- 1.
Rincker, K.; Nelson, R.; Specht, J.; et al. Genetic Improvement of U.S. Soybean in Maturity Groups II, III, and IV. Crop Sci. 2014, 54, 1419–1432. https://doi.org/10.2135/cropsci2013.10.0665.
- 2.
Karmakar, P.G.; Bhatnagar, P.S. Genetic improvement of soybean varieties released in India from 1969 to 1993. Euphytica 1996, 90, 95–103. https://doi.org/10.1007/bf00025165.
- 3.
Bell, M.A.; Fischer, R.A.; Byerlee, D.; et al. Genetic and agronomic contributions to yield gains: A case study for wheat. F. Crop. Res. 1995, 44, 55–65. https://doi.org/10.1016/0378-4290(95)00049-6.
- 4.
Minagri. Ministerio de Agricultura, Ganadería y Pesca [WWW Document]. 2024. Available online: https://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones (accessed on 1 April 2024).
- 5.
Santos, D.J.; Ferrari, B.; Fresoli, D.; et al. Ganancia genética en soja en Argentina entre 1980 y 2000. Congr. Mercosoja 2006, 26, 196.
- 6.
Di Mauro, G.; Parra, G.; Santos, D.J.; et al. Defining soybean maturity group options for contrasting weather scenarios in the American Southern Cone. F. Crop. Res. 2022, 287, 108676. https://doi.org/10.1016/j.fcr.2022.108676.
- 7.
Abdala, L.J.; Otegui, M.E.; Di Mauro, G. On-farm soybean genetic progress and yield stability during the early 21st century: A case study of a commercial breeding program in Argentina and Brazil. F. Crop. Res. 2024, 308, 109277. https://doi.org/10.1016/j.fcr.2024.109277.
- 8.
de Felipe, M.; Gerde, J.A.; Rotundo, J.L. Soybean genetic gain in maturity groups III to V in Argentina from 1980 to 2015. Crop Sci. 2016, 56, 3066–3077. https://doi.org/10.2135/cropsci2016.04.0214.
- 9.
de Felipe, M.; Borrás, L.; Truong, S.K.; et al. Physiological processes associated with soybean genetic progress in Argentina. Agrosystems, Geosci. Environ. 2020, 3, e20041. https://doi.org/10.1002/agg2.20041.
- 10.
de Felipe, M.; Santachiara, G.; Borrás, L.; et al. Soybean genetic progress of maturity group IV cultivars under well-watered and drought stress conditions in central Argentina between 1984 and 2014. F. Crop. Res. 2025, 328, 109903. https://doi.org/10.1016/j.fcr.2025.109903.
- 11.
Fehr, W.R.; Caviness, C.E. Stages of soybean development. Spec. Rep. 1977, 87.
- 12.
Kumudini, S.; Hume, D.J.; Chu, G. Genetic improvement in short season soybeans: I. Dry matter accumulation, partitioning, and leaf area duration. Crop Sci. 2001, 41, 391–398. https://doi.org/10.2135/cropsci2001.412391x.
- 13.
Morrison, M.J.; Voldeng, H.D.; Cober, E.R. Physiological Changes from 58 Years of Genetic Improvement of Short-Season Soybean Cultivars in Canada. Agron. J. 1999, 91, 685–689. https://doi.org/10.2134/agronj1999.914685x.
- 14.
IPCC, 2014. Cambio climático 2014: Impactos, adaptación y vulnerabilidadd – Resumen para responsables de políticas. Contrib. del Grup. Trab. II al Quinto Inf. Evaluación del Grup. Intergub. Expert. sobre el Cambio Climático 34. https://doi.org/10.1186/1749-7922-7-4
- 15.
Feng, Y.Y.; Richards, R.A.; Jin, Y.; et al. Yield and water-use related traits in landrace and new soybean cultivars in arid and semi-arid areas of China. F. Crop. Res. 2022, 283, 108559. https://doi.org/10.1016/j.fcr.2022.108559.
- 16.
Curin, F.; Severini, A.D.; González, F.G.; et al. Water and radiation use efficiencies in maize: Breeding effects on single-cross Argentine hybrids released between 1980 and 2012. F. Crop. Res. 2020, 246, 107683. https://doi.org/10.1016/j.fcr.2019.107683.
- 17.
Reyes, A.; Messina, C.D.; Hammer, G.L.; et al. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt. J. Exp. Bot. 2015, 66, 7339–7346. https://doi.org/10.1093/jxb/erv430.
