High-Energy Astrophysical Tests of Lorentz Symmetry
Received: 05 Nov 2025 | Revised: 16 Dec 2025 | Accepted: 07 Jan 2026 | Published: 28 Jan 2026
multi-messenger astrophysics | Lorentz symmetry | quantum gravity phenomenology | Lorentz invariance violation | astroparticle physics
Lämmerzahl, C. Special Relativity and Lorentz Invariance. Ann. Phys. 2005, 517, 71–102.
Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4.
Stachel, J. The Early History of Quantum Gravity (1916–1940). In Black Holes, Gravitational Radiation and the Universe; Iyer, B.R., Bhawal, B., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 525–534.
Rovelli, C. Notes for a Brief History of Quantum Gravity. arXiv 2000, arXiv:gr-qc/0006061.
Goenner, H.F.M. On the History of Unified Field Theories. Living Rev. Relativ. 2004, 7, 2.
Brown, H.R. Physical Relativity. Space-Time Structure from a Dynamical Perspective; Oxford University Press: Oxford, UK, 2005.
Dieks, D. The Ontology of Spacetime; Elsevier: Amsterdam, The Netherlands, 2006.
Dieks, D. The Ontology of Spacetime II; Elsevier: Amsterdam, The Netherlands, 2008.
Maudlin, T. Philosophy of Physics: Space and Time; Princeton University Press: Princeton, NJ, USA, 2012.
Brning, O.S.; Collier, P.; Lebrun, P.; et al. CERN Yellow Reports: Monographs. In LHC Design Report; CERN: Geneva, Switzerland, 2004.
Addazi, A.; Alvarez-Muniz, J.; Alves Batista, R.; et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Prog. Part. Nucl. Phys. 2022, 125, 103948.
Alves Batista, R.; Amelino-Camelia, G.; Boncioli, D.; et al. White paper and roadmap for quantum gravity phenomenology in the multi-messenger era. Class. Quantum Gravity 2025, 42, 032001.
KM3NeT Collaboration. Observation of an ultra-high-energy cosmic neutrino with KM3NeT. Nature 2025, 638, 376–382.
LHAASO Collaboration. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36.
Fly’s Eye Collaboration. Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation. Astrophys. J. 1995, 441, 144–150.
Telescope Array Collaboration. An extremely energetic cosmic ray observed by a surface detector array. Science 2023, 382, 903–907.
Penzias, A.A.; Wilson, R.W. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. 1965, 142, 419–421.
Partridge, R.B.; Peebles, P.J.E. Are Young Galaxies Visible? Astrophys. J. 1967, 147, 868.
Puget, J.L.; Abergel, A.; Bernard, J.P.; et al. Tentative detection of a cosmic far-infrared background with COBE. Astron. Astrophys. 1996, 308, L5.
Hauser, M.G.; Arendt, R.G.; Kelsall, T.; et al. The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections. Astrophys. J. 1998, 508, 25–43.
Bridle, A.H. The spectrum of the radio background between 13 and 404 MHz. Mon. Not. R. Astron. Soc. 1967, 136, 219.
Clark, T.A.; Brown, L.W.; Alexander, J.K. Spectrum of the Extra-galactic Background Radiation at Low Radio Frequencies. Nature 1970, 228, 847–849.
Habing, H.J. The interstellar radiation density between 912 A and 2400 A. Bull. Astron. Inst. Neth. 1968, 19, 421.
Mathis, J.S.; Mezger, P.G.; Panagia, N. Interstellar radiation field and dust temperatures in the diffuse interstellar medium and in giant molecular clouds. Astron. Astrophys. 1983, 128, 212–229.
Hartmann, J. Investigations on the spectrum and orbit of delta Orionis. Astrophys. J. 1904, 19, 268–286.
Heger, M.L. The occurrence of stationary D lines of sodium in the spectroscopic binaries, β Scorpii and δ Orionis. Lick Obs. Bull. 1919, 326, 59–63.
Strömgren, B. The Physical State of Interstellar Hydrogen. Astrophys. J. 1939, 89, 526.
Meekins, J.F.; Fritz, G.; Chubb, T.A.; et al. Physical Sciences: X-rays from the Coma Cluster of Galaxies. Nature 1971, 231, 107–108.
Fang, K.; Olinto, A.V. High-energy Neutrinos from Sources in Clusters of Galaxies. Astrophys. J. 2016, 828, 37.
Hussain, S.; Alves Batista, R.; de Gouveia Dal Pino, E.M.; et al. High-energy neutrino production in clusters of galaxies. Mon. Not. R. Astron. Soc. 2021, 507, 1762–1774.
Hussain, S.; Alves Batista, R.; de Gouveia Dal Pino, E.M.; et al. The diffuse gamma-ray flux from clusters of galaxies. Nat. Commun. 2023, 14, 2486.
Weinberg, S. Universal Neutrino Degeneracy. Phys. Rev. 1962, 128, 1457–1473.
Seckel, D. Neutrino-Photon Reactions in Astrophysics and Cosmology. Phys. Rev. Lett. 1998, 80, 900–903.
Murase, K.; Beacom, J.F.; Takami, H. Gamma-ray and neutrino backgrounds as probes of the high-energy universe: hints of cascades, general constraints, and implications for TeV searches. J. Cosmol. Astropart. Phys. 2012, 8, 030.
Di Marco, G.; Alves Batista, R.; Sánchez-Conde, M.A. Gamma rays as leptonic portals to energetic neutrinos: A new Monte Carlo approach. Astropart. Phys. 2026, 175, 103192.
Nikishov, A.I. Absorption of high-energy photons in the universe. J. Exp. Theor. Phys. Lett. 1962, 14, 393.
Jelley, J.V. High-Energy γ-Ray Absorption in Space by a 3.5◦ K Microwave Field. Phys. Rev. Lett. 1966, 16, 479–481.
Gould, R.J.; Schrder, G. Opacity of the Universe to High-Energy Photons. Phys. Rev. Lett. 1966, 16, 252–254.
Bjorken, J.D.; Drell, S.D. Tridents, µ Pairs, and Quantum Electrodynamics at Small Distances. Phys. Rev. 1959, 114, 1368–1374.
Krass, A.S. Photoproduction of Muon Pairs. Phys. Rev. 1965, 138, 1268–1273.
Arteaga-Romero, N.; Jaccarini, A.; Kessler, P.; et al. Photon-Photon Collisions, a New Area of Experimental Investigation in High-Energy Physics. Phys. Rev. D 1971, 3, 1569–1579.
Terazawa, H. Two-Photon Processes for Particle Production at High Energies. Rev. Mod. Phys. 1973, 45, 615–662.
Brodsky, S.J.; Kinoshita, T.; Terazawa, H. Two-Photon Mechanism of Particle Production by High-Energy Colliding Beams. Phys. Rev. D 1971, 4, 1532–1557.
Cheng, H.; Wu, T.T. Cross Sections for Two-Pair Production at Infinite Energy. Phys. Rev. D 1970, 2, 2103–2104.
Brown, R.W.; Hunt, W.F.; Mikaelian, K.O.; et al. Role of γ + γ → e− + e+ in Photoproduction, Colliding Beams, and Cosmic Photon Absorption. Phys. Rev. D 1973, 8, 3083–3102.
Compton, A.H. A Quantum Theory of the Scattering of X-rays by Light Elements. Phys. Rev. 1923, 21, 483–502.
Hayakawa, S. Electron-Photon Cascade Process in Intergalactic Space. Prog. Theor. Phys. Suppl. 1966, 37, 594–597.
Davies, H.; Bethe, H.A.; Maximon, L.C. Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production. Phys. Rev. 1954, 93, 788–795.
Motz, J.W.; Olsen, H.A.; Koch, H.W. Pair Production by Photons. Rev. Mod. Phys. 1969, 41, 581–639.
Bonometto, S.A.; Marcolungo, P. Metagalactic opacity to photons of energy larger than 1017 eV. Nuovo C. Lett. 1972, 5, 595–603.
Bonometto, S.A.; Lucchin, F.; Marcolungo, P. Induced Pair Production and Opacity Due to Black-body Radiation. Astron. Astrophys. 1974, 31, 41.
Bethe, H.; Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proc. R. Soc. Lond. Ser. 1934, 146, 83–112.
Blumenthal, G.R. Energy Loss of High-Energy Cosmic Rays in Pair-Producing Collisions with Ambient Photons. Phys. Rev. D 1970, 1, 1596–1602.
Chodorowski, M.J.; Zdziarski, A.A.; Sikora, M. Reaction Rate and Energy-Loss Rate for Photopair Production by Relativistic Nuclei. Astrophys. J. 1992, 400, 181.
Greisen, K. End to the Cosmic-Ray Spectrum? Phys. Rev. Lett. 1966, 16, 748–750.
Zatsepin, G.T.; Kuz’min, V.A. Upper Limit of the Spectrum of Cosmic Rays. Sov. J. Exp. Theor. Phys. Lett. 1966, 4, 78.
Karakula, S.; Tkaczyk, W. The formation of the cosmic ray energy spectrum by a photon field. Astropart. Phys. 1993, 1, 229–237.
Morejon, L.; Fedynitch, A.; Boncioli, D.; et al. Improved photomeson model for interactions of cosmic ray nuclei. J. Cosmol. Astropart. Phys. 2019, 11, 007.
HiRes Collaboration. First Observation of the Greisen-Zatsepin-Kuzmin Suppression. Phys. Rev. Lett. 2008, 100, 101101.
