Universe 2022, 8, 435.

  • 228.

    Guedes Lang, R.; Martínez-Huerta, H.; de Souza, V. Limits on the Lorentz Invariance Violation from UHECR Astrophysics. Astrophys. J. 2018, 853, 23.

  • 229.

    Coleman, S.; Glashow, S.L. Cosmic ray and neutrino tests of special relativity. Phys. Lett. B 1997, 405, 249–252.

  • 230.

    Rubtsov, G.; Satunin, P.; Sibiryakov, S. Calculation of cross sections in Lorentz-violating theories. Phys. Rev. D 2012, 86, 085012.

  • 231.

    Jacobson, T.; Liberati, S.; Mattingly, D. TeV astrophysics constraints on Planck scale Lorentz violation. Phys. Rev. D 2002, 66, 081302.

  • 232.

    Lehnert, R.; Potting, R. Vacuum Čerenkov Radiation. Phys. Rev. Lett. 2004, 93, 110402.

  • 233.

    Lehnert, R.; Potting, R. Čerenkov effect in Lorentz-violating vacua. Phys. Rev. D 2004, 70, 125010.

  • 234.

    Kaufhold, C.; Klinkhamer, F.R. Vacuum Cherenkov radiation and photon triple-splitting in a Lorentz-noninvariant extension of quantum electrodynamics. Nucl. Phys. B 2006, 734, 1–23.

  • 235.

    Kaufhold, C.; Klinkhamer, F.R. Vacuum Cherenkov radiation in spacelike Maxwell-Chern-Simons theory. Phys. Rev. D 2007, 76, 025024.

  • 236.

    Klinkhamer, F.R.; Risse, M. Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory. Phys. Rev. D 2008, 77, 016002.

  • 237.

    Díaz, J.S.; Klinkhamer, F.R.; Risse, M. Changes in extensive air showers from isotropic Lorentz violation in the photon sector. Phys. Rev. D 2016, 94, 085025.

  • 238.

    Saveliev, A.; Alves Batista, R.; Mishin, F. Spectra for reactions in astrophysical electromagnetic cascades with Lorentz invariance violation: The vacuum Cherenkov effect. Phys. Rev. D 2025, 111, 083001.

  • 239.

    Kostelecký, V.A.; Pickering, A.G. Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics. Phys. Rev. Lett. 2003, 91, 031801.

  • 240.

    Anselmi, D.; Taiuti, M. Vacuum Cherenkov radiation in quantum electrodynamics with high-energy Lorentz violation. Phys. Rev. D 2011, 83, 056010.

  • 241.

    Schreck, M. Vacuum Cherenkov radiation for Lorentz-violating fermions. Phys. Rev. D 2017, 96, 095026.

  • 242.

    Carmona, J.M.; Cortés, J.L. Constraints from Neutrino Decay on Superluminal Velocities. arXiv 2011, arXiv:hep- ph/1110.0430.

  • 243.

    Somogyi, G.; Nándori, I.; Jentschura, U.D. Neutrino splitting for Lorentz-violating neutrinos: Detailed analysis. Phys. Rev. D 2019, 100, 035036.

  • 244.

    Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; et al. Decay of superluminal neutrinos in the collinear approximation. Phys. Rev. D 2023, 107, 043001.

  • 245.

    Cohen, A.G.; Glashow, S.L. Pair Creation Constrains Superluminal Neutrino Propagation. Phys. Rev. Lett. 2011, 107, 181803.

  • 246.

    Bezrukov, F.; Lee, H.M. Model dependence of the bremsstrahlung effects from the superluminal neutrino at OPERA. Phys. Rev. D 2012, 85, 031901.

  • 247.

    Jentschura, U.D. Squeezing the Parameter Space for Lorentz Violation in the Neutrino Sector with Additional Decay Channels. Particles 2020, 3, 630–641.

  • 248.

    Kostelecký, V.A.; Tasson, J.D. Constraints on Lorentz violation from gravitational Čerenkov radiation. Phys. Lett. B 2015, 749, 551–559.

  • 249.

    Moore, G.D.; Nelson, A.E. Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation. J. High Energy Phys. 2001, 9, 023.

  • 250.

    Artola, M.; Cembranos, J.A.R.; Martn-Moruno, P. Gravitational and electromagnetic Cherenkov radiation constraints in modified dispersion relations. Phys. Rev. D 2024, 110, 124060.

  • 251.

    Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.E.; et al. Tests of quantum gravity from observations of γ-ray bursts. Nature 1998, 393, 763–765.

  • 252.

    Schaefer, B.E. Severe Limits on Variations of the Speed of Light with Frequency. Phys. Rev. Lett. 1999, 82, 4964–4966.

  • 253.

    Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V. Quantum-Gravitational Diffusion and Stochastic Fluctuations in the Velocity of Light. Gen. Relativ. Gravit. 2000, 32, 127–144.

  • 254.

    Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.; et al. Quantum-gravity analysis of gamma-ray bursts using wavelets. Astron. Astrophys. 2003, 402, 409–424.

  • 255.

    Jacob, U.; Piran, T. Lorentz-violation-induced arrival delays of cosmological particles. J. Cosmol. Astropart. Phys. 2008, 1, 031.

  • 256.

    Rosati, G.; Amelino-Camelia, G.; Marcianò, A.; et al. Planck-scale-modified dispersion relations in FRW spacetime. Phys. Rev. D 2015, 92, 124042.

  • 257.

    Li, T.; Mavromatos, N.E.; Nanopoulos, D.V.; et al. Time delays of strings in D-particle backgrounds and vacuum refractive indices. Phys. Lett. B 2009, 679, 407–413.

  • 258.

    Amelino-Camelia, G.; Matassa, M.; Mercati, F.; et al. Taming Nonlocality in Theories with Planck-Scale Deformed Lorentz Symmetry. Phys. Rev. Lett. 2011, 106, 071301.

  • 259.