- 18.
Messina, C.; McDonald, D.; Poffenbarger, H.; et al. Reproductive resilience but not root architecture underpins yield improvement under drought in maize. J. Exp. Bot. 2021, 72, 5235–5245. https://doi.org/10.1093/jxb/erab231.
- 19.
Di Mauro, G.; Andrade, J.F.; Rotili, D.H.; et al. Transformations in Argentinean soybean systems: Recent changes, challenges, and opportunities. Crop Environ. 2025, 4, 130–141. https://doi.org/10.1016/j.crope.2025.04.001.
- 20.
Dardanelli, J.; Suero, E.; Andrade, F.; et al. Water deficits during reproductive growth of soybeans. II. Water use and water deficiency indicators. Agronomie 1991, 11, 747–756. https://doi.org/10.1051/agro:19910905.
- 21.
Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; et al. InfoStat. 2020. Software Estadistico, Version 2020I, Facultad de Ciencia Agropecuarias, Universidad Nacional de Córdoba, Marrone St. 749, Ciudad de Córdoba, Córdoba X5000, Argentina.
- 22.
Donmez, E.; Sears, R.G.; Shroyer, J.P.; et al. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Sci. 2001, 41, 1412–1419. https://doi.org/10.2135/cropsci2001.4151412x.
- 23.
GraphPad Prism 9, 2021. Version 9.0.2 (161), GraphPad Software: Boston, MA, USA.
- 24.
Aramburu Merlos, F.; Monzon, J.P.; Mercau, J.L.; et al. Potential for crop production increase in Argentina through closure of existing yield gaps. F. Crop. Res. 2015, 184, 145–154. https://doi.org/10.1016/j.fcr.2015.10.001.
- 25.
Di Mauro, G.; Borrás, L.; Rugeroni, P.; et al. Exploring soybean management options for environments with contrasting water availability. J. Agron. Crop Sci. 2019, 205, 274–282. https://doi.org/10.1111/jac.12321.
- 26.
Rao, M.; Mullinix, B.; Rangappa, M.; et al. Genotype x environment interactions and yield stability. Agron. J. 2002, 94, 72–80.
- 27.
Anda, A.; Soós, G.; Menyhárt, L.; et al. Yield features of two soybean varieties under different water supplies and field conditions. F. Crop. Res. 2020, 245, 107673. https://doi.org/10.1016/j.fcr.2019.107673.
- 28.
Andriani, J.M.; Andrade, F.H.; Suero, E.E.; et al. Water deficits during reproductive growth of soybeans. l. Their effects on dry matter accumulation, seed yield and its components. Agronomie 1991, 11, 737–746.
- 29.
Karam, F.; Masaad, R.; Sfeir, T.; et al. Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agric. Water Manag. 2005, 75, 226–244. https://doi.org/10.1016/j.agwat.2004.12.015.
- 30.
Sinclair, T.R. Water and nitrogen limitations in soybean grain production I. Model development. F. Crop. Res. 1986, 15, 125–141. https://doi.org/10.1016/0378-4290(86)90082-1.
- 31.
Lopez, M.A.; Freitas Moreira, F.; Rainey, K.M. Genetic Relationships Among Physiological Processes, Phenology, and Grain Yield Offer an Insight Into the Development of New Cultivars in Soybean (Glycine max L. Merr). Front. Plant Sci. 2021, 12, 651241. https://doi.org/10.3389/fpls.2021.651241.
- 32.
Edwards, J.T.; Purcell, L.C. Soybean yield and biomass responses to increasing plant population among diverse maturity groups: I. Agronomic characteristics. Crop Sci. 2005, 45, 1770–1777. https://doi.org/10.2135/cropsci2004.0564.
- 33.
Salmerón, M.; Gbur, E.E.; Bourland, F.M.; et al. Soybean maturity group choices for maximizing radiation interception across planting dates in the Midsouth United States. Agron. J. 2015, 107, 2132–2142. https://doi.org/10.2134/agronj15.0091.
- 34.
Santachiara, G.; Borrás, L.; Rotundo, J.L. Physiological processes leading to similar yield in contrasting soybean maturity groups. Agron. J. 2017, 109, 158–167. https://doi.org/10.2134/agronj2016.04.0198.
- 35.
Sakoda, K.; Tanaka, Y.; Long, S.P.; et al. Genetic and physiological diversity in the leaf photosynthetic capacity of soybean. Crop Sci. 2016, 56, 2731–2741. https://doi.org/10.2135/cropsci2016.02.0122.