Pierre Auger Collaboration. Observation of the Suppression of the Flux of Cosmic Rays above 4×1019 eV. Phys. Rev. Lett. 2008, 101, 061101.
Stecker, F.W. Photodisintegration of Ultrahigh-Energy Cosmic Rays by the Universal Radiation Field. Phys. Rev. 1969, 180, 1264–1266.
Puget, J.L.; Stecker, F.W.; Bredekamp, J.H. Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences. Astrophys. J. 1976, 205, 638–654.
Alves Batista, R.; Boncioli, D.; di Matteo, A.; et al. Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp. J. Cosmol. Astropart. Phys. 2015, 10, 063.
Boncioli, D.; Fedynitch, A.; Winter, W. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays. Sci. Rep. 2017, 7, 4882.
Soriano, J.F.; Anchordoqui, L.A.; Torres, D.F. Photo-disintegration of 4He on the cosmic microwave background is less severe than earlier thought. Phys. Rev. D 2018, 98, 043001.
Alves Batista, R.; Boncioli, D.; di Matteo, A.; et al. Secondary neutrino and gamma-ray fluxes from SimProp and CRPropa. J. Cosmol. Astropart. Phys. 2019, 5, 006.
Dicus, D.A.; Repko, W.W. Photon neutrino scattering. Phys. Rev. D 1993, 48, 5106–5108.
Abbasabadi, A.; Devoto, A.; Dicus, D.A.; et al. High energy photon-neutrino interactions. Phys. Rev. D 1998, 59, 013012.
Abbasabadi, A.; Devoto, A.; Repko, W.W. High energy photon-neutrino elastic scattering. Phys. Rev. D 2001, 63, 093001.
Bahcall, J.N. Neutrino Opacity I. Neutrino-Lepton Scattering. Phys. Rev. 1964, 136, 1164–1171.
Yoshida, S. Propagation of ultrahigh energy neutrinos in the black-body neutrino field. Astropart. Phys. 1994, 2, 187–198.
Pontecorvo, B. Mesonium and Antimesonium. Sov. J. Exp. Theor. Phys. 1958, 6, 429.
Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the Unified Model of Elementary Particles. Prog. Theor. Phys. 1962, 28, 870–880.
Giunti, C.; Kim, C.W. Coherence of neutrino oscillations in the wave packet approach. Phys. Rev. D 1998, 58, 017301.
Giunti, C. Coherence and Wave Packets in Neutrino Oscillations. Found. Phys. Lett. 2004, 17, 103–124.
Beuthe, M. Oscillations of neutrinos and mesons in quantum field theory. Phys. Rep. 2003, 375, 105–218.
Akhmedov, E.K.; Smirnov, A.Y. Paradoxes of neutrino oscillations. Phys. At. Nucl. 2009, 72, 1363–1381.
Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; et al. NuFit-6.0: updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2024, 12, 216.
Bhattacharjee, P.; Sigl, G. Origin and propagation of extremely high energy cosmic rays. Phys. Rep. 2000, 327, 109–247.
Neronov, A.; Semikoz, D.V. Sensitivity of γ-ray telescopes for detection of magnetic fields in the intergalactic medium. Phys. Rev. D 2009, 80, 123012.
Lipari, P.; Vernetto, S. Diffuse Galactic gamma-ray flux at very high energy. Phys. Rev. D 2018, 98, 043003.
Di Marco, G.; Alves Batista, R.; Sánchez-Conde, M.Á. Revisiting the propagation of highly-energetic gamma rays in the Galaxy. Phys. Rev. D 2025, 111, 083004.
Shapiro, I.I. Fourth Test of General Relativity. Phys. Rev. Lett. 1964, 13, 789–791.
Alves Batista, R.; Dundovic, A.; Erdmann, M.; et al. CRPropa 3—A public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles. J. Cosmol. Astropart. Phys. 2016, 5, 038.
Alves Batista, R.; Becker Tjus, J.; Dörner, J.; et al. CRPropa 3.2—An advanced framework for high-energy particle propagation in extragalactic and galactic spaces. J. Cosmol. Astropart. Phys. 2022, 09, 035.
Kachelrieß, M.; Ostapchenko, S.; Tomàs, R. ELMAG: A Monte Carlo simulation of electromagnetic cascades on the extragalactic background light and in magnetic fields. Comput. Phys. Commun. 2012, 183, 1036–1043.
Blytt, M.; Kachelrieß, M.; Ostapchenko, S. ELMAG 3.01: A three-dimensional Monte Carlo simulation of electromagnetic cascades on the extragalactic background light and in magnetic fields. Comput. Phys. Commun. 2020, 252, 107163.
Kalashev, O.; Korochkin, A.; Neronov, A.; et al. Modeling the propagation of very-high-energy γ-rays with the CRbeam code: Comparison with CRPropa and ELMAG codes. Astron. Astrophys. 2023, 675, A132.
Settimo, M.; De Domenico, M. Propagation of extragalactic photons at ultra-high energy with the EleCa code. Astropart. Phys. 2015, 62, 92–99.
Armengaud, E.; Sigl, G.; Beau, T.; et al. CRPropa: A numerical tool for the propagation of UHE cosmic rays, γ-rays and neutrinos. Astropart. Phys. 2007, 28, 463–471.
Kampert, K.H.; Kulbartz, J.; Maccione, L.; et al. CRPropa 2.0—A public framework for propagating high energy nuclei, secondary gamma rays and neutrinos. Astropart. Phys. 2013, 42, 41–51.
Aloisio, R.; Boncioli, D.; Grillo, A.F.; et al. SimProp: a simulation code for ultra high energy cosmic ray propagation. J. Cosmol. Astropart. Phys. 2012, 10, 007.
Aloisio, R.; Boncioli, D.; di Matteo, A.; et al. SimProp v2r4: Monte Carlo simulation code for UHECR propagation. J. Cosmol. Astropart. Phys. 2017, 11, 009.
Moskalenko, I. GALPROP Code for Galactic Cosmic Ray Propagation and Associated Photon Emissions. In Proceedings of the 32nd International Cosmic Ray Conference (ICRC2011), Beijing, China, 11–18 August, 2011; Volume 6, p. 279.
Porter, T.A.; Jóhannesson, G.; Moskalenko, I.V. The GALPROP Cosmic-ray Propagation and Nonthermal Emissions Framework: Release v57. Astrophys. J. Suppl. Ser. 2022, 262, 30.
Evoli, C.; Gaggero, D.; Vittino, A.; et al. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients. J. Cosmol. Astropart. Phys. 2017, 2, 015.
Evoli, C.; Gaggero, D.; Vittino, A.; et al. Cosmic-ray propagation with DRAGON2: II. Nuclear interactions with the interstellar gas. J. Cosmol. Astropart. Phys. 2018, 7, 006.
Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002.
Earman, J.; Glymour, C.; Rynasiewicz, R. On Writing the History of Special Relativity. In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association; Cambridge University Press: Cambridge, UK, 1982; pp. 403–416.
Will, C.M. Special Relativity: A Centenary Perspective. In Einstein, 1905–2005: Poincar Seminar 2005; Damour, T., Darrigol, O., Duplantier, B., et al., Eds.; Birkhuser: Basel, Switzerland, 2006; Volume 47, p. 33.
Schwarz, J.H. Superstring theory. Phys. Rep. 1982, 89, 223–322.
Polchinski, J. String duality. Rev. Mod. Phys. 1996, 68, 1245–1258.
Aharony, O.; Gubser, S.S.; Maldacena, J.; et al. Large N field theories, string theory and gravity. Phys. Rep. 2000, 323, 183–386.
Mukhi, S. String theory: a perspective over the last 25 years. Class. Quantum Gravity 2011, 28, 153001.
Polchinski, J. TASI Lectures on D-Branes. arXiv 1996, arXiv:hep-th/9611050.
Scherk, J.; Schwarz, J.H. Dual models for non-hadrons. Nucl. Phys. B 1974, 81, 118–144.
Witten, E. String theory dynamics in various dimensions. Nucl. Phys. B 1995, 443, 85–126.
Maldacena, J.M. The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 1998, 2, 231.
Hubeny, V.E. The AdS/CFT correspondence. Class. Quantum Gravity 2015, 32, 124010.
Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683–685.
Kostelecký, V.A.; Samuel, S. Gravitational phenomenology in higher-dimensional theories and strings. Phys. Rev. D 1989, 40, 1886–1903.
Kostelecký, V.A.; Samuel, S. Phenomenological gravitational constraints on strings and higher-dimensional theories. Phys. Rev. Lett. 1989, 63, 224–227.
Potting, R. Symmetry breaking in string theory. Phys. At. Nucl. 1998, 61, 1914–1917.
Frey, A.R. String theoretic bounds on Lorentz-violating warped compactification. J. High Energy Phys. 2003, 4, 012.
Sudarsky, D.; Urrutia, L.; Vucetich, H. Bounds on stringy quantum gravity from low energy existing data. Phys. Rev. D 2003, 68, 024010.
Mavromatos, N.E. Quantum-gravity induced Lorentz violation and dynamical mass generation. Phys. Rev. D 2011, 83, 025018.
Chang, Z.; Wang, S. Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime. Eur. Phys. J. C 2012, 72, 2165.
Ellis, G.; Silk, J. Scientific method: Defend the integrity of physics. Nature 2014, 516, 321–323.
Ritson, S.; Camilleri, K. Contested Boundaries: The String Theory Debates and Ideologies of Science. Perspect. Sci. 2015, 23, 192–227.