    Amelino-Camelia, G.; Rosati, G.; Bedić, S. Phenomenology of curvature-induced quantum-gravity effects. Phys. Lett. B 2021, 820, 136595.

  • 260.

    Lobo, I.P. Time delay in κ-anti-de Sitter spacetime. Phys. Lett. B 2024, 855, 138864.

  • 261.

    Kostelecký, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005.

  • 262.

    Kostelecký, V.A.; Li, Z. Backgrounds in gravitational effective field theory. Phys. Rev. D 2021, 103, 024059.

  • 263.

    IceCube Collaboration. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151.

  • 264.

    IceCube Collaboration. A Search for IceCube Events in the Direction of ANITA Neutrino Candidates. Astrophys. J. 2020, 892, 53.

  • 265.

    HAWC Collaboration. Constraints on Lorentz Invariance Violation from HAWC Observations of Gamma Rays above 100 TeV. Phys. Rev. Lett. 2020, 124, 131101.

  • 266.

    Jacobson, T.; Liberati, S.; Mattingly, D. Lorentz violation at high energy: Concepts, phenomena, and astrophysical constraints. Ann. Phys. 2006, 321, 150–196.

  • 267.

    Maccione, L.; Liberati, S.; Celotti, A.; et al. New constraints on Planck-scale Lorentz violation in QED from the Crab Nebula. J. Cosmol. Astropart. Phys. 2007, 10, 013.

  • 268.

    Liberati, S.; Maccione, L.; Sotiriou, T.P. Scale Hierarchy in Hořava-Lifshitz Gravity: Strong Constraint from Synchrotron Radiation in the Crab Nebula. Phys. Rev. Lett. 2012, 109, 151602.

  • 269.

    Rubtsov, G.; Satunin, P.; Sibiryakov, S. Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons. J. Cosmol. Astropart. Phys. 2017, 5, 049.

  • 270.

    Li, C.; Ma, B.Q. Testing Lorentz invariance of electrons with LHAASO observations of PeV gamma-rays from the Crab Nebula. Phys. Lett. B 2022, 829, 137034.

  • 271.

    Lang, R.G.; Martínez-Huerta, H.; de Souza, V. Improved limits on Lorentz invariance violation from astrophysical gamma-ray sources. Phys. Rev. D 2019, 99, 043015.

  • 272.

    Sloan, D.; Alves Batista, R.; Hicks, M.; et al. Fine-Tuning in the Physical Universe, 1 ed.; Cambridge University Press: Cambridge, UK, 2020.

  • 273.

    H.E.S.S. Collaboration. The 2014 TeV γ-Ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation. Astrophys. J. 2019, 870, 93.

  • 274.

    Lesage, S.; Veres, P.; Briggs, M.S.; et al. Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow. Astrophys. J. Lett. 2023, 952, L42.

  • 275.

    LHAASO Collaboration. A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst. Science 2023, 380, 1390–1396.

  • 276.

    LHAASO Collaboration. Very high-energy gamma-ray emission beyond 10 TeV from GRB 221009A. Sci. Adv. 2023, 9, eadj2778.

  • 277.

    H.E.S.S. Collaboration. H.E.S.S. Follow-up Observations of GRB 221009A. Astrophys. J. Lett. 2023, 946, L27.

  • 278.

    Burns, E.; Svinkin, D.; Fenimore, E.; et al. GRB 221009A: The BOAT. Astrophys. J. Lett. 2023, 946, L31.

  • 279.

    Finke, J.D.; Razzaque, S. Possible Evidence for Lorentz Invariance Violation in Gamma-Ray Burst 221009A. Astrophys. J. Lett. 2023, 942, L21.

  • 280.

    Li, H.; Ma, B.Q. Lorentz invariance violation induced threshold anomaly versus very-high energy cosmic photon emission from GRB 221009A. Astropart. Phys. 2023, 148, 102831.

  • 281.

    Piran, T.; Ofengeim, D.D. Lorentz invariance violation limits from GRB 221009A. Phys. Rev. D 2024, 109, L081501.

  • 282.

    Das, S.; Razzaque, S. Ultrahigh-energy cosmic-ray signature in GRB 221009A. Astron. Astrophys. 2023, 670, L12.

  • 283.

    Mirabal, N. Secondary GeV-TeV emission from ultra-high-energy cosmic rays accelerated by GRB 221009A. Mon. Not. R. Astron. Soc. 2023, 519, L85–L86.

  • 284.

    He, H.N.; Zhang, B.T.; Fan, Y.Z. A Detectable Ultra-high-energy Cosmic-Ray Outburst from GRB 221009A. Astrophys. J. 2024, 963, 109.

  • 285.

    Cao, Z.; Aharonian, F.; Axikegu; et al. Stringent Tests of Lorentz Invariance Violation from LHAASO Observations of GRB 221009A. Phys. Rev. Lett. 2024, 133, 071501.

  • 286.

    Carpet-3 Group. Carpet-3 detection of a photonlike air shower with estimated primary energy above 100 TeV in a spatial and temporal coincidence with GRB 221009A. Phys. Rev. D 2025, 111, 102005.

  • 287.

    Ofengeim, D.D.; Piran, T. 300 TeV photon from GRB 221009A: A hint at nonlinear Lorentz invariance violation? Phys. Rev. D 2025, 112, 083055.

  • 288.

    Song, H.; Ma, B.Q. Carpet-3 300 TeV photon event as an evidence for Lorentz violation. Phys. Lett. B 2025, 870, 139959.

  • 289.

    Fermi-LAT Collaboration (Atwood, W. B. et al.). The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102.

  • 290.

    Abdalla, H.; Böttcher, M. Lorentz Invariance Violation Effects on Gamma-Gamma Absorption and Compton Scattering. Astrophys. J. 2018, 865, 159.

  • 291.

    Saveliev, A.; Alves Batista, R. On Numerical Simulations of Intergalactic Electromagnetic Cascades with Lorentz Invariance Violation. arXiv 2023, arXiv:2307.11421.

  • 292.

