- 1.
Benjamin, E. Designing a Closed-Loop Automated Insulin Delivery System: Simplifying Life for People, Including Children, Living with Type 1 Diabetes. IEEE Pulse 2024, 15, 5–10. https://doi.org/10.1109/MPULS.2024.3443488.
- 2.
Diem, P.; Ducluzeau, P.H.; Scheen, A. The Discovery of Insulin. Diabetes Epidemiol. Manag. 2022, 5, 100049. https://doi.org/10.1016/j.deman.2021.100049.
- 3.
Sims, E.K.; Carr, A.L.J.; Oram, R.A.; et al. 100 Years of Insulin: Celebrating the Past, Present and Future of Diabetes Therapy. Nat. Med. 2021, 27, 1154–1164. https://doi.org/10.1038/s41591-021-01418-2.
- 4.
American Diabetes Association Professional Practice Committee. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. 1), S111–S125. https://doi.org/10.2337/dc24-S006.
- 5.
Zhang, X.; Chen, G.; Zhang, H.; et al. Bioinspired Oral Delivery Devices. Nat. Rev. Bioeng. 2023, 1, 208–225. https://doi.org/10.1038/s44222-022-00006-4.
- 6.
Lou, J.; Duan, H.; Qin, Q.; et al. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023, 15, 484. https://doi.org/10.3390/pharmaceutics15020484.
- 7.
Wang, T.; Shen, L.; Zhang, Y.; et al. “Oil-Soluble” Reversed Lipid Nanoparticles for Oral Insulin Delivery. J. Nanobiotechnol. 2020, 18, 98. https://doi.org/10.1186/s12951-020-00657-8.
- 8.
Li, H.; Shi, Y.; Ding, X.; et al. Recent Advances in Transdermal Insulin Delivery Technology: A Review. Int. J. Biol. Macromol. 2024, 274, 133452. https://doi.org/10.1016/j.ijbiomac.2024.133452.
- 9.
Niloy, K.K.; Lowe, T.L. Injectable systems for long-lasting insulin therapy. Adv. Drug Delivery Rev. 2023, 203, 115121. https://doi.org/10.1016/j.addr.2023.115121.
- 10.
Gill, H.S.; Denson, D.D.; Burris, B.A.; et al. Effect of Microneedle Design on Pain in Human Volunteers. Clin. J. Pain 2008, 24, 585–594. https://doi.org/10.1097/AJP.0b013e31816778f9.
- 11.
Li, C.; Wan, L.; Luo, J.; et al. Advances in Subcutaneous Delivery Systems of Biomacromolecular Agents for Diabetes Treatment. Int. J. Nanomed. 2021, 16, 1261–1280. https://doi.org/10.2147/IJN.S283416.
- 12.
Dhote, V. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System. Sci. Pharm. 2012, 80, 1–28. https://doi.org/10.3797/scipharm.1108-20.
- 13.
Bakshi, P.; Vora, D.; Hemmady, K.; et al. Iontophoretic Skin Delivery Systems: Success and Failures. Int. J. Pharm. 2020, 586, 119584. https://doi.org/10.1016/j.ijpharm.2020.119584.
- 14.
Park, S.-B.; Ko, J.; Kim, J.-U.; et al. Transdermal Insulin Delivery for Type 1 Diabetes Using Reverse Electrodialysis and Ionic Liquid Technology Based on a Size-Dependent Protein Delivery Study. ACS Appl. Nano Mater. 2025, 8, 6509–6518. https://doi.org/10.1021/acsanm.5c00177.
- 15.
Kim, K.-J.; Yun, Y.-H.; Je, J.-Y.; et al. Photothermally Controlled Drug Release of Naproxen-Incorporated Mungbean Starch/PVA Biomaterials Adding Melanin Nanoparticles. Process Biochem. 2023, 129, 268–280. https://doi.org/10.1016/j.procbio.2023.03.034.