Hewett, J.L.; Rizzo, T.G. Low-energy phenomenology of superstring-inspired E6 models. Phys. Rep. 1989, 183, 193–381.
Vafa, C. The String Landscape and the Swampland. arXiv 2005, arXiv:hep-th/0509212.
Acharya, B.S.; Kane, G.; Kumar, P. Compactified String Theories – Generic Predictions for Particle Physics. Int. J. Mod. Phys. A 2012, 27, 1230012.
Halverson, J.; Langacker, P. TASI Lectures on Remnants from the String Landscape. arXiv 2018, arXiv:1801.03503.
Dawid, R. String Theory and the Scientific Method; Cambridge University Press: Cambridge, UK, 2013.
Dawid, R. The Significance of Non-Empirical Confirmation in Fundamental Physics. In Why Trust a Theory? Epistemology of Fundamental Physics; Cambridge University Press: Cambridge, UK, 2019; pp. 99–119.
Carroll, S.M., Beyond Falsifiability: Normal Science in a Multiverse. In Why Trust a Theory? Epistemology of Fundamental Physics; Cambridge University Press: Cambridge, UK, 2019; pp. 300–314.
Greenberg, O.W. CPT Violation Implies Violation of Lorentz Invariance. Phys. Rev. Lett. 2002, 89, 231602.
Mavromatos, N.E. Lorentz Symmetry Violation in String-Inspired Effective Modified Gravity Theories. In Modified and Quantum Gravity: From Theory to Experimental Searches on All Scales; Springer: Cham, Switzerland, 2023; Volume 1017, pp. 3–48.
Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 9, 032.
Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 1995, 172, 187–220.
Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep. 2003, 378, 207–299.
Connes, A. Noncommutative geometry and reality. J. Math. Phys. 1995, 36, 6194–6231.
Snyder, H.S. Quantized Space-Time. Phys. Rev. 1947, 71, 38–41.
Carroll, S.M.; Harvey, J.A.; Kostelecký, V.A.; et al. Noncommutative Field Theory and Lorentz Violation. Phys. Rev. Lett. 2001, 87, 141601.
Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977–1029.
Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A status report. Class. Quantum Gravity 2004, 21, R53–R152.
Oriti, D. The microscopic dynamics of quantum space as a group field theory. In Foundations of Space and Time; Murugan, J., Weltman, A., Ellis, G.F.R., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 257–320.
Rovelli, C. Loop Quantum Gravity. Living Rev. Relativ. 2008, 11, 5.
Ashtekar, A.; Bianchi, E. A short review of loop quantum gravity. Rep. Prog. Phys. 2021, 84, 042001.
Ashtekar, A.; Fairhurst, S.; Willis, J.L. Quantum gravity, shadow states and quantum mechanics. Class. Quantum Gravity 2003, 20, 1031–1061.
Ashtekar, A.; Rovelli, C.; Smolin, L. Weaving a classical metric with quantum threads. Phys. Rev. Lett. 1992, 69, 237–240.
Rovelli, C.; Smolin, L. Spin networks and quantum gravity. Phys. Rev. D 1995, 52, 5743–5759.
Bojowald, M. Absence of a Singularity in Loop Quantum Cosmology. Phys. Rev. Lett. 2001, 86, 5227–5230.
Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang. Phys. Rev. Lett. 2006, 96, 141301.
Gambini, R.; Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 1999, 59, 124021.
Alfaro, J.; Morales-Técotl, H.A.; Urrutia, L.F. Loop quantum gravity and light propagation. Phys. Rev. D 2002, 65, 103509.
Bojowald, M.; Paily, G.M. Deformed general relativity. Phys. Rev. D 2013, 87, 044044.
Freidel, L. Group Field Theory: An Overview. Int. J. Theor. Phys. 2005, 44, 1769–1783.
Reisenberger, M.P.; Rovelli, C. “Sum over surfaces” form of loop quantum gravity. Phys. Rev. D 1997, 56, 3490–3508.
Girelli, F.; Konopka, T.; Kowalski-Glikman, J.; et al. Free particle in deformed special relativity. Phys. Rev. D 2006, 73, 045009.
Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; et al. Relative locality and the soccer ball problem. Phys. Rev. D 2011, 84, 087702.
Surya, S. The causal set approach to quantum gravity. Living Rev. Relativ. 2019, 22, 5.
Bombelli, L.; Lee, J.; Meyer, D.; et al. Space-time as a causal set. Phys. Rev. Lett. 1987, 59, 521–524.
Ambjørn, J.; Jurkiewicz, J.; Loll, R. Causal dynamical triangulations and the quest for quantum gravity. In Foundations of Space and Time; Cambridge University Press: Cambridge, UK, 2012; pp. 321–337.
Loll, R. Quantum gravity from causal dynamical triangulations: a review. Class. Quantum Gravity 2020, 37, 013002.
Tawfik, A.; Diab, A. Generalized uncertainty principle: Approaches and applications. Int. J. Mod. Phys. D 2014, 23, 1430025.
Bosso, P.; Gaetano Luciano, G.; Petruzziello, L.; et al. 30 years in: Quo vadis generalized uncertainty principle? Class. Quantum Gravity 2023, 40, 195014.
Maggiore, M. A generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, 304, 65–69.
Maggiore, M. Quantum groups, gravity, and the generalized uncertainty principle. Phys. Rev. D 1994, 49, 5182–5187.
Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118.
Garay, L.J. Quantum Gravity and Minimum Length. Int. J. Mod. Phys. A 1995, 10, 145–165.
Ali, A.F.; Das, S.; Vagenas, E.C. Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 2009, 678, 497–499.
Eichhorn, A. An asymptotically safe guide to quantum gravity and matter. Front. Astron. Space Sci. 2018, 5, 47.
Eichhorn, A.; Schiffer, M., Asymptotic Safety of Gravity with Matter. In Handbook of Quantum Gravity; Bambi, C., Modesto, L., Shapiro, I., Eds.; Springer Nature: Singapore, 2024; pp. 915–1001.
Platania, A. From renormalization group flows to cosmology. Front. Phys. 2020, 8, 188.
Weinberg, S. Ultraviolet divergences in quantum theories of gravitation. In General Relativity; Cambridge University Press: Cambridge, UK, 1979; pp. 790–831.
Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971–985.
Niedermaier, M. The asymptotic safety scenario in quantum gravity: An introduction. Class. Quantum Gravity 2007, 24, R171–R230.
Eichhorn, A.; Held, A.; Wetterich, C. Predictive power of grand unification from quantum gravity. J. High Energy Phys. 2020, 8, 111.
Reuter, M.; Weyer, H. Quantum gravity at astrophysical distances? J. Cosmol. Astropart. Phys. 2004, 12, 001.
Eichhorn, A.; Platania, A.; Schiffer, M. Lorentz invariance violations in the interplay of quantum gravity with matter. Phys. Rev. D 2020, 102, 026007.
Donoghue, J.F. Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 1994, 72, 2996–2999.
Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874–3888.
Donoghue, J.F. Quantum General Relativity and Effective Field Theory. In Handbook of Quantum Gravity; Bambi, C., Modesto, L., Shapiro, I., Eds.; Springer Nature: Singapore, 2024; pp. 3–26.
Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009.
Chaichian, M.; Dolgov, A.D.; Novikov, V.A.; et al. CPT violation does not lead to violation of Lorentz invariance and vice versa. Phys. Lett. B 2011, 699, 177–180.
Coleman, S.; Glashow, S.L. High-energy tests of Lorentz invariance. Phys. Rev. D 1999, 59, 116008.
Mattingly, D. Modern Tests of Lorentz Invariance. Living Rev. Relativ. 2005, 8, 5.
Liberati, S.; Maccione, L. Lorentz Violation: Motivation and New Constraints. Annu. Rev. Nucl. Part. Sci. 2009, 59, 245–267.
Tasson, J.D. What do we know about Lorentz invariance? Rep. Prog. Phys. 2014, 77, 062901.
Amelino-Camelia, G. Testable scenario for relativity with minimum length. Phys. Lett. B 2001, 510, 255–263.
Amelino-Camelia, G. Relativity: Special treatment. Nature 2002, 418, 34–35.
Kowalski-Glikman, J.; Nowak, S. Doubly special relativity theories as different bases of κ-Poincar algebra. Phys. Lett. B 2002, 539, 126–132.
Magueijo, J.; Smolin, L. Lorentz Invariance with an Invariant Energy Scale. Phys. Rev. Lett. 2002, 88, 190403.
Magueijo, J.; Smolin, L. Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 2003, 67, 044017.
Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; et al. Principle of relative locality. Phys. Rev. D 2011, 84, 084010.
Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; et al. Relative locality: a deepening of the relativity principle. Gen. Relativ. Gravit. 2011, 43, 2547–2553.
Kowalski-Glikman, J. Introduction to Doubly Special Relativity. In Planck Scale Effects in Astrophysics and Cosmology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 669, p. 131.
Amelino-Camelia, G. Doubly-Special Relativity: Facts, Myths and Some Key Open Issues. Symmetry 2010, 2, 230–271.
Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 5.
Arzano, M.; Gubitosi, G.; Relancio, J.J. Deformed Relativistic Symmetry Principles. In Modified and Quantum Gravity: From Theory to Experimental Searches on All Scales; Springer: Cham, Switzerland, 2023; Volume 1017, pp. 49–103.
Jacobson, T.; Liberati, S.; Mattingly, D. Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics. Phys. Rev. D 2003, 67, 124011.