    Carmona, J.M.; Cortés, J.L.; Rescic, F.; et al. Approaches to photon absorption in a Lorentz invariance violation scenario. Phys. Rev. D 2024, 110, 063035.

  • 293.

    Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; et al. Modification of the mean free path of very high-energy photons due to a relativistic deformed kinematics. Eur. Phys. J. Plus 2022, 137, 768.

  • 294.

    Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V. Probing models of quantum space-time foam. arXiv 1999, arXiv:gr- qc/9909085.

  • 295.

    MAGIC Collaboration. Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope. Phys. Lett. B 2008, 668, 253–257.

  • 296.

    H.E.S.S. Collaboration. Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944. Astropart. Phys. 2011, 34, 738–747.

  • 297.

    H.E.S.S. Collaboration; Fermi-LAT Collaboration. Constraints on the Intergalactic Magnetic Field Using Fermi-LAT and H.E.S.S. Blazar Observations. Astrophys. J. Lett. 2023, 950, L16.

  • 298.

    Biller, S.D.; Breslin, A.C.; Buckley, J.; et al. Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies. Phys. Rev. Lett. 1999, 83, 2108–2111.

  • 299.

    MAGIC Collaboration. Constraining Lorentz Invariance Violation Using the Crab Pulsar Emission Observed up to TeV Energies by MAGIC. Astrophys. J. Suppl. Ser. 2017, 232, 9.

  • 300.

    MAGIC Collaboration. Bounds on Lorentz Invariance Violation from MAGIC Observation of GRB 190114C. Phys. Rev. Lett. 2020, 125, 021301.

  • 301.

    Vasileiou, V.; Jacholkowska, A.; Piron, F.; et al. Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Phys. Rev. D 2013, 87, 122001.

  • 302.

    MAGIC Collaboration. Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 2019, 575, 455–458.

  • 303.

    Zhu, J.; Ma, B.Q. Light speed variation from GRB 221009A. J. Phys. Nucl. Phys. 2023, 50, 06LT01.

  • 304.

    LHAASO Collaboration. The First LHAASO Catalog of Gamma-Ray Sources. Astrophys. J. Suppl. Ser. 2024, 271, 25.

  • 305.

    Bolmont, J.; Caroff, S.; Gaug, M.; et al. First Combined Study on Lorentz Invariance Violation from Observations of Energy-dependent Time Delays from Multiple-type Gamma-Ray Sources. I. Motivation, Method Description, and Validation through Simulations of H.E.S.S., MAGIC, and VERITAS Data Sets. Astrophys. J. 2022, 930, 75.

  • 306.

    CTA Consortium. Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2019.

  • 307.

    CTA Consortium. Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation. J. Cosmol. Astropart. Phys. 2021, 02, 048.

  • 308.

    Terzić, T.; Kerszberg, D.; Strišković, J. Probing Quantum Gravity with Imaging Atmospheric Cherenkov Telescopes. Universe 2021, 7, 345.

  • 309.

    Kirzhnits, D.A.; Chechin, V.A. Cosmic Rays and the Elementary Length. JETP Lett. 1971, 14, 261.

  • 310.

    Gonzalez-Mestres, L. Physics opportunities above the Greisen-Zatsepin-Kuzmin cutoff: Lorentz symmetry violation at the Planck scale. In Proceedings of the Workshop on Observing Giant Cosmic Ray Air Showers From >10(20) eV Particles From Space, College Park, MD, USA, 13–15 November 1998; Volume 433, pp. 148–158.

  • 311.

    AGASA Collaboration. The cosmic ray energy spectrum above 3 × 1018 eV measured by the Akeno Giant Air Shower Array. Astropart. Phys. 1995, 3, 105–123.

  • 312.

    AGASA Collaboration. Extension of the cosmic ray energy spectrum beyond the predicted Greisen-Zatsepin-Kuz’min cutoff. Phys. Rev. Lett. 1998, 81, 1163–1166.

  • 313.

    Kifune, T. Invariance Violation Extends the Cosmic-Ray Horizon? Astrophys. J. Lett. 1999, 518, L21–L24.

  • 314.

    Bertolami, O.; Carvalho, C.S. Proposed astrophysical test of Lorentz invariance. Phys. Rev. D 2000, 61, 103002.

  • 315.

    Aloisio, R.; Blasi, P.; Ghia, P.L.; et al. Probing the structure of space-time with cosmic rays. Phys. Rev. D 2000, 62, 053010.

  • 316.

    Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V. Space-time foam effects on particle interactions and the Greisen-Zatsepin- Kuzmin cutoff. Phys. Rev. D 2001, 63, 124025.

  • 317.

    Aloisio, R.; Blasi, P.; Galante, A.; et al. Space-time fluctuations and ultra-high energy cosmic ray interactions. Astropart. Phys. 2003, 19, 127–133.

  • 318.

    Torri, M.D.C.; Caccianiga, L.; di Matteo, A.; et al. Predictions of Ultra-High Energy Cosmic Ray Propagation in the Context of Homogeneously Modified Special Relativity. Symmetry 2020, 12, 1961.

  • 319.

    Alves Batista, R. The Quest for the Origins of Ultra-High-Energy Cosmic Rays. arXiv 2024, arXiv:2412.17201.

  • 320.

    Maccione, L.; Liberati, S. GZK photon constraints on Planck-scale Lorentz violation in QED. J. Cosmol. Astropart. Phys. 2008, 8, 027.

  • 321.

    Mattingly, D.M.; Maccione, L.; Galaverni, M.; et al. Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation. J. Cosmol. Astropart. Phys. 2010, 2, 007.

  • 322.

    Scully, S.T.; Stecker, F.W. Testing Lorentz invariance with neutrinos from ultrahigh energy cosmic ray interactions. Astropart. Phys. 2011, 34, 575–580.

  • 323.

    Gorham, P.W.; Connolly, A.; Allison, P.; et al. Implications of ultrahigh energy neutrino flux constraints for Lorentz- invariance violating cosmogenic neutrinos. Phys. Rev. D 2012, 86, 103006.