- 16.
Ogura, M.; Paliwal, S.; Mitragotri, S. Low-Frequency Sonophoresis: Current Status and Future Prospects. Adv. Drug Deliv. Rev. 2008, 60, 1218–1223. https://doi.org/10.1016/j.addr.2008.03.006.
- 17.
Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; et al. Enhancement Strategies for Transdermal Drug Delivery Systems: Current Trends and Applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. https://doi.org/10.1007/s13346-021-00909-6.
- 18.
Cha, H.J.; He, C.; Zhao, H.; et al. Intercellular and Intracellular Functions of Ceramides and Their Metabolites in Skin (Review). Int. J. Mol. Med. 2016, 38, 16–22. https://doi.org/10.3892/ijmm.2016.2600.
- 19.
Mazhar, D.; Haq, N.U.; Zeeshan, M.; et al. Preparation, Characterization, and Pharmacokinetic Assessment of Metformin HCl Loaded Transfersomes Co-Equipped with Permeation Enhancer to Improve Drug Bioavailability via Transdermal Route. J. Drug Deliv. Sci. Technol. 2023, 84, 104448. https://doi.org/10.1016/j.jddst.2023.104448.
- 20.
Sidat, Z.; Marimuthu, T.; Kumar, P.; et al. Ionic Liquids as Potential and Synergistic Permeation Enhancers for Transdermal Drug Delivery. Pharmaceutics 2019, 11, 96. https://doi.org/10.3390/pharmaceutics11020096.
- 21.
Islam, M.R.; Uddin, S.; Chowdhury, M.R.; et al. Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS Appl. Mater. Interfaces 2021, 13, 42461–42472. https://doi.org/10.1021/acsami.1c11533.
- 22.
Zou, J.-J.; Le, J.-Q.; Zhang, B.-C.; et al. Accelerating Transdermal Delivery of Insulin by Ginsenoside Nanoparticles with Unique Permeability. Int. J. Pharm. 2021, 605, 120784. https://doi.org/10.1016/j.ijpharm.2021.120784.
- 23.
Sugumar, V.; Hayyan, M.; Madhavan, P.; et al. Current Development of Chemical Penetration Enhancers for Transdermal Insulin Delivery. Biomedicines 2023, 11, 664. https://doi.org/10.3390/biomedicines11030664.
- 24.
Nabila, F.H.; Islam, R.; Yamin, L.; et al. Transdermal Insulin Delivery Using Ionic Liquid-Mediated Nanovesicles for Diabetes Treatment. ACS Biomater. Sci. Eng. 2025, 11, 402–414. https://doi.org/10.1021/acsbiomaterials.4c02000.
- 25.
Daly, A.B.; Boughton, C.K.; Nwokolo, M.; et al. Fully Automated Closed-Loop Insulin Delivery in Adults with Type 2 Diabetes: An Open-Label, Single-Center, Randomized Crossover Trial. Nat. Med. 2023, 29, 203–208.
- 26.
Sabbagh, F.; Muhamad, I.I.; Niazmand, R.; et al. Recent Progress in Polymeric Non-Invasive Insulin Delivery. Int. J. Biol. Macromol. 2022, 203, 222–243. https://doi.org/10.1016/j.ijbiomac.2022.01.134.
- 27.
Vargas, E.; Nandhakumar, P.; Ding, S.; et al. Insulin Detection in Diabetes Mellitus: Challenges and New Prospects. Nat. Rev. Endocrinol. 2023, 19, 487–495. https://doi.org/10.1038/s41574-023-00842-3.
- 28.
Zhao, P.; Liu, Y.; Xiao, L.; et al. Electrochemical Deposition to Construct a Nature Inspired Multilayer Chitosan/Layered Double Hydroxides Hybrid Gel for Stimuli Responsive Release of Protein. J. Mater. Chem. B 2015, 3, 7577–7584. https://doi.org/10.1039/C5TB01056J.
