2509001399
  • Open Access
  • Article

Canopy Management Effects on Temperature and CO2 Dynamics in Garnacha Grapes Under Mediterranean Conditions

  • Alicia V. Perera-Castro 1, *,   
  • Esther Hernández-Montes 1, 2

Received: 16 Jul 2025 | Revised: 11 Sep 2025 | Accepted: 16 Sep 2025 | Published: 23 Sep 2025

Abstract

Grape (Vitis vinifera L.) production is increasingly challenged by rising temperatures and drought conditions due to climate change, especially in Mediterranean regions. These conditions affect grapevine photosynthesis and berry metabolism, ultimately impacting yield and wine quality. This study aimed to quantify the dynamics of CO2 fluxes from Garnacha grapes in response to temperature, radiation, and ripening stage. An empirical model was developed to estimate the impact of canopy management on fruit carbon balance using data from vineyards in Majorca, where defoliation and grape cluster shading were applied. Our model accurately predicted CO2 release across ripening stages and environmental conditions. CO2 release under darkness increased during early ripening stages but declined as berries matured, while light conditions substantially reduced respiratory losses. Temperature significantly influenced CO2 release, with defoliation raising berry temperatures by over 4 °C and increasing maximum daytime carbon losses by approximately 17% compared to controls. Shading berries from defoliated plants mitigated these effects, lowering temperature and carbon losses to control levels. The study underscores the risks of heatwaves and elevated nighttime temperatures, which most drive respiratory carbon losses that shading cannot offset. These findings highlight the importance of adaptive canopy management, combining defoliation and shading, to sustain grape quality and yield under warming climates.

References 

  • 1.
    International Organisation of Vine and Wine (OIV). Annual Assessment of the World Vine and Wine Sector in 2023; OIV: Paris, France, 2023.
  • 2.
    Allen, M.R.; Dube, O.P.; Solecki, W.; et al. Global Warming of 1.5 °C. In An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Cambridge University Press: Cambridge, UK, 2018; pp. 49–92.
  • 3.
    Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; et al. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. https://doi.org/10.3390/agronomy9090514.
  • 4.
    Greer, D.H.; Weedon, M.M. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ. 2012, 35, 1050–1064. https://doi.org/10.1111/j.1365-3040.2011.02471.x.
  • 5.
    Zufferey, V.; Murisier, F.; Vivin, P.; et al. Carbohydrate reserves in grapevine (Vitis vinifera L. ‘Chasselas’): The influence of the leaf to fruit ratio. Vitis 2012, 51, 103–110.
  • 6.
    Kliewer, W.M. Changes in the concentration of malates, tartrates, and total free acids in flowers and berries of Vitis vinifera. Am. J. Enol. Vitic. 1965, 16, 92–100.
  • 7.
    Lakso, A.N.; Kliewer, W.M. The Influence of temperature on malic acid metabolism in grape berries. Plant Physiol. 1975, 56, 370–372.
  • 8.

    Lakso, A.N.; Kliewer, W.M. The Influence of Temperature on Malic Acid Metabolism in Grape Berries. II. Temperature Responses of Net Dark CO2 Fixation and Malic Acid Pools. Am. J. Enol. Vitic. 1978, 29, 145–149. https://doi.org/10.5344/ajev.1978.29.3.145.