  • 324.

    Reyes, M.A.; Boncioli, D.; Carmona, J.M.; et al. Testing Lorentz invariance violation using cosmogenic neutrinos. arXiv 2023, arXiv:hep-ph/2309.02103.

  • 325.

    GRAND Collaboration. The Giant Radio Array for Neutrino Detection (GRAND): Science and design. Sci. China Phys. Mech. Astron. 2020, 63, 219501.

  • 326.

    IceCube-Gen2 Collaboration. IceCube-Gen2: the window to the extreme Universe. J. Phys. Nucl. Phys. 2021, 48, 060501.

  • 327.

    Fermi-LAT Collaboration. A limit on the variation of the speed of light arising from quantum gravity effects. Nature 2009, 462, 331–334.

  • 328.

    IceCube Collaboration; Fermi-LAT Collaboration; MAGIC Collaboration; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378.

  • 329.

    IceCube Collaboration. Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. Eur. Phys. J. C 2019, 79, 234.

  • 330.

    IceCube Collaboration. LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories. Comput. Phys. Commun. 2021, 266, 108018.

  • 331.

    Laha, R. Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source TXS 0506+056. Phys. Rev. D 2019, 100, 103002.

  • 332.

    Ellis, J.; Mavromatos, N.E.; Sakharov, A.S.; et al. Limits on neutrino Lorentz violation from multimessenger observations of TXS 0506+056. Phys. Lett. B 2019, 789, 352–355.

  • 333.

    Wei, J.J.; Zhang, B.B.; Shao, L.; et al. Multimessenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar. J. High Energy Astrophys. 2019, 22, 1–4.

  • 334.

    Wang, K.; Xi, S.Q.; Shao, L.; et al. Limiting superluminal neutrino velocity and Lorentz invariance violation by neutrino emission from the blazar TXS 0506+056. Phys. Rev. D 2020, 102, 063027.

  • 335.

    Amelino-Camelia, G.; Di Luca, M.G.; Gubitosi, G.; et al. Could quantum gravity slow down neutrinos? Nat. Astron. 2023, 7, 996–1001.

  • 336.

    Amelino-Camelia, G.; D’Amico, G.; Rosati, G.; et al. In vacuo dispersion features for gamma-ray-burst neutrinos and photons. Nat. Astron. 2017, 1, 0139.

  • 337.

    Huang, Y.; Ma, B.Q. Lorentz violation from gamma-ray burst neutrinos. Commun. Phys. 2018, 1, 62.

  • 338.

    Huang, Y.; Li, H.; Ma, B.Q. Consistent Lorentz violation features from near-TeV IceCube neutrinos. Phys. Rev. D 2019, 99, 123018.

  • 339.

    Carmona, J.M.; Cortés, J.L.; Reyes, M.A. Consistency of Lorentz-invariance violation neutrino scenarios in time delay analyses. Class. Quantum Gravity 2024, 41, 075012.

  • 340.

    Amelino-Camelia, G.; Barcaroli, L.; D’Amico, G.; et al. IceCube and GRB neutrinos propagating in quantum spacetime. Phys. Lett. B 2016, 761, 318–325.

  • 341.

    Amelino-Camelia, G.; Barcaroli, L.; D’Amico, G.; et al. Quantum-gravity-induced dual lensing and IceCube neutrinos. Int. J. Mod. Phys. D 2017, 26, 1750076.

  • 342.

    OPERA Collaboration. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. J. High Energy Phys. 2012, 2012, 93.

  • 343.

    OPERA Collaboration. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data. J. High Energy Phys. 2013, 2013, 153.

  • 344.

    Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; et al. Opera Neutrinos and Deformed Special Relativity. Mod. Phys. Lett. A 2012, 27, 1250063.

  • 345.

    Stecker, F. Testing Lorentz Symmetry Using High Energy Astrophysics Observations. Symmetry 2017, 9, 201.

  • 346.

    Torri, M.D.C.; Miramonti, L. Neutrinos as possible probes for quantum gravity. Class. Quantum Gravity 2024, 41, 153001.

  • 347.

    Li, C.; Ma, B.Q. Probes for String-Inspired Foam, Lorentz, and CPT Violations in Astrophysics. Symmetry 2025, 17, 974.

  • 348.

    IceCube Collaboration. First Observation of PeV-Energy Neutrinos with IceCube. Phys. Rev. Lett. 2013, 111, 021103.

  • 349.

    IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856.

  • 350.

    Borriello, E.; Chakraborty, S.; Mirizzi, A.; et al. Stringent constraint on neutrino Lorentz invariance violation from the two IceCube PeV neutrinos. Phys. Rev. D 2013, 87, 116009.

  • 351.

    Stecker, F.W.; Scully, S.T.; Liberati, S.; et al. Searching for traces of Planck-scale physics with high energy neutrinos. Phys. Rev. D 2015, 91, 045009.

  • 352.

    Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; et al. Lorentz Violation Footprints in the Spectrum of High-Energy Cosmic Neutrinos – Deformation of the Spectrum of Superluminal Neutrinos from Electron-Positron Pair Production in Vacuum. Symmetry 2019, 11, 1419.

  • 353.

    Tomar, G.; Mohanty, S.; Pakvasa, S. Lorentz invariance violation and IceCube neutrino events. J. High Energy Phys. 2015, 2015, 22.

  • 354.

    IceCube Collaboration. Detection of a particle shower at the Glashow resonance with IceCube. Nature 2021, 591, 220–224.

  • 355.

    Brustein, R.; Eichler, D.; Foffa, S. Probing the Planck scale with neutrino oscillations. Phys. Rev. D 2002, 65, 105006.

  • 356.

    Beacom, J.F.; Bell, N.F.; Hooper, D.; et al. Decay of High-Energy Astrophysical Neutrinos. Phys. Rev. Lett. 2003, 90, 181301.

  • 357.