Lehnert, R. Threshold analyses and Lorentz violation. Phys. Rev. D 2003, 68, 085003.
Mattingly, D.; Jacobson, T.; Liberati, S. Threshold configurations in the presence of Lorentz violating dispersion relations. Phys. Rev. D 2003, 67, 124012.
Heyman, D.; Major, S.; Hinteleitner, F. Reaction thresholds in doubly special relativity. Phys. Rev. D 2004, 69, 105016.
Baccetti, V.; Tate, K.; Visser, M. Lorentz violating kinematics: Threshold theorems. J. High Energy Phys. 2012, 2012, 87.
Amelino-Camelia, G. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries. In CPT and Lorentz Symmetry; Kostelecký, V.A., Ed.; World Scientific: Singapore, 2002, pp. 254–261.
Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11–32.
Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008.
Magueijo, J.; Smolin, L. Gravity’s rainbow. Class. Quantum Gravity 2004, 21, 1725–1736.
Amelino-Camelia, G. Phenomenology of Planck-scale Lorentz-symmetry test theories. New J. Phys. 2004, 6, 188.
Lukierski, J.; Ruegg, H.; Nowicki, A.; et al. q-deformation of Poincar algebra. Phys. Lett. B 1991, 264, 331–338.
Majid, S.; Ruegg, H. Bicrossproduct structure of κ-Poincare group and non-commutative geometry. Phys. Lett. B 1994, 334, 348–354.
Lukierski, J. Kappa-deformations: historical developments and recent results. J. Phys. Conf. Ser. 2017, 804, 012028.
Girelli, F.; Liberati, S.; Sindoni, L. Planck-scale modified dispersion relations and Finsler geometry. Phys. Rev. D 2007, 75, 064015.
Barcaroli, L.; Brunkhorst, L.K.; Gubitosi, G.; et al. Hamilton geometry: Phase space geometry from modified dispersion relations. Phys. Rev. D 2015, 92, 084053.
Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511–536.
Hawking, S.W. Spacetime foam. Nucl. Phys. B 1978, 144, 349–362.
Carlip, S. Spacetime foam: A review. Rep. Prog. Phys. 2023, 86, 066001.
Jack Ng, Y.; van Dam, H. Limit to Space-Time Measurement. Mod. Phys. Lett. A 1994, 9, 335–340.
Schreck, M.; Sorba, F.; Thambyahpillai, S. Simple model of pointlike spacetime defects and implications for photon propagation. Phys. Rev. D 2013, 88, 125011.
Hossenfelder, S. Phenomenology of space-time imperfection. II. Local defects. Phys. Rev. D 2013, 88, 124031.
Borowiec, A.; Pachol, A. κ-Minkowski Spacetimes and DSR Algebras: Fresh Look and Old Problems. Symmetry Integr. Geom. Methods Appl. 2010, 6, 086.
Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Relativistic deformed kinematics from locality conditions in a generalized spacetime. Phys. Rev. D 2020, 101, 044057.
Amelino-Camelia, G.; Ahluwalia, D.V. Relativity in Spacetimes with Short-Distance Structure Governed by an Observer- Independent (Planckian) Length Scale. Int. J. Mod. Phys. D 2002, 11, 35–59.
Kosiski, P.; Lukierski, J.; Sobczyk, J.; et al. The Classical Basis for κ-deformed Poincar Algebra and Superalgebra. Mod. Phys. Lett. A 1995, 10, 2599–2606.
Saveliev, A.; Alves Batista, R. Simulating electromagnetic cascades with Lorentz invariance violation. Class. Quantum Gravity 2024, 41, 115011.
Saldana-Lopez, A.; Domnguez, A.; Pérez-González, P.G.; et al. An observational determination of the evolving extragalactic background light from the multiwavelength HST/CANDELS survey in the Fermi and CTA era. Mon. Not. R. Astron. Soc. 2021, 507, 5144–5160.
Anchordoqui, L.A.; Soriano, J.F. New test of Lorentz symmetry using ultrahigh-energy cosmic rays. Phys. Rev. D 2018, 97, 043010.
Li, H.; Ma, B.Q. Threshold anomalies of ultra-high energy cosmic photons due to Lorentz invariance violation. J. High Energy Astrophys. 2021, 32, 1–5.
Burde, G.I. Particle dynamics and GZK limit in relativity with a preferred frame. Astropart. Phys. 2021, 126, 102526.
Burde, G.I. Lorentz Violation by the Preferred Frame Effects and Cosmic and Gamma Ray Propagation. Galaxies 2021, 9, 119.
He, P.; Ma, B.Q. Abnormal threshold behaviors of photo-pion production off the proton in the GZK region. Eur. Phys. J. C 2024, 84, 401.
Pierre Auger Collaboration. Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2022, 1, 023.
Galaverni, M.; Sigl, G. Lorentz violation and ultrahigh-energy photons. Phys. Rev. D 2008, 78, 063003.
Saveliev, A.; Maccione, L.; Sigl, G. Lorentz invariance violation and chemical composition of ultra high energy cosmic rays. J. Cosmol. Astropart. Phys. 2011, 3, 046.
Lang, R.G.; Martínez-Huerta, H.; de Souza, V. Ultra-High-Energy Astroparticles as Probes for Lorentz Invariance Violation. Universe 2022, 8, 435.
Guedes Lang, R.; Martínez-Huerta, H.; de Souza, V. Limits on the Lorentz Invariance Violation from UHECR Astrophysics. Astrophys. J. 2018, 853, 23.
Coleman, S.; Glashow, S.L. Cosmic ray and neutrino tests of special relativity. Phys. Lett. B 1997, 405, 249–252.
Rubtsov, G.; Satunin, P.; Sibiryakov, S. Calculation of cross sections in Lorentz-violating theories. Phys. Rev. D 2012, 86, 085012.
Jacobson, T.; Liberati, S.; Mattingly, D. TeV astrophysics constraints on Planck scale Lorentz violation. Phys. Rev. D 2002, 66, 081302.
Lehnert, R.; Potting, R. Vacuum Čerenkov Radiation. Phys. Rev. Lett. 2004, 93, 110402.
Lehnert, R.; Potting, R. Čerenkov effect in Lorentz-violating vacua. Phys. Rev. D 2004, 70, 125010.
Kaufhold, C.; Klinkhamer, F.R. Vacuum Cherenkov radiation and photon triple-splitting in a Lorentz-noninvariant extension of quantum electrodynamics. Nucl. Phys. B 2006, 734, 1–23.
Kaufhold, C.; Klinkhamer, F.R. Vacuum Cherenkov radiation in spacelike Maxwell-Chern-Simons theory. Phys. Rev. D 2007, 76, 025024.
Klinkhamer, F.R.; Risse, M. Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory. Phys. Rev. D 2008, 77, 016002.
Díaz, J.S.; Klinkhamer, F.R.; Risse, M. Changes in extensive air showers from isotropic Lorentz violation in the photon sector. Phys. Rev. D 2016, 94, 085025.
Saveliev, A.; Alves Batista, R.; Mishin, F. Spectra for reactions in astrophysical electromagnetic cascades with Lorentz invariance violation: The vacuum Cherenkov effect. Phys. Rev. D 2025, 111, 083001.
Kostelecký, V.A.; Pickering, A.G. Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics. Phys. Rev. Lett. 2003, 91, 031801.
Anselmi, D.; Taiuti, M. Vacuum Cherenkov radiation in quantum electrodynamics with high-energy Lorentz violation. Phys. Rev. D 2011, 83, 056010.
Schreck, M. Vacuum Cherenkov radiation for Lorentz-violating fermions. Phys. Rev. D 2017, 96, 095026.
Carmona, J.M.; Cortés, J.L. Constraints from Neutrino Decay on Superluminal Velocities. arXiv 2011, arXiv:hep- ph/1110.0430.
Somogyi, G.; Nándori, I.; Jentschura, U.D. Neutrino splitting for Lorentz-violating neutrinos: Detailed analysis. Phys. Rev. D 2019, 100, 035036.
Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; et al. Decay of superluminal neutrinos in the collinear approximation. Phys. Rev. D 2023, 107, 043001.
Cohen, A.G.; Glashow, S.L. Pair Creation Constrains Superluminal Neutrino Propagation. Phys. Rev. Lett. 2011, 107, 181803.
Bezrukov, F.; Lee, H.M. Model dependence of the bremsstrahlung effects from the superluminal neutrino at OPERA. Phys. Rev. D 2012, 85, 031901.
Jentschura, U.D. Squeezing the Parameter Space for Lorentz Violation in the Neutrino Sector with Additional Decay Channels. Particles 2020, 3, 630–641.
Kostelecký, V.A.; Tasson, J.D. Constraints on Lorentz violation from gravitational Čerenkov radiation. Phys. Lett. B 2015, 749, 551–559.
Moore, G.D.; Nelson, A.E. Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation. J. High Energy Phys. 2001, 9, 023.
Artola, M.; Cembranos, J.A.R.; Martn-Moruno, P. Gravitational and electromagnetic Cherenkov radiation constraints in modified dispersion relations. Phys. Rev. D 2024, 110, 124060.
Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.E.; et al. Tests of quantum gravity from observations of γ-ray bursts. Nature 1998, 393, 763–765.
Schaefer, B.E. Severe Limits on Variations of the Speed of Light with Frequency. Phys. Rev. Lett. 1999, 82, 4964–4966.
Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V. Quantum-Gravitational Diffusion and Stochastic Fluctuations in the Velocity of Light. Gen. Relativ. Gravit. 2000, 32, 127–144.
Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.; et al. Quantum-gravity analysis of gamma-ray bursts using wavelets. Astron. Astrophys. 2003, 402, 409–424.
Jacob, U.; Piran, T. Lorentz-violation-induced arrival delays of cosmological particles. J. Cosmol. Astropart. Phys. 2008, 1, 031.
Rosati, G.; Amelino-Camelia, G.; Marcianò, A.; et al. Planck-scale-modified dispersion relations in FRW spacetime. Phys. Rev. D 2015, 92, 124042.
Li, T.; Mavromatos, N.E.; Nanopoulos, D.V.; et al. Time delays of strings in D-particle backgrounds and vacuum refractive indices. Phys. Lett. B 2009, 679, 407–413.
Amelino-Camelia, G.; Matassa, M.; Mercati, F.; et al. Taming Nonlocality in Theories with Planck-Scale Deformed Lorentz Symmetry. Phys. Rev. Lett. 2011, 106, 071301.
Amelino-Camelia, G.; Rosati, G.; Bedić, S. Phenomenology of curvature-induced quantum-gravity effects. Phys. Lett. B 2021, 820, 136595.
Lobo, I.P. Time delay in κ-anti-de Sitter spacetime. Phys. Lett. B 2024, 855, 138864.
Kostelecký, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005.
Kostelecký, V.A.; Li, Z. Backgrounds in gravitational effective field theory. Phys. Rev. D 2021, 103, 024059.
IceCube Collaboration. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151.
IceCube Collaboration. A Search for IceCube Events in the Direction of ANITA Neutrino Candidates. Astrophys. J. 2020, 892, 53.
HAWC Collaboration. Constraints on Lorentz Invariance Violation from HAWC Observations of Gamma Rays above 100 TeV. Phys. Rev. Lett. 2020, 124, 131101.
Jacobson, T.; Liberati, S.; Mattingly, D. Lorentz violation at high energy: Concepts, phenomena, and astrophysical constraints. Ann. Phys. 2006, 321, 150–196.
Maccione, L.; Liberati, S.; Celotti, A.; et al. New constraints on Planck-scale Lorentz violation in QED from the Crab Nebula. J. Cosmol. Astropart. Phys. 2007, 10, 013.
Liberati, S.; Maccione, L.; Sotiriou, T.P. Scale Hierarchy in Hořava-Lifshitz Gravity: Strong Constraint from Synchrotron Radiation in the Crab Nebula. Phys. Rev. Lett. 2012, 109, 151602.
Rubtsov, G.; Satunin, P.; Sibiryakov, S. Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons. J. Cosmol. Astropart. Phys. 2017, 5, 049.
Li, C.; Ma, B.Q. Testing Lorentz invariance of electrons with LHAASO observations of PeV gamma-rays from the Crab Nebula. Phys. Lett. B 2022, 829, 137034.
Lang, R.G.; Martínez-Huerta, H.; de Souza, V. Improved limits on Lorentz invariance violation from astrophysical gamma-ray sources. Phys. Rev. D 2019, 99, 043015.
Sloan, D.; Alves Batista, R.; Hicks, M.; et al. Fine-Tuning in the Physical Universe, 1 ed.; Cambridge University Press: Cambridge, UK, 2020.
H.E.S.S. Collaboration. The 2014 TeV γ-Ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation. Astrophys. J. 2019, 870, 93.
Lesage, S.; Veres, P.; Briggs, M.S.; et al. Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow. Astrophys. J. Lett. 2023, 952, L42.
LHAASO Collaboration. A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst. Science 2023, 380, 1390–1396.
LHAASO Collaboration. Very high-energy gamma-ray emission beyond 10 TeV from GRB 221009A. Sci. Adv. 2023, 9, eadj2778.
H.E.S.S. Collaboration. H.E.S.S. Follow-up Observations of GRB 221009A. Astrophys. J. Lett. 2023, 946, L27.
Burns, E.; Svinkin, D.; Fenimore, E.; et al. GRB 221009A: The BOAT. Astrophys. J. Lett. 2023, 946, L31.
Finke, J.D.; Razzaque, S. Possible Evidence for Lorentz Invariance Violation in Gamma-Ray Burst 221009A. Astrophys. J. Lett. 2023, 942, L21.
Li, H.; Ma, B.Q. Lorentz invariance violation induced threshold anomaly versus very-high energy cosmic photon emission from GRB 221009A. Astropart. Phys. 2023, 148, 102831.
Piran, T.; Ofengeim, D.D. Lorentz invariance violation limits from GRB 221009A. Phys. Rev. D 2024, 109, L081501.
Das, S.; Razzaque, S. Ultrahigh-energy cosmic-ray signature in GRB 221009A. Astron. Astrophys. 2023, 670, L12.
Mirabal, N. Secondary GeV-TeV emission from ultra-high-energy cosmic rays accelerated by GRB 221009A. Mon. Not. R. Astron. Soc. 2023, 519, L85–L86.
He, H.N.; Zhang, B.T.; Fan, Y.Z. A Detectable Ultra-high-energy Cosmic-Ray Outburst from GRB 221009A. Astrophys. J. 2024, 963, 109.
Cao, Z.; Aharonian, F.; Axikegu; et al. Stringent Tests of Lorentz Invariance Violation from LHAASO Observations of GRB 221009A. Phys. Rev. Lett. 2024, 133, 071501.
Carpet-3 Group. Carpet-3 detection of a photonlike air shower with estimated primary energy above 100 TeV in a spatial and temporal coincidence with GRB 221009A. Phys. Rev. D 2025, 111, 102005.
Ofengeim, D.D.; Piran, T. 300 TeV photon from GRB 221009A: A hint at nonlinear Lorentz invariance violation? Phys. Rev. D 2025, 112, 083055.
Song, H.; Ma, B.Q. Carpet-3 300 TeV photon event as an evidence for Lorentz violation. Phys. Lett. B 2025, 870, 139959.
Fermi-LAT Collaboration (Atwood, W. B. et al.). The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102.
Abdalla, H.; Böttcher, M. Lorentz Invariance Violation Effects on Gamma-Gamma Absorption and Compton Scattering. Astrophys. J. 2018, 865, 159.
Saveliev, A.; Alves Batista, R. On Numerical Simulations of Intergalactic Electromagnetic Cascades with Lorentz Invariance Violation. arXiv 2023, arXiv:2307.11421.
Carmona, J.M.; Cortés, J.L.; Rescic, F.; et al. Approaches to photon absorption in a Lorentz invariance violation scenario. Phys. Rev. D 2024, 110, 063035.
Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; et al. Modification of the mean free path of very high-energy photons due to a relativistic deformed kinematics. Eur. Phys. J. Plus 2022, 137, 768.
Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V. Probing models of quantum space-time foam. arXiv 1999, arXiv:gr- qc/9909085.
MAGIC Collaboration. Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope. Phys. Lett. B 2008, 668, 253–257.
H.E.S.S. Collaboration. Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944. Astropart. Phys. 2011, 34, 738–747.
H.E.S.S. Collaboration; Fermi-LAT Collaboration. Constraints on the Intergalactic Magnetic Field Using Fermi-LAT and H.E.S.S. Blazar Observations. Astrophys. J. Lett. 2023, 950, L16.
Biller, S.D.; Breslin, A.C.; Buckley, J.; et al. Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies. Phys. Rev. Lett. 1999, 83, 2108–2111.
MAGIC Collaboration. Constraining Lorentz Invariance Violation Using the Crab Pulsar Emission Observed up to TeV Energies by MAGIC. Astrophys. J. Suppl. Ser. 2017, 232, 9.
MAGIC Collaboration. Bounds on Lorentz Invariance Violation from MAGIC Observation of GRB 190114C. Phys. Rev. Lett. 2020, 125, 021301.
Vasileiou, V.; Jacholkowska, A.; Piron, F.; et al. Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Phys. Rev. D 2013, 87, 122001.
MAGIC Collaboration. Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 2019, 575, 455–458.
Zhu, J.; Ma, B.Q. Light speed variation from GRB 221009A. J. Phys. Nucl. Phys. 2023, 50, 06LT01.
LHAASO Collaboration. The First LHAASO Catalog of Gamma-Ray Sources. Astrophys. J. Suppl. Ser. 2024, 271, 25.
Bolmont, J.; Caroff, S.; Gaug, M.; et al. First Combined Study on Lorentz Invariance Violation from Observations of Energy-dependent Time Delays from Multiple-type Gamma-Ray Sources. I. Motivation, Method Description, and Validation through Simulations of H.E.S.S., MAGIC, and VERITAS Data Sets. Astrophys. J. 2022, 930, 75.
CTA Consortium. Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2019.
CTA Consortium. Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation. J. Cosmol. Astropart. Phys. 2021, 02, 048.
Terzić, T.; Kerszberg, D.; Strišković, J. Probing Quantum Gravity with Imaging Atmospheric Cherenkov Telescopes. Universe 2021, 7, 345.
Kirzhnits, D.A.; Chechin, V.A. Cosmic Rays and the Elementary Length. JETP Lett. 1971, 14, 261.
Gonzalez-Mestres, L. Physics opportunities above the Greisen-Zatsepin-Kuzmin cutoff: Lorentz symmetry violation at the Planck scale. In Proceedings of the Workshop on Observing Giant Cosmic Ray Air Showers From >10(20) eV Particles From Space, College Park, MD, USA, 13–15 November 1998; Volume 433, pp. 148–158.
