2601002877
  • Open Access
  • Review

MeV-GeV Gamma-Ray Astrophysics in the Multimessenger Era

  • Alessandro De Angelis

Received: 03 Nov 2025 | Revised: 08 Jan 2026 | Accepted: 20 Jan 2026 | Published: 09 Feb 2026

Abstract

Gamma-ray astrophysics probes the most extreme particle accelerators and explosive transients in the Universe. From pioneering theoretical predictions in the 1950s and the first space-borne detections in the 1960s, mostly exploring the sub-MeV region, the field has evolved into a mature, multi-decade enterprise that spans nine orders of magnitude in photon energy up to PeV energies and interfaces naturally with neutrino and gravitational-wave astronomy. Yet the energy range from a few hundred keV to a few GeV—the “MeV gap”, constraining progress on nucleosynthesis, positron annihilation, transient physics, dark-matter signatures, and electromagnetic counterparts to high-energy neutrinos and gravitational waves—remains sensitivity-limited. In this paper, we survey the scientific motivations for gamma-ray astrophysics, sketch a concise history from the first ideas to key milestones in space- and ground-based gamma-ray astronomy, and discuss programmatic attempts to close the MeV gap.

References 

  • 1.

    Siegert, T.; Horan, D.; Kanbach, G. Telescope Concepts in Gamma-Ray Astronomy. In Handbook of X-Ray and Gamma- Ray Astrophysics; Singapore: Springer Nature: Singapore, 2024.

  • 2.

    Hayakawa, S. Propagation of the Cosmic Radiation through Interstellar Space. Prog. Theor. Phys. 1952, 8, 571.

  • 3.

    Morrison, P. On gamma-ray astronomy. Il Nuovo C. 1958, 7, 858–865.

  • 4.

    Available online: https://heasarc.gsfc.nasa.gov/docs/heasarc/missions/explorer11.html (accessed on 2 December 2025).

  • 5.

    Clark, G.; Garmire, G.; Kraushaar, W. ApJL 1968, 153, L203.

  • 6.

    NASA/HEASARC. The Small Astronomy Satellite 2 (SAS-2). Available online: https://heasarc.gsfc.nasa.gov/docs/sas2/ sas2.html(accessed on 2 December 2025).

  • 7.

    ESA. Cos-B overview. Available online: https://www.esa.int/Science Exploration/Space Science/Cos-B overview2 (accessed on 2 December 2025).

  • 8.

    Weekes, T.C.; Cawley, M.F.; Fegan, D.J.; et al. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. ApJ 1989, 342, 379.

  • 9.

    Abeysekara, A.U.; Albert, A.; Alfaro, R.; et al. The 2HWC HAWC Observatory Gamma-Ray Catalog. ApJ 2017, 843, 40.

  • 10.

    Cao, Z.; Aharonian, F.A.; An, Q.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36.

  • 11.

    Available online: https://www.ctao.org/ (accessed on 2 December 2025).

  • 12.

    Available online: https://www.swgo.org/ (accessed on 2 December 2025).

  • 13.

    NASA/HEASARC. CGRO SSC: About the Compton Gamma Ray Observatory (BATSE/OSSE/COMPTEL/EGRET). Available online: https://heasarc.gsfc.nasa.gov/docs/cgro/cgro/ (accessed on 2 December 2025).

  • 14.

    Winkler, C.; Courvoisier, T.-J.-L.; Di Cocco, G.; et al. The INTEGRAL mission. A&A 2003, 411, L1–L6.

  • 15.

    Tavani, M.; Barbiellini, G.; Argan, A.; et al. The AGILE mission. A&A 2009, 502, 995–1013.

  • 16.

    Atwood, W.B.; Abdo, A.A.; Ackermann, M.; et al. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission. ApJ 2009, 697, 1071–1102.

  • 17.