    Hooper, D.; Morgan, D.; Winstanley, E. Lorentz and CPT invariance violation in high-energy neutrinos. Phys. Rev. D 2005, 72, 065009.

  • 358.

    Argelles, C.A.; Katori, T.; Salvado, J. Effect of New Physics in Astrophysical Neutrino Flavor. Phys. Rev. Lett. 2015, 115, 161303.

  • 359.

    Bustamante, M.; Ahlers, M. Inferring the Flavor of High-Energy Astrophysical Neutrinos at Their Sources. Phys. Rev. Lett. 2019, 122, 241101.

  • 360.

    IceCube Collaboration. Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube. Phys. Rev. D 2024, 110, 022001.

  • 361.

    Telalovic, B.; Bustamante, M. Flavor anisotropy in the high-energy astrophysical neutrino sky. J. Cosmol. Astropart. Phys. 2025, 5, 013.

  • 362.

    Telalovic, B.; Bustamante, M. No Flavor Anisotropy in the High-Energy Neutrino Sky Upholds Lorentz Invariance. arXiv 2025, arXiv:2503.15468.

  • 363.

    Antonov, E.E.; Dedenko, L.G.; Kirillov, A.A.; et al. Test of Lorentz Invariance through Observation of the Longitudinal Development of Ultrahigh-Energy Extensive Air Showers. Sov. J. Exp. Theor. Phys. Lett. 2001, 73, 446–450.

  • 364.

    Dedenko, L.G.; Fedorova, G.F.; Fedunin, E.Y.; et al. Test of Lorentz invariance through observation of the maximum depths in giant air showers. Nucl. Phys. Proc. Suppl. 2003, 122, 321–324.

  • 365.

    Klinkhamer, F.R.; Niechciol, M.; Risse, M. Improved bound on isotropic Lorentz violation in the photon sector from extensive air showers. Phys. Rev. D 2017, 96, 116011.

  • 366.

    Duenkel, F.; Niechciol, M.; Risse, M. Photon decay in ultrahigh-energy air showers: Stringent bound on Lorentz violation. Phys. Rev. D 2021, 104, 015010.

  • 367.

    Duenkel, F.; Niechciol, M.; Risse, M. New bound on Lorentz violation based on the absence of vacuum Cherenkov radiation in ultrahigh energy air showers. Phys. Rev. D 2023, 107, 083004.

  • 368.

    Risse, M. Using Ultrahigh-Energy Cosmic Rays and Air Showers to Test Lorentz Invariance Within Modified Maxwell Theory. arXiv 2023, arXiv:hep-ph/2208.08747.

  • 369.

    Martynenko, N.S.; Rubtsov, G.I.; Satunin, P.S.; et al. Hypothetical Lorentz invariance violation and the muon content of extensive air showers. Phys. Rev. D 2025, 111, 063010.

  • 370.

    Lobo, I.P.; Pfeifer, C. Reaching the Planck scale with muon lifetime measurements. Phys. Rev. D 2021, 103, 106025.

  • 371.

    Lobo, I.P.; Pfeifer, C. Muon accelerators-muon lifetime measurements as window to Planck scale physics. Class. Quantum Gravity 2024, 41, 015008.

  • 372.

    Lobo, I.P.; Pfeifer, C.; Morais, P.H. Experimental bounds on deformed muon lifetime dilation. Phys. Lett. B 2025, 866, 139511.

  • 373.

    Lobo, I.P.; Pfeifer, C.; Morais, P.H.; et al. Phenomenological signatures of two-body decays in deformed relativity. J. High Energy Phys. 2022, 09, 003.

  • 374.

    Morais, P.H.; Lobo, I.P.; Pfeifer, C.; et al. Modified particle lifetimes as a signature of deformed relativity. Phys. Lett. B 2024, 848, 138380.

  • 375.

    Staicova, D. Impact of cosmology on Lorentz Invariance Violation constraints from GRB time-delays. Class. Quantum Gravity 2023, 40, 195012.

  • 376.

    Amelino-Camelia, G.; Mandanici, G.; Procaccini, A.; et al. Phenomenology of Doubly Special Relativity. Int. J. Mod. Phys. A 2005, 20, 6007–6037.

  • 377.

    Stecker, F.W.; Scully, S.T. Searching for new physics with ultrahigh energy cosmic rays. New J. Phys. 2009, 11, 085003.

  • 378.

    Torri, M.D.C.; Bertini, S.; Giammarchi, M.; et al. Lorentz Invariance Violation effects on UHECR propagation: A geometrized approach. J. High Energy Astrophys. 2018, 18, 5–14.

  • 379.

    Pierre Auger Collaboration. Measurement of the Depth of Maximum of Extensive Air Showers above 1018eV. Phys. Rev. Lett. 2010, 104, 091101.

  • 380.

    Pierre Auger Collaboration. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2013, 2, 026.

  • 381.

    Pierre Auger Collaboration. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1017.8 eV. Phys. Rev. D 2014, 90, 122005.

  • 382.

    Pierre Auger Collaboration. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications. Phys. Rev. D 2014, 90, 122006.

  • 383.

    Pierre Auger Collaboration. Evidence for a mixed mass composition at the ’ankle’ in the cosmic-ray spectrum. Phys. Lett. B 2016, 762, 288–295.

  • 384.

    Pierre Auger Collaboration. Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Phys. Rev. D 2017, 96, 122003.

  • 385.

    Telescope Array Collaboration. The Cosmic-Ray Composition between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode. Astrophys. J. 2021, 909, 178.

  • 386.

    Alves Batista, R.; Biteau, J.; Bustamante, M.; et al. Open Questions in Cosmic-Ray Research at Ultrahigh Energies. Front. Astron. Space Sci. 2019, 6, 23.

  • 387.

    Coleman, A.; Eser, J.; Mayotte, E.; et al. Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers. Astropart. Phys. 2023, 147, 102794.

  • 388.