- 36.
Feng, L.; Raza, M.A.; Li, Z.; et al. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of Soybean. Front. Plant Sci. 2019, 9, 1952. https://doi.org/10.3389/fpls.2018.01952.
- 37.
Haile, F.J.; Higley, L.G.; Specht, J.E.; et al. Soybean leaf morphology and defoliation tolerance. Agron. J. 1998, 90, 353–362. https://doi.org/10.2134/agronj1998.00021962009000030007x.
- 38.
Sadok, W.; Sinclair, T.R. Genetic variability of transpiration response to vapor pressure deficit among soybean cultivars. Crop Sci. 2009, 49, 955–960. https://doi.org/10.2135/cropsci2008.09.0560.
- 39.
Hufstetler, E.V.; Boerma, H.R.; Carter, T.E.; et al. Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci. 2007, 47, 25–35. https://doi.org/10.2135/cropsci2006.04.0243.
- 40.
He, J.; Du, Y.L.; Wang, T.; et al. Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agric. Water Manag. 2017, 179, 236–245. https://doi.org/10.1016/j.agwat.2016.07.008.
- 41.
Sinclair, T.R. Effective water use required for improving crop growth rather than transpiration efficiency. Front. Plant Sci. 2018, 9, 1442. https://doi.org/10.3389/fpls.2018.01442.
- 42.
Mayers, J.D.; Lawn, R.J.; Byth, D.E. Adaptation of soybean (Glycine max (L.) Merrill) to the dry season of the tropics. II. Effects of genotype and environment on biomass and seed yield. Aust. J. Agric. Res. 1991, 42, 517–530. https://doi.org/10.1071/AR9910517.
- 43.
Board, J.E.; Maricherla, D. Explanations for decreased harvest index with increased yield in soybean. Crop Sci. 2008, 48, 1995–2002. https://doi.org/10.2135/cropsci2008.02.0098.
- 44.
Pedersen, P.; Lauer, J.G. Response of soybean yield components to management system and planting date. Agron. J. 2004, 96, 1372–1381. https://doi.org/10.2134/agronj2004.1372.
- 45.
Board, J.E.; Kahlon, C.S. Soybean Yield Formation: What Controls It and How It Can Be Improved. Soybean Physiol. Biochem. 2011, 1–36.
- 46.
Kahlon, C.S.; Board, J.E.; Kang, M.S. An analysis of yield component changes for New vs. Old soybean cultivars. Agron. J. 2011, 103, 13–22. https://doi.org/10.2134/agronj2010.0300.
- 47.
Borrás, L.; Slafer, G.A.; Otegui, M.E. Seed dry weight response to source-sink manipulations in wheat, maize and soybean: A quantitative reappraisal. F. Crop. Res. 2004, 86, 131–146. https://doi.org/10.1016/j.fcr.2003.08.002.
- 48.
Calviño, P.A.; Sadras, V.O.; Andrade, F.H. Development, growth and yield of late-sown soybean in the southern Pampas. Eur. J. Agron. 2003, 19, 265–275. https://doi.org/10.1016/S1161-0301(02)00050-3.
- 49.
Ray, D.K.; Mueller, N.D.; West, P.C.; et al. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. https://doi.org/10.1371/journal.pone.0066428.
- 50.
Milioli, A.S.; Meira, D.; Panho, M.C.; et al. Genetic improvement of soybeans in Brazil: South and Midwest regions. Crop Sci. 2022, 62, 2276–2293. https://doi.org/10.1002/csc2.20820.
- 51.
Lange, C.E.; Federizzi, L.C. Estimation of soybean genetic progress in the south of Brazil using multi-environmental yield trials. Sci. Agric. 2009, 66, 309–316. https://doi.org/10.1590/s0103-90162009000300005.
- 52.
Austin, R.B. Augmenting yield-based selection. In Plant Breeding; Springer: Dordrecht, The Netherlands, 1993; pp. 391–405. https://doi.org/10.1007/978-94-011-1524-7_24.
- 53.
Trigo, E.J. Fifteen Years of Genetically Modified Crops in Argentine Agriculture. ArgenBio 2011, 11, 1–49.
- 54.
Elmore, R.W.; Roeth, F.W.; Nelson, L.A.; et al. Glyphosate-resistant soybean cultivar yields compared with sister lines. Agron. J. 2001, 93, 408–412. https://doi.org/10.2134/agronj2001.932408x.