    Zabalza, V. Naima: A Python package for inference of relativistic particle energy distributions from observed nonthermal spectra. In Proceedings of the International Cosmic Ray Conference, The Hague, The Netherlands, 30 July–6 August 2015; p. 922.

  • 18.

    Kierans, C.; Takahashi, T.; Kanbach, G. Compton Telescopes for Gamma-Ray Astrophysics. In Handbook of X-Ray and Gamma-Ray Astrophysics; Springer Nature: Singapore, 2024.

  • 19.

    De Angelis, A.; Tatischeff, V.; Tavani, M.; et al. The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV–GeV range. Exp. Astron. 2017, 44, 25–82.

  • 20.

    De Angelis, A.; Tatischeff, V.; Tavani, M.; et al. Science with e-ASTROGAM: A space mission for MeV–GeV gamma-ray astrophysics. J. High Energy Astrophys. 2018, 19, 1–106.

  • 21.

    Tatischeff, V.; De Angelis, A.; Gouiffs, C.; et al. The e-ASTROGAM mission: a major step forward for gamma-ray polarimetry. JATIS 2018, 4, 011003.

  • 22.

    Lang, R.G.; Martnez-Huerta, H.; de Souza, V.; et al. Improved limits on Lorentz invariance violation from astrophysical gamma-ray sources. Phys. Rev. D 2019, 99, 043015.

  • 23.

    Brunetti, G.; Jones, T.W. Cosmic rays in galaxy clusters and their nonthermal emission. Int. J. Mod. Phys. D 2014, 23, 1430007.

  • 24.

    IceCube Collaboration. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147.

  • 25.

    IceCube Collaboration; Fermi-LAT Collaboration; MAGIC Collaboration; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378.

  • 26.

    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Multi-messenger observations of a binary neutron star merger. ApJL 2017, 848, L12.

  • 27.

    Pian, E.; D’Avanzo, P.; Benetti, S.; et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 2017, 551, 67.

  • 28.

    Hotokezaka, K.; Wanajo, S.; Tanaka, M.; et al. Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission. MNRAS 2016, 459, 35.

  • 29.

    Li, L.-X. Radioactive γ-Ray Emissions from Neutron Star Mergers. ApJ 2019, 872, 19.

  • 30.

    Della Valle, M.; Guetta, D.; Cappellaro, E.; et al. GW170817: implications for the local kilonova rate and for surveys from ground-based facilities. MNRAS 2018, 481, 4355.

  • 31.

    Amati, L.; Frontera, F.; Vietri, M.; et al. Discovery of a transient absorption edge in the X-ray spectrum of GRB 990705. Science 2000, 290, 953.

  • 32.

    Ackermann, M.; Buehler, R.; Ajello, M.; et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. ApJ 2015, 799, 86.

  • 33.

    Gilli, R.; Comastri, A.; Hasinger, G.; The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. A&A 2007, 463, 79–96.

  • 34.

    Padovani, P.; Giommi, P.; A simplified view of blazars: the very high energy gamma-ray vision. MNRAS Lett. 2015, 446, L41–L45.

  • 35.

    Lacki, B. C.; Horiuchi, S.; Beacom, J. F.; The Star-Forming Galaxy Contribution to the Cosmic MeV and GeV Gamma-Ray Background. ApJ 2014, 786, 40.

  • 36.

    Inoue, Y.; Contribution of the Gamma-ray Loud Radio Galaxies’ Core Emissions to the Cosmic MeV and GeV Gamma-Ray Background Radiation. ApJ 2011, 733, 66.

  • 37.

    Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272.

  • 38.

    Prez-Garca, M.A.; Daigne, F.; Silk, J. Short GRBs and dark matter seeding in neutron stars. ApJ 2013, 768, 145.

  • 39.

    Blasi, P. The origin of galactic cosmic rays. Astron. Astrophys. Rev. 2013, 21, 70.

  • 40.

    Giuliani, A.; Cardillo, M.; Tavani, M.; et al. Neutral pion emission from accelerated protons in the supernova remnant W44. ApJ 2011, 742, 30.