    Christian, J. Testing quantum gravity via cosmogenic neutrino oscillations. Phys. Rev. D 2005, 71, 024012.

  • 389.

    Galaverni, M.; Sigl, G. Lorentz Violation for Photons and Ultrahigh-Energy Cosmic Rays. Phys. Rev. Lett. 2008, 100, 021102.

  • 390.

    Cowsik, R.; Madziwa-Nussinov, T.; Nussinov, S.; et al. Testing violations of Lorentz invariance with cosmic rays. Phys. Rev. D 2012, 86, 045024.

  • 391.

    Maccione, L.; Taylor, A.M.; Mattingly, D.M.; et al. Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays. J. Cosmol. Astropart. Phys. 2009, 4, 022.

  • 392.

    Bietenholz, W. Cosmic rays and the search for a Lorentz Invariance Violation. Phys. Rep. 2011, 505, 145–185.

  • 393.

    Hossenfelder, S. The Soccer-Ball Problem. SIGMA 2014, 10, 074.

  • 394.

    Amelino-Camelia, G. Planck-Scale Soccer-Ball Problem: A Case of Mistaken Identity. Entropy 2017, 19, 400.

  • 395.

    Amelino-Camelia, G.; Astuti, V.; Palmisano, M.; et al. Multi-particle systems in quantum spacetime and a novel challenge for center-of-mass motion. Int. J. Mod. Phys. D 2021, 30, 2150046.

  • 396.

    Martínez-Huerta, H.; Pérez-Lorenzana, A. Restrictions from Lorentz invariance violation on cosmic ray propagation. Phys. Rev. D 2017, 95, 063001.

  • 397.

    Alfaro, J.; Palma, G. Loop quantum gravity and ultrahigh energy cosmic rays. Phys. Rev. D 2003, 67, 083003.

  • 398.

    Altschul, B. Limits on neutron Lorentz violation from the stability of primary cosmic ray protons. Phys. Rev. D 2008, 78, 085018.

  • 399.

    Klinkhamer, F.R. Potential sensitivities to Lorentz violation from nonbirefringent modified Maxwell theory of Auger, HESS, and CTA. Phys. Rev. D 2010, 82, 105024.

  • 400.

    Díaz, J.S.; Klinkhamer, F.R. Parton-model calculation of a nonstandard decay process in isotropic modified Maxwell theory. Phys. Rev. D 2015, 92, 025007.

  • 401.

    Klinkhamer, F.R. Lorentz-violating neutral-pion decays in isotropic modified Maxwell theory. Mod. Phys. Lett. A 2018, 33, 1850104.

  • 402.

    Levy, C.; Sol, H.; Bolmont, J. Separating source-intrinsic and Lorentz invariance violation induced delays in the very high-energy emission of blazar flares. Astron. Astrophys. 2024, 689, A136.

  • 403.

    Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 2004, 76, 1143–1210.

  • 404.

    Gehrels, N.; Ramirez-Ruiz, E.; Fox, D.B. Gamma-Ray Bursts in the Swift Era. Annu. Rev. Astron. Astrophys. 2009, 47, 567–617.

  • 405.

    Berger, E. Short-Duration Gamma-Ray Bursts. Annu. Rev. Astron. Astrophys. 2014, 52, 43–105.

  • 406.

    Kumar, P.; Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 2015, 561, 1–109.

  • 407.

    Dai, Z.; Daigne, F.; Mészáros, P. The Theory of Gamma-Ray Bursts. Space Sci. Rev. 2017, 212, 409–427.

  • 408.

    Pe’er, A. Gamma-Ray Bursts: What Do We Know Today That We Did Not Know 10 Years Ago? Galaxies 2024, 13, 2.

  • 409.

    Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 1986, 308, L43–L46.

  • 410.

    Goodman, J. Are gamma-ray bursts optically thick? Astrophys. J. Lett. 1986, 308, L47.

  • 411.

    Rees, M.J.; Meszaros, P. Relativistic fireballs - Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992, 258, 41.

  • 412.

    Meszaros, P.; Laguna, P.; Rees, M.J. Gasdynamics of Relativistically Expanding Gamma-Ray Burst Sources: Kinematics, Energetics, Magnetic Fields, and Efficiency. Astrophys. J. 1993, 415, 181.

  • 413.

    Sari, R.; Piran, T.; Narayan, R. Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophys. J. Lett. 1998, 497, L17–L20.

  • 414.

    Zhang, B.; Mészáros, P. Gamma-Ray Bursts: progress, problems & prospects. Int. J. Mod. Phys. A 2004, 19, 2385–2472.

  • 415.

    Gao, H.; Lei, W.H.; Zou, Y.C.; et al. A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. New Astron. Rev. 2013, 57, 141–190.

  • 416.

    Srinivasaragavan, G.P.; Dainotti, M.G.; Fraija, N.; et al. On the Investigation of the Closure Relations for Gamma-Ray Bursts Observed by Swift in the Post-plateau Phase and the GRB Fundamental Plane. Astrophys. J. 2020, 903, 18.

  • 417.

    IceCube Collaboration. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophys. J. 2017, 843, 112.

  • 418.

    AMON and ANTARES Collaboration. A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data. Astrophys. J. 2019, 886, 98.

  • 419.

    ANTARES Collaboration. ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs. J. Cosmol. Astropart. Phys. 2021, 3, 092.

  • 420.

    IceCube Collaboration.; Fermi Gamma-ray Burst Monitor. Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory. Astrophys. J. 2022, 939, 116.

  • 421.

    IceCube Collaboration. Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory. Astrophys. J. Lett. 2023, 946, L26.

  • 422.

    Pitik, T.; Tamborra, I.; Petropoulou, M. Neutrino signal dependence on gamma-ray burst emission mechanism. J. Cosmol. Astropart. Phys. 2021, 5, 034.

  • 423.

    Ulrich, M.H.; Maraschi, L.; Urry, C.M. Variability of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 1997, 35, 445–502.

  • 424.