AGASA Collaboration. The cosmic ray energy spectrum above 3 × 1018 eV measured by the Akeno Giant Air Shower Array. Astropart. Phys. 1995, 3, 105–123.
AGASA Collaboration. Extension of the cosmic ray energy spectrum beyond the predicted Greisen-Zatsepin-Kuz’min cutoff. Phys. Rev. Lett. 1998, 81, 1163–1166.
Kifune, T. Invariance Violation Extends the Cosmic-Ray Horizon? Astrophys. J. Lett. 1999, 518, L21–L24.
Bertolami, O.; Carvalho, C.S. Proposed astrophysical test of Lorentz invariance. Phys. Rev. D 2000, 61, 103002.
Aloisio, R.; Blasi, P.; Ghia, P.L.; et al. Probing the structure of space-time with cosmic rays. Phys. Rev. D 2000, 62, 053010.
Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V. Space-time foam effects on particle interactions and the Greisen-Zatsepin- Kuzmin cutoff. Phys. Rev. D 2001, 63, 124025.
Aloisio, R.; Blasi, P.; Galante, A.; et al. Space-time fluctuations and ultra-high energy cosmic ray interactions. Astropart. Phys. 2003, 19, 127–133.
Torri, M.D.C.; Caccianiga, L.; di Matteo, A.; et al. Predictions of Ultra-High Energy Cosmic Ray Propagation in the Context of Homogeneously Modified Special Relativity. Symmetry 2020, 12, 1961.
Alves Batista, R. The Quest for the Origins of Ultra-High-Energy Cosmic Rays. arXiv 2024, arXiv:2412.17201.
Maccione, L.; Liberati, S. GZK photon constraints on Planck-scale Lorentz violation in QED. J. Cosmol. Astropart. Phys. 2008, 8, 027.
Mattingly, D.M.; Maccione, L.; Galaverni, M.; et al. Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation. J. Cosmol. Astropart. Phys. 2010, 2, 007.
Scully, S.T.; Stecker, F.W. Testing Lorentz invariance with neutrinos from ultrahigh energy cosmic ray interactions. Astropart. Phys. 2011, 34, 575–580.
Gorham, P.W.; Connolly, A.; Allison, P.; et al. Implications of ultrahigh energy neutrino flux constraints for Lorentz- invariance violating cosmogenic neutrinos. Phys. Rev. D 2012, 86, 103006.
Reyes, M.A.; Boncioli, D.; Carmona, J.M.; et al. Testing Lorentz invariance violation using cosmogenic neutrinos. arXiv 2023, arXiv:hep-ph/2309.02103.
GRAND Collaboration. The Giant Radio Array for Neutrino Detection (GRAND): Science and design. Sci. China Phys. Mech. Astron. 2020, 63, 219501.
IceCube-Gen2 Collaboration. IceCube-Gen2: the window to the extreme Universe. J. Phys. Nucl. Phys. 2021, 48, 060501.
Fermi-LAT Collaboration. A limit on the variation of the speed of light arising from quantum gravity effects. Nature 2009, 462, 331–334.
IceCube Collaboration; Fermi-LAT Collaboration; MAGIC Collaboration; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378.
IceCube Collaboration. Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. Eur. Phys. J. C 2019, 79, 234.
IceCube Collaboration. LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories. Comput. Phys. Commun. 2021, 266, 108018.
Laha, R. Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source TXS 0506+056. Phys. Rev. D 2019, 100, 103002.
Ellis, J.; Mavromatos, N.E.; Sakharov, A.S.; et al. Limits on neutrino Lorentz violation from multimessenger observations of TXS 0506+056. Phys. Lett. B 2019, 789, 352–355.
Wei, J.J.; Zhang, B.B.; Shao, L.; et al. Multimessenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar. J. High Energy Astrophys. 2019, 22, 1–4.
Wang, K.; Xi, S.Q.; Shao, L.; et al. Limiting superluminal neutrino velocity and Lorentz invariance violation by neutrino emission from the blazar TXS 0506+056. Phys. Rev. D 2020, 102, 063027.
Amelino-Camelia, G.; Di Luca, M.G.; Gubitosi, G.; et al. Could quantum gravity slow down neutrinos? Nat. Astron. 2023, 7, 996–1001.
Amelino-Camelia, G.; D’Amico, G.; Rosati, G.; et al. In vacuo dispersion features for gamma-ray-burst neutrinos and photons. Nat. Astron. 2017, 1, 0139.
Huang, Y.; Ma, B.Q. Lorentz violation from gamma-ray burst neutrinos. Commun. Phys. 2018, 1, 62.
Huang, Y.; Li, H.; Ma, B.Q. Consistent Lorentz violation features from near-TeV IceCube neutrinos. Phys. Rev. D 2019, 99, 123018.
Carmona, J.M.; Cortés, J.L.; Reyes, M.A. Consistency of Lorentz-invariance violation neutrino scenarios in time delay analyses. Class. Quantum Gravity 2024, 41, 075012.
Amelino-Camelia, G.; Barcaroli, L.; D’Amico, G.; et al. IceCube and GRB neutrinos propagating in quantum spacetime. Phys. Lett. B 2016, 761, 318–325.
Amelino-Camelia, G.; Barcaroli, L.; D’Amico, G.; et al. Quantum-gravity-induced dual lensing and IceCube neutrinos. Int. J. Mod. Phys. D 2017, 26, 1750076.
OPERA Collaboration. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. J. High Energy Phys. 2012, 2012, 93.
OPERA Collaboration. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data. J. High Energy Phys. 2013, 2013, 153.
Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; et al. Opera Neutrinos and Deformed Special Relativity. Mod. Phys. Lett. A 2012, 27, 1250063.
Stecker, F. Testing Lorentz Symmetry Using High Energy Astrophysics Observations. Symmetry 2017, 9, 201.
Torri, M.D.C.; Miramonti, L. Neutrinos as possible probes for quantum gravity. Class. Quantum Gravity 2024, 41, 153001.
Li, C.; Ma, B.Q. Probes for String-Inspired Foam, Lorentz, and CPT Violations in Astrophysics. Symmetry 2025, 17, 974.
IceCube Collaboration. First Observation of PeV-Energy Neutrinos with IceCube. Phys. Rev. Lett. 2013, 111, 021103.
IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856.
Borriello, E.; Chakraborty, S.; Mirizzi, A.; et al. Stringent constraint on neutrino Lorentz invariance violation from the two IceCube PeV neutrinos. Phys. Rev. D 2013, 87, 116009.
Stecker, F.W.; Scully, S.T.; Liberati, S.; et al. Searching for traces of Planck-scale physics with high energy neutrinos. Phys. Rev. D 2015, 91, 045009.
Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; et al. Lorentz Violation Footprints in the Spectrum of High-Energy Cosmic Neutrinos – Deformation of the Spectrum of Superluminal Neutrinos from Electron-Positron Pair Production in Vacuum. Symmetry 2019, 11, 1419.
Tomar, G.; Mohanty, S.; Pakvasa, S. Lorentz invariance violation and IceCube neutrino events. J. High Energy Phys. 2015, 2015, 22.
IceCube Collaboration. Detection of a particle shower at the Glashow resonance with IceCube. Nature 2021, 591, 220–224.
Brustein, R.; Eichler, D.; Foffa, S. Probing the Planck scale with neutrino oscillations. Phys. Rev. D 2002, 65, 105006.
Beacom, J.F.; Bell, N.F.; Hooper, D.; et al. Decay of High-Energy Astrophysical Neutrinos. Phys. Rev. Lett. 2003, 90, 181301.
Hooper, D.; Morgan, D.; Winstanley, E. Lorentz and CPT invariance violation in high-energy neutrinos. Phys. Rev. D 2005, 72, 065009.
Argelles, C.A.; Katori, T.; Salvado, J. Effect of New Physics in Astrophysical Neutrino Flavor. Phys. Rev. Lett. 2015, 115, 161303.
Bustamante, M.; Ahlers, M. Inferring the Flavor of High-Energy Astrophysical Neutrinos at Their Sources. Phys. Rev. Lett. 2019, 122, 241101.
IceCube Collaboration. Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube. Phys. Rev. D 2024, 110, 022001.
Telalovic, B.; Bustamante, M. Flavor anisotropy in the high-energy astrophysical neutrino sky. J. Cosmol. Astropart. Phys. 2025, 5, 013.
Telalovic, B.; Bustamante, M. No Flavor Anisotropy in the High-Energy Neutrino Sky Upholds Lorentz Invariance. arXiv 2025, arXiv:2503.15468.
Antonov, E.E.; Dedenko, L.G.; Kirillov, A.A.; et al. Test of Lorentz Invariance through Observation of the Longitudinal Development of Ultrahigh-Energy Extensive Air Showers. Sov. J. Exp. Theor. Phys. Lett. 2001, 73, 446–450.
Dedenko, L.G.; Fedorova, G.F.; Fedunin, E.Y.; et al. Test of Lorentz invariance through observation of the maximum depths in giant air showers. Nucl. Phys. Proc. Suppl. 2003, 122, 321–324.
Klinkhamer, F.R.; Niechciol, M.; Risse, M. Improved bound on isotropic Lorentz violation in the photon sector from extensive air showers. Phys. Rev. D 2017, 96, 116011.
Duenkel, F.; Niechciol, M.; Risse, M. Photon decay in ultrahigh-energy air showers: Stringent bound on Lorentz violation. Phys. Rev. D 2021, 104, 015010.
Duenkel, F.; Niechciol, M.; Risse, M. New bound on Lorentz violation based on the absence of vacuum Cherenkov radiation in ultrahigh energy air showers. Phys. Rev. D 2023, 107, 083004.