  • 41.

    Ackermann, M.; Ajello, M.; Allafort, A.; et al. Detection of the characteristic pion-decay signature in supernova remnants. Science 2013, 339, 807.

  • 42.

    Cardillo, M.; Tavani, M.; Giuliani, A.; et al. The supernova remnant W44: confirmations and challenges for cosmic-ray acceleration. A&A 2014, 565, A74.

  • 43.

    Jogler, T.; Funk, S. Revealing W51C as a cosmic-ray source using Fermi-LAT data. ApJ 2016, 816, 100.

  • 44.

    Malkov, M.A.; Diamond, P.H.; Sagdeev, R.Z. Mechanism for spectral break in cosmic ray proton spectrum from supernova remnant W44. Nat. Commun. 2011, 2, 194.

  • 45.

    Reynolds, S.P. Supernova remnants at high energy. ARA&A 2008, 46, 89.

  • 46.

    Ackermann, M.; Ajello, A.; Allafort, A.; et al. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 2011, 334, 1103.

  • 47.

    Bykov, A.M. Nonthermal particles and photons in starburst regions and superbubbles. Astron. Astrophys. Rev. 2014, 22, 77.

  • 48.

    Grenier, I.A.; Black, J.H.; Strong, A.W. The nine lives of cosmic rays in galaxies. ARA&A 2015, 53, 199.

  • 49.

    Balbo, M.; Walter, R. Fermi acceleration along the orbit of η Carinae. A&A 2017, 603, A111.

  • 50.

    Su, M.; Slatyer, T.R.; Finkbeiner, D.P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? ApJ 2010, 724, 1044.

  • 51.

    Ackermann, M.; Albert, A.; Atwood, W.B.; et al. The spectrum and morphology of the Fermi bubbles. ApJ 2014, 793, 64.

  • 52.

    Pakmor, R.; Pfrommer, C.; Simpson, C.M.; et al. Galactic winds driven by isotropic and anisotropic cosmic-ray diffusion in disk galaxies. ApJ 2016, 824, L30.

  • 53.

    Benhabiles-Mezhoud, H.; Kiener, J.; Tatischeff, V.; et al. De-excitation nuclear gamma-ray line emission from low-energy cosmic rays in the inner Galaxy. ApJ 2013, 763, 98.

  • 54.

    Nava, L.; Benyamin, D.; Piran, T.; et al. Reconciling the diffuse Galactic γ-ray and the cosmic ray spectra. MNRAS 2017, 466, 3674.

  • 55.

    Planck Collaboration. Planck intermediate results. XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck. A&A 2015, 582, A31.

  • 56.

    Riess, A.G.; Filippenko, A.V.; Challis, P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ 1998, 116, 1009.

  • 57.

    Perlmutter, S.; Aldering, G.; Goldhaber, G.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. ApJ 1999, 517, 565.

  • 58.

    Son, J.; Lee, Y.-W.; Chung, C.; et al. Strong progenitor age bias in supernova cosmology—II. Alignment with DESI BAO and signs of a non-accelerating universe. MNRAS 2025, 544, 975.

  • 59.

    Hillebrandt, W.; Niemeyer, J.C. Type Ia supernova explosion models. ARA&A 2000, 38, 191.

  • 60.

    Hillebrandt, W.; Kromer, M.; Rpke, F.; et al. Towards an understanding of Type Ia supernovae from a theoretical perspective. Front. Phys. 2013, 8, 116.

  • 61.

    Woosley, S.; Janka, T. The physics of core-collapse supernovae. Nat. Phys. 2005, 1, 147.

  • 62.

    Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Ann. Rev. Nucl. Part. Sci. 2012, 62, 407.

  • 63.

    Burrows, A. Colloquium: Perspectives on core-collapse supernova theory. Rev. Mod. Phys. 2013, 85, 245.

  • 64.