    Dermer, C.D.; Giebels, B. Active galactic nuclei at gamma-ray energies. Comptes Rendus Phys. 2016, 17, 594–616

  • 425.

    Romero, G.E.; Boettcher, M.; Markoff, S.; et al. Relativistic Jets in Active Galactic Nuclei and Microquasars. Space Sci. Rev. 2017, 207, 5–61.

  • 426.

    Padovani, P.; Alexander, D.M.; Assef, R.J.; et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 2017, 25, 2.

  • 427.

    Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509.

  • 428.

    Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803.

  • 429.

    HEGRA Collaboration. Measurement of the flux, spectrum, and variability of TeV γ-rays from Mkn 501 during a state of high activity. Astron. Astrophys. 1997, 327, L5–L8.

  • 430.

    MAGIC Collaboration. Variable Very High Energy γ-Ray Emission from Markarian 501. The Astrophysical Journal 2007, 669, 862–883.

  • 431.

    NuSTAR Team; MAGIC Collaboration; VERITAS Collaboration; et al. First NuSTAR Observations of Mrk 501 within a Radio to TeV Multi-Instrument Campaign. Astrophys. J. 2015, 812, 65.

  • 432.

    HAWC Collaboration. Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC. Astrophys. J. 2017, 841, 100.

  • 433.

    MAGIC Collaboration; FACT Collaboration; VERITAS Collaboration. Extreme HBL behavior of Markarian 501 during 2012. Astron. Astrophys. 2018, 620, A181.

  • 434.

    Bhatta, G. Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc. 2019, 487, 3990–3997.

  • 435.

    MAGIC Collaboration. Study of the variable broadband emission of Markarian 501 during the most extreme Swift X-ray activity. Astron. Astrophys. 2020, 637, A86.

  • 436.

    H.E.S.S. Collaboration. An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304. Astrophys. J. Lett. 2007, 664, L71–L74.

  • 437.

    H.E.S.S. Collaboration. VHE γ-ray emission of PKS 2155-304: spectral and temporal variability. Astron. Astrophys. 2010, 520, A83.

  • 438.

    Gaidos, J.A.; Akerlof, C.W.; Biller, S.; et al. Extremely rapid bursts of TeV photons from the active galaxy Markarian 421. Nature 1996, 383, 319–320.

  • 439.

    VERITAS Collaboration. Rapid TeV Gamma-Ray Flaring of BL Lacertae. Astrophys. J. 2013, 762, 92.

  • 440.

    Lin, C.; Fan, J.H.; Xiao, H.B. The intrinsic γ-ray emissions of Fermi blazars. Res. Astron. Astrophys. 2017, 17, 066.

  • 441.

    Wagner, S.J.; Witzel, A. Intraday Variability In Quasars and BL Lac Objects. Annu. Rev. Astron. Astrophys. 1995, 33, 163–198.

  • 442.

    Ghisellini, G.; Tavecchio, F.; Bodo, G.; et al. TeV variability in blazars: how fast can it be? Mon. Not. R. Astron. Soc. 2009, 393, L16–L20.

  • 443.

    Nieppola, E.; Hovatta, T.; Tornikoski, M.; et al. Long-Term Variability of Radio-Bright BL Lacertae Objects. Astron. J. 2009, 137, 5022–5036.

  • 444.

    Foschini, L.; Ghisellini, G.; Tavecchio, F.; et al. Search for the shortest variability at gamma rays in flat-spectrum radio quasars. Astron. Astrophys. 2011, 530, A77.

  • 445.

    Sandrinelli, A.; Covino, S.; Dotti, M.; et al. Quasi-periodicities at Year-like Timescales in Blazars. Astron. J. 2016, 151, 54.

  • 446.

    Rajput, B.; Stalin, C.S.; Rakshit, S. Long term γ-ray variability of blazars. Astron. Astrophys. 2020, 634, A80.

  • 447.

    Begelman, M.C.; Fabian, A.C.; Rees, M.J. Implications of very rapid TeV variability in blazars. Mon. Not. R. Astron. Soc. 2008, 384, L19–L23.

  • 448.

    Rieger, F.M.; Aharonian, F.A. Variable VHE gamma-ray emission from non-blazar AGNs. Astron. Astrophys. 2008, 479, L5–L8.

  • 449.

    Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability in blazars: jets in a jet. Mon. Not. R. Astron. Soc. 2009, 395, L29–L33.

  • 450.

    Levinson, A.; Rieger, F. Variable TeV Emission as a Manifestation of Jet Formation in M87? Astrophys. J. 2011, 730, 123.

  • 451.

    Barkov, M.V.; Aharonian, F.A.; Bogovalov, S.V.; et al. Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. Astrophys. J. 2012, 749, 119.

  • 452.

    Bhatta, G.; Dhital, N. The Nature of γ-Ray Variability in Blazars. Astrophys. J. 2020, 891, 120.

  • 453.

    Sobacchi, E.; Piran, T.; Comisso, L. Ultrafast Variability in AGN Jets: Intermittency and Lighthouse Effect. Astrophys. J. Lett. 2023, 946, L51.

  • 454.

    Śmiałkowski, A.; Bednarek, W. Gamma ray flares from active region within inhomogeneous AGN jet. J. High Energy Astrophys. 2025, 45, 456–462.

  • 455.

    IceCube Collaboration. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538– 543.

  • 456.

    IceCube Collaboration. The IceCube Collaboration—Contributions to the 39th International Cosmic Ray Conference (ICRC2025). arXiv 2025, arXiv:astro-ph.HE/2507.08666.

  • 457.

    VERITAS Collaboration; H.E.S.S. Collaboration. Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A. Astrophys. J. 2023, 954, 70.

  • 458.

    Sahakyan, N.; Giommi, P.; Padovani, P.; et al. A multimessenger study of the blazar PKS 0735+178: a new major neutrino source candidate. Mon. Not. R. Astron. Soc. 2023, 519, 1396–1408.

  • 459.