- 55.
Benbrook, C. Evidence of the Magnitude and Consequences of the Roundup Ready Soybean Yield Drag from University-Based Varietal Trials in 1998; Ag BioTech InfoNet Technical Paper Number 1; Benbrook Consulting Services: Sandpoint, ID, USA, 1999.
- 56.
Carpenter, J.E. Comparing Roundup Ready and Conventional Soybean Yields 1999; National Center for Food and Agricultural Policy/Rockefeller Foundation: Washington, DC, USA, 2001.
- 57.
Oplinger, E.S.; Martinka, M.J.; Schmitz, K.A. 1998. performance of transgenetic soybeans—Northern US. In Proceedings of the 28th Soybean Seed Research Conference 1997–1999, Chicago, IL, USA, 9–10 December 1998.
- 58.
Di Mauro, G., Schwalbert, R., Prado, S.A., Saks, M.G., Ramirez, H., Costanzi, J., Parra, G. Exploring practical nutrition options for maximizing seed yield and protein concentration in soybean. Eur. J. Agron. 2023, 146, 126794. https://doi.org/10.1016/j.eja.2023.126794
- 59.
Brookes, G. The farm level economic and environmental contribution of Intacta soybeans in South America: The first five years. GM Crop. Food 2018, 9, 140–151. https://doi.org/10.1080/21645698.2018.1479560.
- 60.
Umburanas, R.C.; Kawakami, J.; Ainsworth, E.A.; et al. Changes in soybean cultivars released over the past 50 years in southern Brazil. Sci. Rep. 2022, 12, 1–14. https://doi.org/10.1038/s41598-021-04043-8.
- 61.
Chan, R.L.; Trucco, F.; Otegui, M.E. Why are second-generation transgenic crops not yet available in the market? J. Exp. Bot. 2020, 71, 6876–6880. https://doi.org/10.1093/jxb/eraa412.
- 62.
Cui, S.Y.; Yu, D.Y. Estimates of relative contribution of biomass, harvest index and yield components to soybean yield improvements in China. Plant Breed. 2005, 124, 473–476. https://doi.org/10.1111/j.1439-0523.2005.01112.x.
- 63.
De Bruin, J.L.; Pedersen, P. Growth, yield, and yield component changes among old and new soybean cultivars. Agron. J. 2009, 101, 124–130. https://doi.org/10.2134/agronj2008.0187.
- 64.
Jin, J.; Liu, X.; Wang, G.; et al. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. F. Crop. Res. 2010, 115, 116–123. https://doi.org/10.1016/j.fcr.2009.10.016.
- 65.
Kumagai, E.; Yabiku, T.; Hasegawa, T. A strong negative trade-off between seed number and 100-seed weight stalls genetic yield gains in northern Japanese soybean cultivars in comparison with Midwestern US cultivars. F. Crop. Res. 2022, 283, 108539. https://doi.org/10.1016/j.fcr.2022.108539.
- 66.
Yang, M.H.; Jahufer, M.Z.Z.; He, J.; Dong, R.; Hofmann, R.; Siddique, K.H.M.; Li, F.M. Effect of traditional soybean breeding on water use strategy in arid and semi-arid areas. Eur. J. Agron. 2020, 120, 126128. https://doi.org/10.1016/j.eja.2020.126128Y
- 67.
Balboa, G.R.; Sadras, V.O.; Ciampitti, I.A. Shifts in soybean yield, nutrient uptake, and nutrient stoichiometry: A historical synthesis-analysis. Crop Sci. 2018, 58, 43–54. https://doi.org/10.2135/cropsci2017.06.0349.
- 68.
Specht, J.E.; Diers, B.W.; Nelson, R.L.; de Toledo, J.F.F.; Torrion, J.A.; Grassini, P. Soybean, In Yield Gains in Major U.S. Field Crops; John Wiley & Sons, Inc.: New York, NY, USA, 2015; Volume 33, pp. 311–355. https://doi.org/10.2135/cssaspecpub33.c12
- 69.
Grassini, P.; Cafaro La Menza, N.; Rattalino Edreira, J.I.; Monzón, J.P.; Tenorio, F.A.; Specht, J.E. Soybean, In Crop Physiology Case Histories for Major Crops. Academic Press: Cambridge, MA, USA, 2021; pp. 282–319. https://doi.org/10.1016/B978-0-12-819194-1.00008-6