    Isern, J.; Jean, P.; Bravo, E.; et al. Gamma-ray emission from SN2014J near maximum optical light. A&A 2016, 588, A67.

  • 65.

    Diehl, R.; Hartmann, D.H.; Prantzos, N. Astronomy with gamma-ray lines. Lect. Notes Phys. 2011, 812.

  • 66.

    Diehl, R.; Halloin, H.; Kretschmer, K.; et al. Radioactive 26Al from massive stars in the Galaxy. Nature 2006, 439, 45.

  • 67.

    Diehl, R. New insights from cosmic gamma rays. J. Phys. Conf. Ser. 2016, 703, 012001.

  • 68.

    Krause, M.G.H.; Diehl, R.; Bagetakos, Y.; et al. 26Al kinematics: superbubbles following the spiral arms? A&A 2015, 578, A113.

  • 69.

    Phillips, M.M. The absolute magnitudes of Type Ia supernovae. ApJ 1993, 413, L105.

  • 70.

    Churazov, E.; Sunyaev, R.; Isern, J.; et al. Cobalt-56 γ-ray emission lines from the type Ia supernova 2014J. Nature 2014, 512, 406.

  • 71.

    Churazov, E.; Sunyaev, R.; Grebenev, S.A.; et al. Gamma-rays from Type Ia supernova SN2014J. ApJ 2015, 812, 62.

  • 72.

    Diehl, R.; Siegert, T.; Hillebrandt, W.; et al. SN2014J gamma rays from the 56Ni decay chain. A&A 2015, 574, A72.

  • 73.

    Mahoney, W.A.; Varnell, L.S.; Jacobson, A.S. et al. Gamma-ray observations of 56 Co in SN 1987A. ApJ 1988, 334, L81.

  • 74.

    Tueller, J.; Barthelmy, S.; Gehrels, N. et al. Observations of gamma-ray line profiles from SN 1987A. ApJ 1990, 351, L41.

  • 75.

    Grefenstette, B.W.; Harrison, F. A.; Boggs, S. E. et al. Asymmetries in core-collapse supernovae from 44Ti in Cassiopeia A. Nature 2014, 506, 339.

  • 76.

    Grefenstette, B.W.; Fryer, C.L.; Harrison, F.A. et al. The distribution of radioactive 44Ti in Cassiopeia A. ApJ 2017, 834, 19.

  • 77.

    Siegert, T.; Diehl, R.; Khachatryan, G. et al. Gamma-ray spectroscopy of positron annihilation in the Milky Way. A&A 2016, 586, A84.

  • 78.

    Johnson, W.N.; Harnden, F.R.; Haymes, R.C. The spectrum of low-energy gamma radiation from the galactic-center region. ApJ 1972, 172, L1.

  • 79.

    Leventhal, M.; MacCallum, C.J.; Stang, P.D. Detection of 511 keV positron annihilation radiation from the galactic center direction. ApJ 1978, 225, L11.

  • 80.

    Kndlseder, J.; Jean, P.; Lonjou, V. The all-sky distribution of 511 keV electron-positron annihilation emission. A&A 2005, 441, 513.

  • 81.

    Weidenspointner, G.; Skinner, G.; Jean, P. An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays. Nature 2008, 451, 159.

  • 82.

    Diehl, R.; Halloin, H.; Kretschmer, K. 26Al in the inner Galaxy: large-scale spectral characteristics derived with SPI/INTEGRAL. A&A 2006, 449, 1025.

  • 83.

    Wang, W.; Harris, M.J.; Diehl, R. SPI observations of the diffuse 60Fe emission in the Galaxy. A&A 2007, 469, 1005.

  • 84.

    Wang, W.; Lang, M.G.; Diehl, R. Spectral and intensity variations of Galactic 26Al emission. A&A 2009, 496, 713.

  • 85.

    Martin, P.; Kndlseder, J.; Diehl, R. New estimates of the γ-ray line emission of the Cygnus region from INTEGRAL/SPI observations. A&A 2009, 506, 703.