    Carmona, J.M.; Cortés, J.L.; Pereira, L.; et al. Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency. Symmetry 2020, 12, 1298.

  • 460.

    Ho, C.M.; Minic, D.; Ng, Y.J. Quantum Gravity and Dark Matter. Int. J. Mod. Phys. D 2011, 20, 2887–2893.

  • 461.

    Ho, C.M.; Minic, D.; Ng, Y.J. Dark matter, infinite statistics, and quantum gravity. Phys. Rev. D 2012, 85, 104033.

  • 462.

    Smolin, L. MOND as a regime of quantum gravity. Phys. Rev. D 2017, 96, 083523.

  • 463.

    Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390.

  • 464.

    Duffy, L.D.; van Bibber, K. Axions as dark matter particles. New J. Phys. 2009, 11, 105008.

  • 465.

    Bertone, G. Particle Dark Matter; Cambridge University Press: Cambridge, UK, 2010.

  • 466.

    Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443.

  • 467.

    Peccei, R.D.; Quinn, H.R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 1977, 16, 1791–1797.

  • 468.

    Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223–226.

  • 469.

    Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 1978, 40, 279–282.

  • 470.

    Zanderighi, G. Fine-Tuning in the Physical Universe; Cambridge University Press: Cambridge, UK, 2020; pp. 307–344.

  • 471.

    Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; et al. String axiverse. Phys. Rev. D 2010, 81, 123530.

  • 472.

    Raffelt, G.; Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 1988, 37, 1237–1249.

  • 473.

    Hochmuth, K.A.; Sigl, G. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources. Phys. Rev. D 2007, 76, 123011.

  • 474.

    De Angelis, A.; Mansutti, O.; Roncadelli, M. Axion-like particles, cosmic magnetic fields and gamma-ray astrophysics. Phys. Lett. B 2008, 659, 847–855.

  • 475.

    Simet, M.; Hooper, D.; Serpico, P.D. Milky Way as a kiloparsec-scale axionscope. Phys. Rev. D 2008, 77, 063001.

  • 476.

    De Angelis, A.; Galanti, G.; Roncadelli, M. Relevance of axionlike particles for very-high-energy astrophysics. Phys. Rev. D 2011, 84, 105030.

  • 477.

    De Angelis, A.; Galanti, G.; Roncadelli, M. Transparency of the Universe to gamma-rays. Mon. Not. R. Astron. Soc. 2013, 432, 3245–3249.

  • 478.

    De Angelis, A.; Galanti, G.; Roncadelli, M. Erratum: Relevance of axionlike particles for very-high-energy astrophysics [Phys. Rev. D 84, 105030 (2011)]. Phys. Rev. D 2013, 87, 109903.

  • 479.

    Horns, D.; Jacholkowska, A. Gamma rays as probes of the Universe. Comptes Rendus Phys. 2016, 17, 632–648.

  • 480.

    Batković, I.; De Angelis, A.; Doro, M.; et al. Axion-Like Particle Searches with IACTs. Universe 2021, 7, 185.

  • 481.

    Choi, K.; Im, S.H.; Shin, C.S. Recent Progress in the Physics of Axions and Axion-Like Particles. Annu. Rev. Nucl. Part. Sci. 2021, 71, 225–252.

  • 482.

    Galanti, G.; Roncadelli, M. Axion-like Particles Implications for High-Energy Astrophysics. Universe 2022, 8, 253.

  • 483.

    Zlosnik, T.G.; Ferreira, P.G.; Starkman, G.D. Modifying gravity with the aether: An alternative to dark matter. Phys. Rev. D 2007, 75, 044017.

  • 484.

    Zlosnik, T.G.; Ferreira, P.G.; Starkman, G.D. Growth of structure in theories with a dynamical preferred frame. Phys. Rev. D 2008, 77, 084010.

  • 485.

    Złośnik, T.; Urban, F.; Marzola, L.; et al. Spacetime and dark matter from spontaneous breaking of Lorentz symmetry. Class. Quantum Gravity 2018, 35, 235003.

  • 486.

    Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028.

  • 487.

    Foster, B.Z.; Jacobson, T. Post-Newtonian parameters and constraints on Einstein-aether theory. Phys. Rev. D 2006, 73, 064015.

  • 488.

    Eling, C.; Jacobson, T.; Mattingly, D. Einstein-Æther Theory. In Deserfest: A Celebration of the Life and Works of Stanley Deser; World Scientific: Singapore, 2006; p. 163.

  • 489.

    Jacobson, T.; Mattingly, D. Einstein-aether waves. Phys. Rev. D 2004, 70, 024003.

  • 490.

    Townsend, P.K. Aether, dark energy and string compactifications. Philos. Trans. R. Soc. Lond. Ser. A 2022, 380, 20210185.

  • 491.

    Mukohyama, S. Dark matter as integration constant in Hořava-Lifshitz gravity. Phys. Rev. D 2009, 80, 064005.

  • 492.

    Blas, D.; Ivanov, M.M.; Sibiryakov, S. Testing Lorentz invariance of dark matter. J. Cosmol. Astropart. Phys. 2012, 10, 057.

  • 493.

    Bassani, P.M.; Magueijo, J.; Mukohyama, S. Violations of energy conservation in Hořava-Lifshitz gravity: a new ingredient in the dark matter puzzle. J. Cosmol. Astropart. Phys. 2025, 7, 032.

  • 494.

    Saridakis, E.N. Hořava-Lifshitz dark energy. Eur. Phys. J. C 2010, 67, 229–235.

  • 495.

    Wang, X.; Loeb, A. Ultrahigh energy cosmic rays from nonrelativistic quasar outflows. Phys. Rev. D 2017, 95, 063007.

  • 496.

    Chamseddine, A.H.; Mukhanov, V. Mimetic dark matter. J. High Energy Phys. 2013, 11, 135.

Share this article:
How to Cite
Alves Batista, R. High-Energy Astrophysical Tests of Lorentz Symmetry. Physics and the Cosmos 2026, 1 (1), 4.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.