Risse, M. Using Ultrahigh-Energy Cosmic Rays and Air Showers to Test Lorentz Invariance Within Modified Maxwell Theory. arXiv 2023, arXiv:hep-ph/2208.08747.
Martynenko, N.S.; Rubtsov, G.I.; Satunin, P.S.; et al. Hypothetical Lorentz invariance violation and the muon content of extensive air showers. Phys. Rev. D 2025, 111, 063010.
Lobo, I.P.; Pfeifer, C. Reaching the Planck scale with muon lifetime measurements. Phys. Rev. D 2021, 103, 106025.
Lobo, I.P.; Pfeifer, C. Muon accelerators-muon lifetime measurements as window to Planck scale physics. Class. Quantum Gravity 2024, 41, 015008.
Lobo, I.P.; Pfeifer, C.; Morais, P.H. Experimental bounds on deformed muon lifetime dilation. Phys. Lett. B 2025, 866, 139511.
Lobo, I.P.; Pfeifer, C.; Morais, P.H.; et al. Phenomenological signatures of two-body decays in deformed relativity. J. High Energy Phys. 2022, 09, 003.
Morais, P.H.; Lobo, I.P.; Pfeifer, C.; et al. Modified particle lifetimes as a signature of deformed relativity. Phys. Lett. B 2024, 848, 138380.
Staicova, D. Impact of cosmology on Lorentz Invariance Violation constraints from GRB time-delays. Class. Quantum Gravity 2023, 40, 195012.
Amelino-Camelia, G.; Mandanici, G.; Procaccini, A.; et al. Phenomenology of Doubly Special Relativity. Int. J. Mod. Phys. A 2005, 20, 6007–6037.
Stecker, F.W.; Scully, S.T. Searching for new physics with ultrahigh energy cosmic rays. New J. Phys. 2009, 11, 085003.
Torri, M.D.C.; Bertini, S.; Giammarchi, M.; et al. Lorentz Invariance Violation effects on UHECR propagation: A geometrized approach. J. High Energy Astrophys. 2018, 18, 5–14.
Pierre Auger Collaboration. Measurement of the Depth of Maximum of Extensive Air Showers above 1018eV. Phys. Rev. Lett. 2010, 104, 091101.
Pierre Auger Collaboration. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2013, 2, 026.
Pierre Auger Collaboration. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1017.8 eV. Phys. Rev. D 2014, 90, 122005.
Pierre Auger Collaboration. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications. Phys. Rev. D 2014, 90, 122006.
Pierre Auger Collaboration. Evidence for a mixed mass composition at the ’ankle’ in the cosmic-ray spectrum. Phys. Lett. B 2016, 762, 288–295.
Pierre Auger Collaboration. Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Phys. Rev. D 2017, 96, 122003.
Telescope Array Collaboration. The Cosmic-Ray Composition between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode. Astrophys. J. 2021, 909, 178.
Alves Batista, R.; Biteau, J.; Bustamante, M.; et al. Open Questions in Cosmic-Ray Research at Ultrahigh Energies. Front. Astron. Space Sci. 2019, 6, 23.
Coleman, A.; Eser, J.; Mayotte, E.; et al. Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers. Astropart. Phys. 2023, 147, 102794.
Christian, J. Testing quantum gravity via cosmogenic neutrino oscillations. Phys. Rev. D 2005, 71, 024012.
Galaverni, M.; Sigl, G. Lorentz Violation for Photons and Ultrahigh-Energy Cosmic Rays. Phys. Rev. Lett. 2008, 100, 021102.
Cowsik, R.; Madziwa-Nussinov, T.; Nussinov, S.; et al. Testing violations of Lorentz invariance with cosmic rays. Phys. Rev. D 2012, 86, 045024.
Maccione, L.; Taylor, A.M.; Mattingly, D.M.; et al. Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays. J. Cosmol. Astropart. Phys. 2009, 4, 022.
Bietenholz, W. Cosmic rays and the search for a Lorentz Invariance Violation. Phys. Rep. 2011, 505, 145–185.
Hossenfelder, S. The Soccer-Ball Problem. SIGMA 2014, 10, 074.
Amelino-Camelia, G. Planck-Scale Soccer-Ball Problem: A Case of Mistaken Identity. Entropy 2017, 19, 400.
Amelino-Camelia, G.; Astuti, V.; Palmisano, M.; et al. Multi-particle systems in quantum spacetime and a novel challenge for center-of-mass motion. Int. J. Mod. Phys. D 2021, 30, 2150046.
Martínez-Huerta, H.; Pérez-Lorenzana, A. Restrictions from Lorentz invariance violation on cosmic ray propagation. Phys. Rev. D 2017, 95, 063001.
Alfaro, J.; Palma, G. Loop quantum gravity and ultrahigh energy cosmic rays. Phys. Rev. D 2003, 67, 083003.
Altschul, B. Limits on neutron Lorentz violation from the stability of primary cosmic ray protons. Phys. Rev. D 2008, 78, 085018.
Klinkhamer, F.R. Potential sensitivities to Lorentz violation from nonbirefringent modified Maxwell theory of Auger, HESS, and CTA. Phys. Rev. D 2010, 82, 105024.
Díaz, J.S.; Klinkhamer, F.R. Parton-model calculation of a nonstandard decay process in isotropic modified Maxwell theory. Phys. Rev. D 2015, 92, 025007.
Klinkhamer, F.R. Lorentz-violating neutral-pion decays in isotropic modified Maxwell theory. Mod. Phys. Lett. A 2018, 33, 1850104.
Levy, C.; Sol, H.; Bolmont, J. Separating source-intrinsic and Lorentz invariance violation induced delays in the very high-energy emission of blazar flares. Astron. Astrophys. 2024, 689, A136.
Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 2004, 76, 1143–1210.
Gehrels, N.; Ramirez-Ruiz, E.; Fox, D.B. Gamma-Ray Bursts in the Swift Era. Annu. Rev. Astron. Astrophys. 2009, 47, 567–617.
Berger, E. Short-Duration Gamma-Ray Bursts. Annu. Rev. Astron. Astrophys. 2014, 52, 43–105.
Kumar, P.; Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 2015, 561, 1–109.
Dai, Z.; Daigne, F.; Mészáros, P. The Theory of Gamma-Ray Bursts. Space Sci. Rev. 2017, 212, 409–427.
Pe’er, A. Gamma-Ray Bursts: What Do We Know Today That We Did Not Know 10 Years Ago? Galaxies 2024, 13, 2.
Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 1986, 308, L43–L46.
Goodman, J. Are gamma-ray bursts optically thick? Astrophys. J. Lett. 1986, 308, L47.
Rees, M.J.; Meszaros, P. Relativistic fireballs - Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992, 258, 41.
Meszaros, P.; Laguna, P.; Rees, M.J. Gasdynamics of Relativistically Expanding Gamma-Ray Burst Sources: Kinematics, Energetics, Magnetic Fields, and Efficiency. Astrophys. J. 1993, 415, 181.
Sari, R.; Piran, T.; Narayan, R. Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophys. J. Lett. 1998, 497, L17–L20.
Zhang, B.; Mészáros, P. Gamma-Ray Bursts: progress, problems & prospects. Int. J. Mod. Phys. A 2004, 19, 2385–2472.
Gao, H.; Lei, W.H.; Zou, Y.C.; et al. A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. New Astron. Rev. 2013, 57, 141–190.
Srinivasaragavan, G.P.; Dainotti, M.G.; Fraija, N.; et al. On the Investigation of the Closure Relations for Gamma-Ray Bursts Observed by Swift in the Post-plateau Phase and the GRB Fundamental Plane. Astrophys. J. 2020, 903, 18.
IceCube Collaboration. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophys. J. 2017, 843, 112.
AMON and ANTARES Collaboration. A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data. Astrophys. J. 2019, 886, 98.
ANTARES Collaboration. ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs. J. Cosmol. Astropart. Phys. 2021, 3, 092.
IceCube Collaboration.; Fermi Gamma-ray Burst Monitor. Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory. Astrophys. J. 2022, 939, 116.
IceCube Collaboration. Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory. Astrophys. J. Lett. 2023, 946, L26.
Pitik, T.; Tamborra, I.; Petropoulou, M. Neutrino signal dependence on gamma-ray burst emission mechanism. J. Cosmol. Astropart. Phys. 2021, 5, 034.
Ulrich, M.H.; Maraschi, L.; Urry, C.M. Variability of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 1997, 35, 445–502.
Dermer, C.D.; Giebels, B. Active galactic nuclei at gamma-ray energies. Comptes Rendus Phys. 2016, 17, 594–616
Romero, G.E.; Boettcher, M.; Markoff, S.; et al. Relativistic Jets in Active Galactic Nuclei and Microquasars. Space Sci. Rev. 2017, 207, 5–61.
Padovani, P.; Alexander, D.M.; Assef, R.J.; et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 2017, 25, 2.
Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509.
Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803.
HEGRA Collaboration. Measurement of the flux, spectrum, and variability of TeV γ-rays from Mkn 501 during a state of high activity. Astron. Astrophys. 1997, 327, L5–L8.
MAGIC Collaboration. Variable Very High Energy γ-Ray Emission from Markarian 501. The Astrophysical Journal 2007, 669, 862–883.
NuSTAR Team; MAGIC Collaboration; VERITAS Collaboration; et al. First NuSTAR Observations of Mrk 501 within a Radio to TeV Multi-Instrument Campaign. Astrophys. J. 2015, 812, 65.