  • 9.
    Spayd, S.E.; Tarara, J.M.; Mee, D.L.; et al. Separation of Sunlight and Temperature Effects on the Composition of Vitis vinifera cv. Merlot Berries. Am. J. Enol. Vitic. 2002, 53, 171–182. https://doi.org/10.5344/ajev.2002.53.3.171.
  • 10.
    Sweetman, C.; Sadras, V.O.; Hancock, R.D.; et al. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J. Exp. Bot. 2014, 65, 5975–5988. https://doi.org/10.1093/jxb/eru343.
  • 11.
    Palliotti, A.; Cartechini, A.; Silvestroni, O.; et al. Respiration activity in different above-ground organs of Vitis vinifera L. in response to temperature and developmental stage. In Proceedings of the VII International Symposium on Grapevine Physiology and Biotechnology, Davis, CA, USA, 31 August 2005; pp. 159–166.
  • 12.
    Hernández-Montes, E.; Escalona, J.M.; Tomàs, M.; et al. Plant water status and genotype affect fruit respiration in grapevines. Physiol. Plant 2020, 169, 544–554. https://doi.org/10.1111/ppl.13093.
  • 13.
    Palliotti, A.; Cartechini, A. Developmental changes in gas exchange activity in flowers, berries, and tendrils of field-grown Cabernet Sauvignon. Am. J. Enol. Vitic. 2001, 52, 317–323.
  • 14.
    Düring, H.; Davtyan, A. Developmental changes of primary processes of photosynthesis in sun-and shade-adapted berries of two grapevine cultivars. Vitis 2002, 41, 63–67.
  • 15.
    Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69.
  • 16.
    Gutiérrez-Gamboa, G.; Zheng, W.; de Toda, F.M. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. https://doi.org/10.1016/j.foodres.2020.109946.
  • 17.
    Sadras, V.O.; Moran, M.A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. https://doi.org/10.1111/j.1755-0238.2012.00180.x.
  • 18.
    Greer, D.H.; Weston, C. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant Biol. 2010, 37, 206–214.
  • 19.
    de Orduña, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001.
  • 20.
    Rogiers, S.Y.; Greer, D.H.; Liu, Y.; et al. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Front. Plant Sci. 2022, 13, 1094633. https://doi.org/10.3389/fpls.2022.1094633.
  • 21.
    Hunter, J.J.; Ruffner, H.P.; Volschenk, C.G.; et al. Partial Defoliation of Vitis vinifera L. cv. Cabernet Sauvignon/99 Richter: Effect on Root Growth, Canopy Efficiency; Grape Composition, and Wine Quality. Am. J. Enol. Vitic. 1995, 46, 306–314.
  • 22.
    Greer, D.H.; Weedon, M.M. Does the hydrocooling of Vitis vinifera cv. Semillon vines protect the vegetative and reproductive growth processes and vine performance against high summer temperatures? Funct. Plant Biol. 2014, 41, 620–633. https://doi.org/10.1071/FP13286.
  • 23.
    Martinez-Luscher, J.; Chen, C.C.L.; Brillante, L.; et al. Partial Solar Radiation Exclusion with Color Shade Nets Reduces the Degradation of Organic Acids and Flavonoids of Grape Berry (Vitis vinifera L.). J. Agric. Food Chem. 2017, 65, 10693–10702. https://doi.org/10.1021/acs.jafc.7b04163.
  • 24.
    Abeysinghe, S.K.; Greer, D.H.; Rogiers, S.Y. The effect of light intensity and temperature on berry growth and sugar accumulation in Vitis vinifera “Shiraz” under vineyard conditions. Vitis 2019, 58, 7–16. https://doi.org/10.5073/vitis.2019.58.7-16.
  • 25.
    Tiffon-Terrade, B.; Simonneau, T.; Caffarra, A.; et al. Delayed grape ripening by intermittent shading to counter global warming depends on carry-over effects and water deficit conditions. Oeno One 2023, 57, 71–90. https://doi.org/10.20870/oeno-one.2023.57.1.5521.
  • 26.
    Hernández-Montes, E.; Padilla, B.; Puigserver, J.; et al. Efecto combinado del deshojado y el sombreo sobre la maduración de la uva en Manto negro (Vitis vinifera L.) con dos estrategias de riego. In Acta de Horticultura; Universitat de les Illes Balears: Palma, Spain, 2022. pp. 484–489.
  • 27.
    Kriedemann, P.E. Observations on gas exchange in the developing Sultana berry. Aust. J. Biol. Sci. 1968, 21, 907–916.
  • 28.
    Famiani, F.; Farinelli, D.; Palliotti, A.; et al. Is stored malate the quantitatively most important substrate utilised by respiration and ethanolic fermentation in grape berry pericarp during ripening? Plant Physiol. Biochem. 2014, 76, 52–57. https://doi.org/10.1016/j.plaphy.2013.12.017.
  • 29.
    R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023.
  • 30.
    Pinheiro, J.; Bates, D.; DebRoy, S.; et al. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version. Available online: https://CRAN.R-project.org/package=nlme (accessed on 19 September 2025).
  • 31.
    Street, L.E.; Stoy, P.C.; Sommerkorn, M.; et al. Seasonal bryophyte productivity in the sub-Arctic: A comparison with vascular plants. Funct. Ecol. 2012, 26, 365–378. https://doi.org/10.1111/j.1365-2435.2011.01954.x.
  • 32.
    Calama, R.; Puértolas, J.; Madrigal, G.; et al. Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecol. Modell. 2013, 251, 9–21. https://doi.org/10.1016/j.ecolmodel.2012.11.029.
  • 33.

