- 1.
He, R.; McAuley, J. VBPR: Visual bayesian personalized ranking from implicit feedback. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.
- 2.
Kang, W.C.; Fang, C.F.; Wang, Z.; et al. Visually-aware fashion recommendation and design with generative image models. In Proceedings of the IEEE International Conference on Data Mining, New Orleans, LA, USA, 18–21 November 2017; pp. 207–216.
- 3.
He, X.; Liao, L.; Zhang, H.; et al. Adversarial personalized ranking for recommendation. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 355–364.
- 4.
Yao, S.; Zhang, X.; He, X.; Chua, T.S. The robustness of latent collaborative retrieval. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Sheffield, UK, 29 July 2004; pp. 1121–1124.
- 5.
Lam, S.K.; Riedl, J. Shilling recommender systems for fun and profit. In Proceedings of the 13th international conference on World Wide Web, New York, NY, USA, 17–20 May 2004; pp. 393–402.
- 6.
Mehta, B.; Hofmann, T.; Fankhauser, P.; et al. Attack resistant collaborative filtering. In Proceedings of the 30th Annual In- ternational ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23–27 July 2007; pp. 75–82.
- 7.
Gu, T.; Dolan-Gavitt, B.; Garg, S. Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv 2017, arXiv:1708.06733.
- 8.
Liu, Y.; Ma, S.; Aafer, Y.; et al. Trojaning attack on neural networks. In Proceedings of the 25th Annual Network And Distributed System Security Symposium (NDSS 2018), San Diego, CA, USA, 18–21 February 2018.
- 9.
Chen, X.; Liu, C.; Li, B.; et al. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv 2017, arXiv:1712.05526.
- 10.
Liu, Y.; Ma, W.; Aafer, Y.; et al. Neural trojans. arXiv 2017, arXiv:1710.00942.
- 11.
Gunes, I.; Kaleli, C.; Bilge, A.; et al. Shilling attacks against recommender systems: A comprehensive survey. Artif. Intell. Rev. 2014, 42, 767–799.
- 12.
Liu, S.; Yu, S.; Li, H.; et al. A novel shilling attack on black-box recommendation systems for multiple targets. Neural Comput. Appl. 2025, 37, 3399–3417.
- 13.
Deldjoo, Y.; Noia, T.D.; Merra, F.A. A survey on adversarial recommender systems: from attack/defense strategies to generative adversarial networks. ACM Comput. Surv. 2021, 54, 1–38.
- 14.
Fan, W.; Wang, S.; Wei, X.; et al. Untargeted black-box attacks for social recommendations. arXiv 2023, arXiv:2311.07127.
- 15.
SharifRazavian, A.; Azizpour, H.; Sullivan, J.; et al. Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 806–813.
- 16.
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
- 17.
Babenko, A.; Slesarev, A.; Chigorin, A.; et al. Neural codes for image retrieval. In Proceedings of the Computer Vision– ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Part I 13, pp. 584–599.
- 18.
McAuley, J.; Targett, C.; Shi, Q.; et al. Image-based recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015; pp. 43–52.
- 19.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; et al. Bpr: Bayesian personalized ranking from implicit feedback. arXiv 2012, arXiv:1205.2618.
- 20.
Liu, Q.; Li, P.; Zhao, P.; et al. Adversarial attacks and defenses: An interpretation perspective. arXiv 2020, arXiv:2004.14116.
- 21.
Yuan, F.; Karatzoglou, A.; Arapakis, I.; et al. Adversarial training for graph convolutional networks on recommender systems. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 25–30 July 2000; pp. 1721–1724.
- 22.
Deldjoo, Y.; DiNoia, T.; Merra, F.A. A survey on adversarial recommender systems: From attack/defense strategies to generative adversarial networks. ACM Comput. Surv. 2020, 53, 1–38.
- 23.
Dai, J.; Chen, C.; Li, Y. A backdoor attack against lstm-based text classification systems. IEEE Access 2019, 7, 138872– 138878.
- 24.
Kurita, K.; Michel, P.; Neubig, G. Weight poisoning attacks on pre-trained models. arXiv 2020, arXiv:2004.06660.
- 25.
Koffas, S.; Xu, J.; Conti, M.; et al. Can you hear it? backdoor attacks via ultrasonic triggers. In Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning, Online, 16 May 2022; pp. 57–62.
- 26.