HAWC Collaboration. Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC. Astrophys. J. 2017, 841, 100.
MAGIC Collaboration; FACT Collaboration; VERITAS Collaboration. Extreme HBL behavior of Markarian 501 during 2012. Astron. Astrophys. 2018, 620, A181.
Bhatta, G. Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc. 2019, 487, 3990–3997.
MAGIC Collaboration. Study of the variable broadband emission of Markarian 501 during the most extreme Swift X-ray activity. Astron. Astrophys. 2020, 637, A86.
H.E.S.S. Collaboration. An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304. Astrophys. J. Lett. 2007, 664, L71–L74.
H.E.S.S. Collaboration. VHE γ-ray emission of PKS 2155-304: spectral and temporal variability. Astron. Astrophys. 2010, 520, A83.
Gaidos, J.A.; Akerlof, C.W.; Biller, S.; et al. Extremely rapid bursts of TeV photons from the active galaxy Markarian 421. Nature 1996, 383, 319–320.
VERITAS Collaboration. Rapid TeV Gamma-Ray Flaring of BL Lacertae. Astrophys. J. 2013, 762, 92.
Lin, C.; Fan, J.H.; Xiao, H.B. The intrinsic γ-ray emissions of Fermi blazars. Res. Astron. Astrophys. 2017, 17, 066.
Wagner, S.J.; Witzel, A. Intraday Variability In Quasars and BL Lac Objects. Annu. Rev. Astron. Astrophys. 1995, 33, 163–198.
Ghisellini, G.; Tavecchio, F.; Bodo, G.; et al. TeV variability in blazars: how fast can it be? Mon. Not. R. Astron. Soc. 2009, 393, L16–L20.
Nieppola, E.; Hovatta, T.; Tornikoski, M.; et al. Long-Term Variability of Radio-Bright BL Lacertae Objects. Astron. J. 2009, 137, 5022–5036.
Foschini, L.; Ghisellini, G.; Tavecchio, F.; et al. Search for the shortest variability at gamma rays in flat-spectrum radio quasars. Astron. Astrophys. 2011, 530, A77.
Sandrinelli, A.; Covino, S.; Dotti, M.; et al. Quasi-periodicities at Year-like Timescales in Blazars. Astron. J. 2016, 151, 54.
Rajput, B.; Stalin, C.S.; Rakshit, S. Long term γ-ray variability of blazars. Astron. Astrophys. 2020, 634, A80.
Begelman, M.C.; Fabian, A.C.; Rees, M.J. Implications of very rapid TeV variability in blazars. Mon. Not. R. Astron. Soc. 2008, 384, L19–L23.
Rieger, F.M.; Aharonian, F.A. Variable VHE gamma-ray emission from non-blazar AGNs. Astron. Astrophys. 2008, 479, L5–L8.
Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability in blazars: jets in a jet. Mon. Not. R. Astron. Soc. 2009, 395, L29–L33.
Levinson, A.; Rieger, F. Variable TeV Emission as a Manifestation of Jet Formation in M87? Astrophys. J. 2011, 730, 123.
Barkov, M.V.; Aharonian, F.A.; Bogovalov, S.V.; et al. Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. Astrophys. J. 2012, 749, 119.
Bhatta, G.; Dhital, N. The Nature of γ-Ray Variability in Blazars. Astrophys. J. 2020, 891, 120.
Sobacchi, E.; Piran, T.; Comisso, L. Ultrafast Variability in AGN Jets: Intermittency and Lighthouse Effect. Astrophys. J. Lett. 2023, 946, L51.
Śmiałkowski, A.; Bednarek, W. Gamma ray flares from active region within inhomogeneous AGN jet. J. High Energy Astrophys. 2025, 45, 456–462.
IceCube Collaboration. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538– 543.
IceCube Collaboration. The IceCube Collaboration—Contributions to the 39th International Cosmic Ray Conference (ICRC2025). arXiv 2025, arXiv:astro-ph.HE/2507.08666.
VERITAS Collaboration; H.E.S.S. Collaboration. Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A. Astrophys. J. 2023, 954, 70.
Sahakyan, N.; Giommi, P.; Padovani, P.; et al. A multimessenger study of the blazar PKS 0735+178: a new major neutrino source candidate. Mon. Not. R. Astron. Soc. 2023, 519, 1396–1408.
Carmona, J.M.; Cortés, J.L.; Pereira, L.; et al. Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency. Symmetry 2020, 12, 1298.
Ho, C.M.; Minic, D.; Ng, Y.J. Quantum Gravity and Dark Matter. Int. J. Mod. Phys. D 2011, 20, 2887–2893.
Ho, C.M.; Minic, D.; Ng, Y.J. Dark matter, infinite statistics, and quantum gravity. Phys. Rev. D 2012, 85, 104033.
Smolin, L. MOND as a regime of quantum gravity. Phys. Rev. D 2017, 96, 083523.
Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390.
Duffy, L.D.; van Bibber, K. Axions as dark matter particles. New J. Phys. 2009, 11, 105008.
Bertone, G. Particle Dark Matter; Cambridge University Press: Cambridge, UK, 2010.
Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443.
Peccei, R.D.; Quinn, H.R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 1977, 16, 1791–1797.
Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223–226.
Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 1978, 40, 279–282.
Zanderighi, G. Fine-Tuning in the Physical Universe; Cambridge University Press: Cambridge, UK, 2020; pp. 307–344.
Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; et al. String axiverse. Phys. Rev. D 2010, 81, 123530.
Raffelt, G.; Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 1988, 37, 1237–1249.
Hochmuth, K.A.; Sigl, G. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources. Phys. Rev. D 2007, 76, 123011.
De Angelis, A.; Mansutti, O.; Roncadelli, M. Axion-like particles, cosmic magnetic fields and gamma-ray astrophysics. Phys. Lett. B 2008, 659, 847–855.
Simet, M.; Hooper, D.; Serpico, P.D. Milky Way as a kiloparsec-scale axionscope. Phys. Rev. D 2008, 77, 063001.
De Angelis, A.; Galanti, G.; Roncadelli, M. Relevance of axionlike particles for very-high-energy astrophysics. Phys. Rev. D 2011, 84, 105030.
De Angelis, A.; Galanti, G.; Roncadelli, M. Transparency of the Universe to gamma-rays. Mon. Not. R. Astron. Soc. 2013, 432, 3245–3249.
De Angelis, A.; Galanti, G.; Roncadelli, M. Erratum: Relevance of axionlike particles for very-high-energy astrophysics [Phys. Rev. D 84, 105030 (2011)]. Phys. Rev. D 2013, 87, 109903.
Horns, D.; Jacholkowska, A. Gamma rays as probes of the Universe. Comptes Rendus Phys. 2016, 17, 632–648.
Batković, I.; De Angelis, A.; Doro, M.; et al. Axion-Like Particle Searches with IACTs. Universe 2021, 7, 185.
Choi, K.; Im, S.H.; Shin, C.S. Recent Progress in the Physics of Axions and Axion-Like Particles. Annu. Rev. Nucl. Part. Sci. 2021, 71, 225–252.
Galanti, G.; Roncadelli, M. Axion-like Particles Implications for High-Energy Astrophysics. Universe 2022, 8, 253.
Zlosnik, T.G.; Ferreira, P.G.; Starkman, G.D. Modifying gravity with the aether: An alternative to dark matter. Phys. Rev. D 2007, 75, 044017.
Zlosnik, T.G.; Ferreira, P.G.; Starkman, G.D. Growth of structure in theories with a dynamical preferred frame. Phys. Rev. D 2008, 77, 084010.
Złośnik, T.; Urban, F.; Marzola, L.; et al. Spacetime and dark matter from spontaneous breaking of Lorentz symmetry. Class. Quantum Gravity 2018, 35, 235003.
Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028.
Foster, B.Z.; Jacobson, T. Post-Newtonian parameters and constraints on Einstein-aether theory. Phys. Rev. D 2006, 73, 064015.
Eling, C.; Jacobson, T.; Mattingly, D. Einstein-Æther Theory. In Deserfest: A Celebration of the Life and Works of Stanley Deser; World Scientific: Singapore, 2006; p. 163.
Jacobson, T.; Mattingly, D. Einstein-aether waves. Phys. Rev. D 2004, 70, 024003.
Townsend, P.K. Aether, dark energy and string compactifications. Philos. Trans. R. Soc. Lond. Ser. A 2022, 380, 20210185.
Mukohyama, S. Dark matter as integration constant in Hořava-Lifshitz gravity. Phys. Rev. D 2009, 80, 064005.
Blas, D.; Ivanov, M.M.; Sibiryakov, S. Testing Lorentz invariance of dark matter. J. Cosmol. Astropart. Phys. 2012, 10, 057.
Bassani, P.M.; Magueijo, J.; Mukohyama, S. Violations of energy conservation in Hořava-Lifshitz gravity: a new ingredient in the dark matter puzzle. J. Cosmol. Astropart. Phys. 2025, 7, 032.
Saridakis, E.N. Hořava-Lifshitz dark energy. Eur. Phys. J. C 2010, 67, 229–235.
Wang, X.; Loeb, A. Ultrahigh energy cosmic rays from nonrelativistic quasar outflows. Phys. Rev. D 2017, 95, 063007.
Chamseddine, A.H.; Mukhanov, V. Mimetic dark matter. J. High Energy Phys. 2013, 11, 135.

This work is licensed under a Creative Commons Attribution 4.0 International License.