- 29.
Zhao, X.; Xue, W.; Ding, W.; et al. A Novel Injectable Sodium Alginate/Chitosan/Sulfated Bacterial Cellulose Hydrogel as Biohybrid Artificial Pancreas for Real-Time Glycaemic Regulation. Carbohydr. Polym. 2025, 354, 123323. https://doi.org/10.1016/j.carbpol.2025.123323.
- 30.
Ali, A.; Saroj, S.; Saha, S.; et al. Glucose-Responsive Chitosan Nanoparticle/Poly(Vinyl Alcohol) Hydrogels for Sustained Insulin Release In Vivo. ACS Appl. Mater. Interfaces 2023, 15, 32240–32250. https://doi.org/10.1021/acsami.3c05031.
- 31.
Wang, Y.; Yu, H.; Wang, L.; et al. Microneedles with Two-Stage Glucose-Sensitive Controlled Release for Long-Term Insulin Delivery. ACS Biomater. Sci. Eng. 2023, 9, 2534–2544. https://doi.org/10.1021/acsbiomaterials.3c00137.
- 32.
Mallawarachchi, S.; Mahadevan, A.; Gejji, V.; et al. Mechanics of Controlled Release of Insulin Entrapped in Polyacrylic Acid Gels via Variable Electrical Stimuli. Drug Deliv. Transl. Res. 2019, 9, 783–794. https://doi.org/10.1007/s13346-019-00620-7.
- 33.
Muñoz-Galán, H.; Molina, B.G.; Bertran, O.; et al. Combining Rapid and Sustained Insulin Release from Conducting Hydrogels for Glycemic Control. Eur. Polym. J. 2022, 181, 111670. https://doi.org/10.1016/j.eurpolymj.2022.111670.
- 34.
Muñoz-Galán, H.; Enshaei, H.; Silva, J.C.; et al. Electroresponsive Thiol–Yne Click-Hydrogels for Insulin Smart Delivery: Tackling Sustained Release and Leakage Control. ACS Appl. Polym. Mater. 2024, 6, 8093–8104. https://doi.org/10.1021/acsapm.4c00911.
- 35.
Macdougall, L.J.; Pérez-Madrigal, M.M.; Arno, M.C.; et al. Nonswelling Thiol–Yne Cross-Linked Hydrogel Materials as Cytocompatible Soft Tissue Scaffolds. Biomacromolecules 2018, 19, 1378–1388. https://doi.org/10.1021/acs.biomac.7b01204.
- 36.
Resina, L.; El Hauadi, K.; Sans, J.; et al. Electroresponsive and PH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release. Biomacromolecules 2023, 24, 1432–1444. https://doi.org/10.1021/acs.biomac.2c01442.
- 37.
Phillips, J.C.; Braun, R.; Wang, W.; et al. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. https://doi.org/10.1002/jcc.20289.
- 38.
Muñoz-Galán, H.; Marzoa, A.; Bertran, O.; et al. Optomechanical, Computer Simulation, and Nanoindentation Studies on Tunable Click Hydrogels: Microscopic Insights. ACS Appl. Polym. Mater. 2024, 6, 12176–12185. https://doi.org/10.1021/acsapm.4c02250.
- 39.
UNE-EN ISO 10993-5:2009; Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. Aenor: Madrid, Spain, 2009.
- 40.
Baruah, S.; Mohanta, D.; Betty, C.A. Composite PEDOT-PSS Based Highly Sensitive Electrochemical Sensors for Sensing Glucose from Human Saliva. Microchem. J. 2024, 206, 111411. https://doi.org/10.1016/j.microc.2024.111411.
- 41.
Alemán, C.; Muñoz-Galán, H.; Pérez-Madrigal, M.M. Recent Advances in Electrically Stimulated Insulin Delivery Systems. ACS Omega 2025, 10, 40750–40768. https://doi.org/10.1021/acsomega.5c06147.