2511002369
  • Open Access
  • Article

PEDOT-Containing PEG Click-Hydrogel as In Situ Forming Subcutaneous Depot for Electrically-Controlled Insulin Delivery

  • Helena Muñoz-Galán 1,2,   
  • João C. Silva 3,4,   
  • Teresa Esteves 3,4,   
  • Oscar Bertran 5,   
  • Frederico Castelo Ferreira 3,4,   
  • Albert Espona-Noguera 2,6,   
  • Maria-Pau Ginebra 2,6,7,8,   
  • Carlos Alemán 1,2,8,*,   
  • Maria M. Pérez-Madrigal 1,2,*

Received: 15 Sep 2025 | Revised: 10 Nov 2025 | Accepted: 22 Nov 2025 | Published: 25 Nov 2025

Abstract

Managing diabetes is an exhausting and overwhelming task, which has a profound impact in the life of patients. Although insulin (INS) administration has been changing according to the technological developments (infusion sets operated by pumps), patients still have to deal with some inconvenient aspects. Within noninvasive alternatives, injectable in situ forming depots, which are low viscosity injectable polymeric solutions, form a semi-solid polymeric matrix upon injection. If INS is embedded within the matrix, it is feasible to achieve a sustained release, particularly relevant for patients that frequently require INS administration. In this work, we present a click-hydrogel, composed of polyethylene glycol (PEG), as a soft biointerface for INS delivery in which biocompatible poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) have been added to act as the conductive element to facilitate the controlled release of INS over an extended period of time through electrochemical stimulation. The suitable features of these electroactive PEG-based hydrogels have been characterized and include non-swellability, mechanical robustness, stability in an aqueous environment under physiological conditions, excellent cytocompatibility (86% ± 5% viability of L-929 fibroblasts) and straightforward fabrication, which validate their suitability as an injectable in situ forming depot for INS delivery. Moreover, the electrochemical control over INS release and detection has been verified first in cell culture media and, later, with an ex vivo skin mimic. Positive voltage (+0.6 V) increased INS release by ~70% relative to passive conditions, while negative stimulation (−0.6 V) suppressed its release by ~39%. Overall, our biomaterial represents a promising platform for diabetes management, offering precise temporal control via externally applied electrical inputs. 