Zong, W.; Chow, Y.W.; Susilo, W.; et al. Trojanmodel: A practical trojan attack against automatic speech recognition systems. In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023; pp. 1667–1683.
- 27.
Kalantidis, Y.; Kennedy, L.; Li, J. Getting the look: clothing recognition and segmentation for automatic product suggestions in everyday photos. In Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, Dallas, TX, USA, 16–20 April 2013; pp. 105–112.
- 28.
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 2012, 25.
- 29.
He, K.; Zhang, X.; Ren, S.; et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
- 30.
Deng, J.; Dong, W.; Socher, R.; et al. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
- 31.
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
- 32.
Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7–12 June 2015; Boston, MA, USA; pp. 815–823.
- 33.
Lam, X.N.; Vu, T.; Le T.D.; et al. Addressing cold-start problem in recommendation systems. In Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication, New York, NY, USA, 31 January–1 February 2008; pp. 208–211.
- 34.
Schein, A.I.; Popescul, A.; Ungar, L.H.; et al. Methods and metrics for cold-start recommendations. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, 11–15 August 2002; pp. 253–260.
- 35.
Zuva, K.; Zuva, T. Evaluation of information retrieval systems. Int. J. Comput. Sci. Inf. Technol. 2012, 4, 35.
- 36.
Jegou, H.; Douze, M.; Schmid, C. Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 117–128.
- 37.
Bai, J.; Chen, B.; Li, Y.; et al. Targeted attack for deep hashing based retrieval. In Proceedings of the Computer Vision– ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Part I 16, pp. 618–634.
- 38.
Liu, Z.; Larson, M. Adversarial item promotion: Vulnerabilities at the core of top-n recommenders that use images to address cold start. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 12–23 April 2021; pp. 3590–3602.
- 39.
Di Noia, T.; Malitesta, D.; Merra, F.A. TAaMR: Targeted adversarial attack against multimedia recommender systems. In Proceedings of the 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Valencia, Spain, 29 June–2 July 2020; pp. 1–8.
- 40.
Paszke, A.; Gross, S.; Chintala, S.; et al.Automatic differentiation in pytorch. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS 2017), Long Beach, CA, USA, 4–9 December 2017
- 41.
Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
- 42.
Vander, Maaten, L.; Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 2008, 9, 2579–2605.
- 43.
Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218.
- 44.
Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; et al. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2022.
- 45.
He, X.; Liao, L.; Zhang, H.; et al. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.
- 46.
Chen, B.; Carvalho, W.; Baracaldo, N.; et al. Detecting backdoor attacks on deep neural networks by activation clustering. arXiv 2018, arXiv:1811.03728.
- 47.
Gao, Y.; Kim, C.; Kim, K.; et al. STRIP: A defence against trojan attacks on deep neural networks. In Proceedings of the Annual Computer Security Applications Conference, San Juan, PR, USA, 9–13 December 2019; pp. 113–125.
- 48.
Liu, K.; Dolan-Gavitt, B.; Garg, S. Fine-pruning: Defending against backdooring attacks on deep neural networks.
- 49.
In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses, 21st International Symposium on Research in Attacks, Intrusions, and Defenses, Heraklion, Greece, 10–12 September 2018; pp. 273–294. 49. Cao, B.; Jia, J.; Hu, C.; et al. Data-free backdoor attacks. arXiv 2024, arXiv:2412.06219.
- 50.
Li, Y.; Lyu, L.; He, D.; et al. Invisible backdoor attacks against deep neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16463–16472.
- 51.
Nguyen, A.T.; Tran, A. Wanet–imperceptible warping-based backdoor attack. In Proceedings of the International Confer- ence on Learning Representations (ICLR), Vienna, Austria, 4 May 2021.
- 52.
Shin, J.; Park, S. Unlearn to relearn backdoors: Deferred backdoor functionality attacks on deep learning models. arXiv 2024, arXiv:2411.14449.
- 53.
Yuan, Y.; Kong, R.; Xie, S.; et al. Patchbackdoor: Backdoor attack against deep neural networks without model modification. arXiv 2023, arXiv:2308.11822.
- 54.
Zhao, R.; Wang, X.; Liu, Q.; et al. Narcissus: A practical clean-label backdoor attack with limited information. In Proceedings of the 31st USENIX Security Symposium, Boston, MA, USA, 10–12 August 2022; pp. 1329–1346.