  • 86.

    Diehl, R. Nuclear-Astrophysics Lessons from INTEGRAL. Rep. Prog. Phys. 2013, 76, 026301.

  • 87.

    Clayton, D.D.; Hoyle, F. Gamma-ray lines from novae. ApJ 1974, 187, L101.

  • 88.

    Gmez-Gomar, J.; Hernanz, M.; Jos, J.; et al. Gamma-ray emission from individual classical novae. MNRAS 2004, 296, 913.

  • 89.

    Hernanz, M. Classical Novae, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008; 252p.

  • 90.

    Diehl, R.; Siegert, T.; Hillebrandt, W.; et al. Early 56Ni decay γ rays from SN2014J suggest an unusual explosion. Science 2014, 345, 1162.

  • 91.

    Matz, S.M.; Share, G.H.; Leising, M.D.; et al. Gamma-ray line emission from SN 1987A. Nature 1988, 331, 416.

  • 92.

    The, L.-S.; Burrows, A. The Reduction of the Proton-rich Isotopes of Nickel in the Ejecta of Cassiopeia A. ApJ 2014, 786, 141.

  • 93.

    Nomoto, K.; Thielemann, F.-K.; Yokoi, K. Accreting white dwarf models of Type I supernovae. III – Carbon deflagration supernovae. ApJ 1984, 286, 644.

  • 94.

    Kaspi, V.M.; Beloborodov, A.M. Magnetars. ARA&A 2017, 55, 261.

  • 95.

    Abdo, A.A.; Ajello, M.; Allafort, A.; et al. The second Fermi Large Area Telescope catalog of gamma-ray pulsars. ApJS 2013, 208, 17.

  • 96.

    Kuiper, L.; Hermsen, W. The soft γ-ray pulsar population: a high-energy overview. MNRAS 2015, 449, 3827.

  • 97.

    Dubus, G. Gamma-ray binaries and related systems. A&ARv 2013, 21, 64.

  • 98.

    Papitto, A.; Ferrigno, C.; Bozzo, E. et al. Swings between rotation- and accretion-powered states in a binary millisecond pulsar. Nature 2013, 501, 517.

  • 99.

    Abdo, A.A.; Ackermann, M.; Ajello, M. et al. Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi. Science 2009, 325, 845.

  • 100.

    Di Matteo, T. Magnetic reconnection: flares and coronal heating in active galactic nuclei. MNRAS 1998, 299, L15.

  • 101.

    Abdo, A.A.; Ackermann, M.; Ajello, M. et al. Fermi Large Area Telescope Observations of Two Gamma-Ray Emission Components from the Quiescent Sun. ApJ 2011, 734, 116.

  • 102.

    Abdo, A.A.; Ackermann, M.; Ajello, M. et al. Fermi Observations of γ-Ray Emission from the Moon. ApJ 2012, 758, 140.

  • 103.

    Dwyer, J.R.; Smith, D.M.; Cummer, S.A. High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena. Space Sci. Rev. 2012, 173, 133.

  • 104.

    Ade, P.A.R.; Aghanim, N.; Arnaud, M. et al. Planck 2015 results. XIII. Cosmological parameters. A&A 2016, 594, A13.

  • 105.

    Bergstrm, L. Dark matter evidence, particle physics candidates and detection methods. Ann. Der Phys. 2012, 524, 479.

  • 106.

    Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric dark matter. Phys. Rep. 1996, 267, 195.

  • 107.

    Feng, J.L.; Kumar, J. The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions. Phys. Rev. Lett. 2008, 101, 231301.

  • 108.

    Conrad, J.; Cohen-Tanugi, J.; Strigari, L.E. WIMP searches with gamma rays in the Fermi era: Challenges, methods and results. JETP 2015, 121, 1104.

  • 109.

    Gaskins, J.M. A review of indirect searches for particle dark matter. Contemp. Phys. 2016, 57, 496.