References 

  • 1.
    Benjamin, E. Designing a Closed-Loop Automated Insulin Delivery System: Simplifying Life for People, Including Children, Living with Type 1 Diabetes. IEEE Pulse 2024, 15, 5–10. https://doi.org/10.1109/MPULS.2024.3443488.
  • 2.
    Diem, P.; Ducluzeau, P.H.; Scheen, A. The Discovery of Insulin. Diabetes Epidemiol. Manag. 2022, 5, 100049. https://doi.org/10.1016/j.deman.2021.100049.
  • 3.
    Sims, E.K.; Carr, A.L.J.; Oram, R.A.; et al. 100 Years of Insulin: Celebrating the Past, Present and Future of Diabetes Therapy. Nat. Med. 2021, 27, 1154–1164. https://doi.org/10.1038/s41591-021-01418-2.
  • 4.
    American Diabetes Association Professional Practice Committee. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. 1), S111–S125. https://doi.org/10.2337/dc24-S006.
  • 5.
    Zhang, X.; Chen, G.; Zhang, H.; et al. Bioinspired Oral Delivery Devices. Nat. Rev. Bioeng. 2023, 1, 208–225. https://doi.org/10.1038/s44222-022-00006-4.
  • 6.
    Lou, J.; Duan, H.; Qin, Q.; et al. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023, 15, 484. https://doi.org/10.3390/pharmaceutics15020484.
  • 7.
    Wang, T.; Shen, L.; Zhang, Y.; et al. “Oil-Soluble” Reversed Lipid Nanoparticles for Oral Insulin Delivery. J. Nanobiotechnol. 2020, 18, 98. https://doi.org/10.1186/s12951-020-00657-8.
  • 8.
    Li, H.; Shi, Y.; Ding, X.; et al. Recent Advances in Transdermal Insulin Delivery Technology: A Review. Int. J. Biol. Macromol. 2024, 274, 133452. https://doi.org/10.1016/j.ijbiomac.2024.133452.
  • 9.
    Niloy, K.K.; Lowe, T.L. Injectable systems for long-lasting insulin therapy. Adv. Drug Delivery Rev. 2023, 203, 115121. https://doi.org/10.1016/j.addr.2023.115121.
  • 10.
    Gill, H.S.; Denson, D.D.; Burris, B.A.; et al. Effect of Microneedle Design on Pain in Human Volunteers. Clin. J. Pain 2008, 24, 585–594. https://doi.org/10.1097/AJP.0b013e31816778f9.
  • 11.
    Li, C.; Wan, L.; Luo, J.; et al. Advances in Subcutaneous Delivery Systems of Biomacromolecular Agents for Diabetes Treatment. Int. J. Nanomed. 2021, 16, 1261–1280. https://doi.org/10.2147/IJN.S283416.
  • 12.
    Dhote, V. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System. Sci. Pharm. 2012, 80, 1–28. https://doi.org/10.3797/scipharm.1108-20.
  • 13.
    Bakshi, P.; Vora, D.; Hemmady, K.; et al. Iontophoretic Skin Delivery Systems: Success and Failures. Int. J. Pharm. 2020, 586, 119584. https://doi.org/10.1016/j.ijpharm.2020.119584.
  • 14.
    Park, S.-B.; Ko, J.; Kim, J.-U.; et al. Transdermal Insulin Delivery for Type 1 Diabetes Using Reverse Electrodialysis and Ionic Liquid Technology Based on a Size-Dependent Protein Delivery Study. ACS Appl. Nano Mater. 2025, 8, 6509–6518. https://doi.org/10.1021/acsanm.5c00177.
  • 15.
    Kim, K.-J.; Yun, Y.-H.; Je, J.-Y.; et al. Photothermally Controlled Drug Release of Naproxen-Incorporated Mungbean Starch/PVA Biomaterials Adding Melanin Nanoparticles. Process Biochem. 2023, 129, 268–280. https://doi.org/10.1016/j.procbio.2023.03.034.
  • 16.
    Ogura, M.; Paliwal, S.; Mitragotri, S. Low-Frequency Sonophoresis: Current Status and Future Prospects. Adv. Drug Deliv. Rev. 2008, 60, 1218–1223. https://doi.org/10.1016/j.addr.2008.03.006.
  • 17.
    Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; et al. Enhancement Strategies for Transdermal Drug Delivery Systems: Current Trends and Applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. https://doi.org/10.1007/s13346-021-00909-6.
  • 18.
    Cha, H.J.; He, C.; Zhao, H.; et al. Intercellular and Intracellular Functions of Ceramides and Their Metabolites in Skin (Review). Int. J. Mol. Med. 2016, 38, 16–22. https://doi.org/10.3892/ijmm.2016.2600.
  • 19.
    Mazhar, D.; Haq, N.U.; Zeeshan, M.; et al. Preparation, Characterization, and Pharmacokinetic Assessment of Metformin HCl Loaded Transfersomes Co-Equipped with Permeation Enhancer to Improve Drug Bioavailability via Transdermal Route. J. Drug Deliv. Sci. Technol. 2023, 84, 104448. https://doi.org/10.1016/j.jddst.2023.104448.
  • 20.
    Sidat, Z.; Marimuthu, T.; Kumar, P.; et al. Ionic Liquids as Potential and Synergistic Permeation Enhancers for Transdermal Drug Delivery. Pharmaceutics 2019, 11, 96. https://doi.org/10.3390/pharmaceutics11020096.
  • 21.
    Islam, M.R.; Uddin, S.; Chowdhury, M.R.; et al. Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS Appl. Mater. Interfaces 2021, 13, 42461–42472. https://doi.org/10.1021/acsami.1c11533.
  • 22.
    Zou, J.-J.; Le, J.-Q.; Zhang, B.-C.; et al. Accelerating Transdermal Delivery of Insulin by Ginsenoside Nanoparticles with Unique Permeability. Int. J. Pharm. 2021, 605, 120784. https://doi.org/10.1016/j.ijpharm.2021.120784.
  • 23.
