- 1.
Morales, F. What Would It Take to Continue Feeding the World’s Population? From Family Farming to a New, More Plural, Diverse and Technological Model of Producing Foods. Physiol. Manag. Sustain. Crops 2025, 1, 2.
- 2.
Maurino, V.G. Next generation technologies for protein structure determination: Challenges, and breakthroughs in plant biology applications. J. Plant Physiol. 2025, 310, 154522.
- 3.
Henderson, R.; Baldwin, J.M.; Ceska, T.A.; et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 1990, 213, 899–929.
- 4.
Benjin, X.; Ling, L. Developments, applications, and prospects of cryo-electron microscopy. Protein Sci. 2020, 29, 872–882.
- 5.
Yang, G.; Zhou, R.; Zhou, Q.; et al. Structural basis of Notch recognition by human γ-secretase. Nature 2019, 565, 192–197.
- 6.
Danmaliki, G.I.; Hwang, P.M. Solution NMR spectroscopy of membrane proteins. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183356.
- 7.
Branden, G.; Neutze, R. Advances and challenges in time-resolved macromolecular crystallography. Sci. 2021, 373, 6558.
- 8.
Lian, L.Y.; Middleton, D.A. Labelling approaches for protein structural studies by solution-state and solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2001, 39, 171–190.
- 9.
Ohki, S.; Dohi, K.; Tamai, A.; et al. Stable-isotope labeling using an inducible viral infection system in suspension-cultured plant cells. J. Biomol. NMR 2008, 42, 271–277.
- 10.
Yagi, H.; Fukuzawa, N.; Tasaka, Y.; et al. NMR-based structural validation of therapeutic antibody produced in Nicotiana benthamiana. Plant Cell Rep. 2015, 34, 959–968.
- 11.
Yin, C.C. Structural biology revolution led by technical breakthroughs in cryo-electron microscopy. Chin. Phys. 2018, 27, 058703.
- 12.
Fan, X.; Wang, J.; Zhang, X.; et al. Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Nat. Commun. 2019, 10, 1–11.
- 13.
Frank, J. Generalized single-particle cryo-EM—A historical perspective. J. Electron Microsc. 2015, 65, 3–8.
- 14.
De Rosier, D.J.; Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 1968, 217, 130–134.
- 15.
Bhat, J.Y.; Milicic, G.; Thieulin-Pardo, G.; et al. Mechanism of enzyme repair by the AAA(+) chaperone Rubisco activase. Mol. Cell 2017, 67, 744–756.
- 16.
Dominguez-Martin, M.A.; Sauer, P.V.; Kirst, H.; et al. Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022, 609, 835–845.
- 17.
Qian, P.; Nguyen-Phan, C.T.; Gardiner, A.T.; et al. Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning. Proc. Natl. Acad. Sci. USA 2022, 119, e2210109119.
- 18.
Engel, B.D.; Schaffer, M.; Kuhn Cuellar, L.; et al. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. Elife 2015, 4, e04889.
- 19.
Naschberger, A.; Mosebach, L.; Tobiasson, V.; et al. Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. Nat. Plants 2022, 8, 1191–1201.
- 20.
Liu, H.; Li, A.; Rochaix, J.D.; et al. Architecture of chloroplast TOC-TIC translocon supercomplex. Nature 2023, 615, 349–357.
- 21.
Waltz, F.; Righetto, R.D.; Lamm, L.; et al. In-cell architecture of the mitochondrial respiratory chain. Sci. 2025, 387, 1296–1301.
- 22.
Wu, J.; Chen, S.; Wang, C.; et al. Regulatory dynamics of the higher-plant PSI-LHCI supercomplex during state transitions. Mol. Plant 2023, 16, 1937–1950.
- 23.
Klusch, N.; Dreimann, M.; Senkler, J.; et al. Cryo-EM structure of the respiratory I + III2 supercomplex from Arabidopsis thaliana at 2 Å resolution. Nat. Plants 2023, 9, 142–156.
- 24.
Xu, L.Y.; Jia, W.; Tao, X.; et al. Structures and mechanisms of the cytokinin transporter AZG1. Nat. Plants 2024, 10, 180–191.
- 25.
Albanese, P.; Melero, R.; Engel, B.; et al. Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Sci. Rep. 2017, 7, 10067.
- 26.
Sarewicz, M.; Szwalec, M.; Pintscher, S.; et al. High-resolution cryo-EM structures of plant cytochrome b(6)f at work. Sci. Adv. 2023, 9, eadd9688.
- 27.
Wietrzynski, W.; Lamm, L.; Wood, W.H.J.; et al. Molecular architecture of thylakoid membranes within intact spinach chloroplasts. bioRxiv 2025.https://doi.org/10.1101/2024.11.24.625035.
- 28.
Maldonado, M.; Fan, Z.; Abe, K.M.; et al. Plant-specific features of respiratory supercomplex I + III(2) from Vigna radiata. Nat. Plants 2023, 9, 157–168.
- 29.
Smirnova, J.; Loerke, J.; Kleinau, G.; et al. Structure of the actively translating plant 80S ribosome at 2.2 Å resolution. Nat. Plants 2023, 9, 987–1000.
- 30.
Wang, W.; Qin, L.; Zhang, W.; et al. WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 2023, 186, 2656–2671.
- 31.
Amro, J.; Black, C.; Jemouai, Z.; et al. Cryo-EM structure of the Agrobacterium tumefaciens T-pilus reveals the importance of positive charges in the lumen. Struct. 2023, 31, 375–384.
- 32.
Guo, J.; Wang, G.; Xie, L.; et al. Three-dimensional analysis of membrane structures associated with tomato spotted wilt virus infection. Plant Cell Environ. 2023, 46, 650–664.
- 33.
Mooney, B.C.; van der Hoorn, R.A.L. Novel structural insights at the extracellular plant-pathogen interface. Curr. Opin. Plant Biol. 2024, 82, 102629.
- 34.
Wu, X.X.; Mu, W.-H.; Li, F.; et al. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell 2024, 187, 1127–1144.
- 35.
Sun, Y.; Wang, Y.; Zhang, X.; et al. Plant receptor-like protein activation by a microbial glycoside hydrolase. Nature 2022, 610, 335–342.https://doi.org/10.1038/s41586-022-05214-x.