  • 110.

    Liu, J.; Chen, X.; Ji, X. Current status of direct dark matter detection experiments. Nat. Phys. 2017, 13, 212.

  • 111.

    Aprile, E.; Aalbers, J.; Agostini, F.; et al. First dark matter search results from the XENON1T experiment. Phys. Rev. Lett. 2017, 119, 181301.

  • 112.

    Jaeckel, J.; Ringwald, A. The low-energy frontier of particle physics. Ann. Rev. Nucl. Part. Sci. 2010, 60, 405.

  • 113.

    Anastassopoulos, V.; Aune, S.; Barth, K.; et al. New CAST limit on the axion-photon interaction. Nat. Phys. 2017, 13, 584.

  • 114.

    De Angelis, A.; Galanti, G.; Roncadelli, M. Relevance of axion-like particles for very-high-energy astrophysics. Phys. Rev. D 2011, 84, 105030.

  • 115.

    Meyer, M.; Giannotti, M.; Mirizzi, A.; et al. Fermi Large Area Telescope as a Galactic supernovae axionscope. Phys. Rev. Lett. 2017, 118, 011103.

  • 116.

    De Angelis, A.; Pimenta, M. Introduction to Particle and Astroparticle Physics; Springer: Cham, Switzerland, 2018.

  • 117.

    Navas, S.; Amsler, C.; Gutsche, T.; et al. Review of Particle Physics. Phys. Rev. D 2024, 110, 030001.

  • 118.

    Moiseev, A.A.; Ajello, M.; Buckley, J.H. et al. Compton-Pair Production Space Telescope (ComPair) for MeV Gamma-ray Astronomy. arXiv 2015, arXiv:1508.07349.

  • 119.

    Forot, M.; Laurent, P.; Grenier, I.A. Polarization of the Crab Pulsar and Nebula as Observed by the INTEGRAL/IBIS Telescope. ApJ 2008, 688, L29.

  • 120.

    Adriani, O.; Bonechi, L.; Bongi, M. et al. The magnetic spectrometer of the PAMELA satellite experiment. Nucl. Instr. Methods A 2003, 511, 72.

  • 121.

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; et al. The Alpha Magnetic Spectrometer Silicon Tracker: Performance results with protons and helium nuclei. Nucl. Instr. Methods A 2008, 593, 376.

  • 122.

    Odaka, H.; Ichinohe, Y.; Takeda, S. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors. Nucl. Instr. Methods A 2012, 695, 179.

  • 123.

    Bloser, P.F.; Legere, J.S.; Bancroft, C.M. et al. Balloon flight test of a Compton telescope based on scintillators with silicon photomultiplier readouts. Nucl. Instr. Methods A 2016, 812, 92.

  • 124.

    HEASARC Mission Page. COSI: Mission Characteristics. Available online: https://heasarc.gsfc.nasa.gov/docs/ heasarc/missions/cosi.html (accessed on 2 December 2025).

  • 125.

    Tomsick, J.A.; Boggs, S.E.; Zoglauer, A.; et al. The Compton Spectrometer and Imager (COSI). arXiv 2023, arXiv:2308.12362.

  • 126.

    NASA Science. COSI—Compton Spectrometer and Imager. Available online: https://science.nasa.gov/mission/cosi/ (accessed on 2 December 2025).

  • 127.

    COSI Project. Instrument Overview. 2025. Available online: https://cosi.ssl.berkeley.edu/instrument/ (accessed on 2 December 2025).

  • 128.

    Zoglauer, A.; Tomsick, J.; Kierans, C.; et al. COSI: Overview of Mission Concept, Profile, and Data Opera- tions. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 3–7 August 2025. https://doi.org/10.1117/12.3066254.

Share this article:
How to Cite
De Angelis, A. MeV-GeV Gamma-Ray Astrophysics in the Multimessenger Era. Physics and the Cosmos 2026, 1 (1), 5.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.