    Sugumar, V.; Hayyan, M.; Madhavan, P.; et al. Current Development of Chemical Penetration Enhancers for Transdermal Insulin Delivery. Biomedicines 2023, 11, 664. https://doi.org/10.3390/biomedicines11030664.
  • 24.
    Nabila, F.H.; Islam, R.; Yamin, L.; et al. Transdermal Insulin Delivery Using Ionic Liquid-Mediated Nanovesicles for Diabetes Treatment. ACS Biomater. Sci. Eng. 2025, 11, 402–414. https://doi.org/10.1021/acsbiomaterials.4c02000.
  • 25.
    Daly, A.B.; Boughton, C.K.; Nwokolo, M.; et al. Fully Automated Closed-Loop Insulin Delivery in Adults with Type 2 Diabetes: An Open-Label, Single-Center, Randomized Crossover Trial. Nat. Med. 2023, 29, 203–208.
  • 26.
    Sabbagh, F.; Muhamad, I.I.; Niazmand, R.; et al. Recent Progress in Polymeric Non-Invasive Insulin Delivery. Int. J. Biol. Macromol. 2022, 203, 222–243. https://doi.org/10.1016/j.ijbiomac.2022.01.134.
  • 27.
    Vargas, E.; Nandhakumar, P.; Ding, S.; et al. Insulin Detection in Diabetes Mellitus: Challenges and New Prospects. Nat. Rev. Endocrinol. 2023, 19, 487–495. https://doi.org/10.1038/s41574-023-00842-3.
  • 28.
    Zhao, P.; Liu, Y.; Xiao, L.; et al. Electrochemical Deposition to Construct a Nature Inspired Multilayer Chitosan/Layered Double Hydroxides Hybrid Gel for Stimuli Responsive Release of Protein. J. Mater. Chem. B 2015, 3, 7577–7584. https://doi.org/10.1039/C5TB01056J.
  • 29.
    Zhao, X.; Xue, W.; Ding, W.; et al. A Novel Injectable Sodium Alginate/Chitosan/Sulfated Bacterial Cellulose Hydrogel as Biohybrid Artificial Pancreas for Real-Time Glycaemic Regulation. Carbohydr. Polym. 2025, 354, 123323. https://doi.org/10.1016/j.carbpol.2025.123323.
  • 30.
    Ali, A.; Saroj, S.; Saha, S.; et al. Glucose-Responsive Chitosan Nanoparticle/Poly(Vinyl Alcohol) Hydrogels for Sustained Insulin Release In Vivo. ACS Appl. Mater. Interfaces 2023, 15, 32240–32250. https://doi.org/10.1021/acsami.3c05031.
  • 31.
    Wang, Y.; Yu, H.; Wang, L.; et al. Microneedles with Two-Stage Glucose-Sensitive Controlled Release for Long-Term Insulin Delivery. ACS Biomater. Sci. Eng. 2023, 9, 2534–2544. https://doi.org/10.1021/acsbiomaterials.3c00137.
  • 32.
    Mallawarachchi, S.; Mahadevan, A.; Gejji, V.; et al. Mechanics of Controlled Release of Insulin Entrapped in Polyacrylic Acid Gels via Variable Electrical Stimuli. Drug Deliv. Transl. Res. 2019, 9, 783–794. https://doi.org/10.1007/s13346-019-00620-7.
  • 33.
    Muñoz-Galán, H.; Molina, B.G.; Bertran, O.; et al. Combining Rapid and Sustained Insulin Release from Conducting Hydrogels for Glycemic Control. Eur. Polym. J. 2022, 181, 111670. https://doi.org/10.1016/j.eurpolymj.2022.111670.
  • 34.
    Muñoz-Galán, H.; Enshaei, H.; Silva, J.C.; et al. Electroresponsive Thiol–Yne Click-Hydrogels for Insulin Smart Delivery: Tackling Sustained Release and Leakage Control. ACS Appl. Polym. Mater. 2024, 6, 8093–8104. https://doi.org/10.1021/acsapm.4c00911.
  • 35.
    Macdougall, L.J.; Pérez-Madrigal, M.M.; Arno, M.C.; et al. Nonswelling Thiol–Yne Cross-Linked Hydrogel Materials as Cytocompatible Soft Tissue Scaffolds. Biomacromolecules 2018, 19, 1378–1388. https://doi.org/10.1021/acs.biomac.7b01204.
  • 36.
    Resina, L.; El Hauadi, K.; Sans, J.; et al. Electroresponsive and PH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release. Biomacromolecules 2023, 24, 1432–1444. https://doi.org/10.1021/acs.biomac.2c01442.
  • 37.
    Phillips, J.C.; Braun, R.; Wang, W.; et al. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. https://doi.org/10.1002/jcc.20289.
  • 38.
    Muñoz-Galán, H.; Marzoa, A.; Bertran, O.; et al. Optomechanical, Computer Simulation, and Nanoindentation Studies on Tunable Click Hydrogels: Microscopic Insights. ACS Appl. Polym. Mater. 2024, 6, 12176–12185. https://doi.org/10.1021/acsapm.4c02250.
  • 39.
    UNE-EN ISO 10993-5:2009; Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. Aenor: Madrid, Spain, 2009.
  • 40.
    Baruah, S.; Mohanta, D.; Betty, C.A. Composite PEDOT-PSS Based Highly Sensitive Electrochemical Sensors for Sensing Glucose from Human Saliva. Microchem. J. 2024, 206, 111411. https://doi.org/10.1016/j.microc.2024.111411.
  • 41.
    Alemán, C.; Muñoz-Galán, H.; Pérez-Madrigal, M.M. Recent Advances in Electrically Stimulated Insulin Delivery Systems. ACS Omega 2025, 10, 40750–40768. https://doi.org/10.1021/acsomega.5c06147.
Share this article:
How to Cite
Muñoz-Galán, H.; Silva, J. C.; Esteves, T.; Bertran, O.; Ferreira, F. C.; Espona-Noguera, A.; Ginebra, M.-P.; Alemán, C.; Pérez-Madrigal, M. M. PEDOT-Containing PEG Click-Hydrogel as In Situ Forming Subcutaneous Depot for Electrically-Controlled Insulin Delivery. Polymer Design for Advanced Applications 2025, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.