    Perera-Castro, A.V.; Nadal, M. Modelling Net CO2 Assimilation of Two Sphagnum Species from Temperature and Water Content Response. Physiol. Plant. 2025, 177, e70325. https://doi.org/10.1111/ppl.70325.

  • 34.
    Perera-Castro, A.V.; Díaz-Jiménez, L.; Espinosa-González, Y.; et al. Predictability of carbon assimilation in high biodiversity ecosystems within the context of climate change. Glob. Ecol. Conserv. 2025, 62, e03835. https://doi.org/10.1016/j.gecco.2025.e03835.
  • 35.
    Smith, E.L. Photosynthesis in relation to light and carbon dioxide. Proc. Natl. Acad. Sci. USA 1936, 22, 504–511.
  • 36.
    Heskel, M.A.; O’sullivan, O.S.; Reich, P.B.; et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl. Acad. Sci. USA 2016, 113, 3832–3837. https://doi.org/10.1073/pnas.1520282113.
  • 37.
    Wickham, H. The Split-Apply-Combine Strategy for Data Analysis. J. Stat. Softw. 2011, 40, 1–29.
  • 38.
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.
  • 39.
    De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version. Available online https://CRAN.R-project.org/package=agricolae (accessed on 19 September 2025).
  • 40.

    Pavel, E.W.; DeJong, T.M. Seasonal CO2 exchange patterns of developing peach (Prunus persica) fruits in response to temperature, light and CO2 concentration. Physiol. Plant. 1993, 88, 322–330. https://doi.org/10.1111/j.1399-3054.1993.tb05506.x.

  • 41.
    Lakso, A.N.; White, M.D.; Tustin, D.S. Simulation modeling of the effects of short and long-term climatic variations on carbon balance of apple trees. In Proceedings of the VII International Symposium on Orchard and Plantation Systems, Nelson, New Zealand, 30 July 2001; pp. 473–480.
  • 42.
    Blanke, M.M.; Lenz, F. Fruit photosynthesis. Plant Cell Environ. 1989, 12, 31–46. https://doi.org/10.1111/j.1365-3040.1989.tb01914.x.
  • 43.
    Niimi, Y.; Torikata, H. Changes Berry in Photosynthesis and Respiration during Development in Relation to the Ripening of Delaware Grapes. J. Jpn. Soc. Hortic. Sci. 1979, 47, 448–453.
  • 44.
    Mattioli, S.; Pallioti, A.; Cartechini, A.; et al. Seasonal carbon balance of ‘sangiovese’ grapevines in two different central Italy environments. In Proceedings of the I International Symposium on Grapevine Growing, Commerce and Research, Lisbon, Portugal, 5 July 2004; pp. 183–190.
  • 45.
    Harris, J.M.; Kriedemann, P.E.; Possingham, J.V. Grape berry respiration: Effects of metabolic inhibitors. Vitis 1971, 9, 291–298.
  • 46.
    Terrier, N.; Romieu, C. Grape Berry Acidity. In Molecular Biology & Biotechnology of the Grapevine; Springer: Dordrecht, The Netherlands, 2001; pp. 35–57. https://doi.org/10.1007/978-94-017-2308-4_2.
  • 47.

    Morales, F.; Cabodevilla, A.; Pascual, I.; et al. New instrumentation in grapevine research: A dual respiration prototype for grape berries and whole bunch. The grape CO2/O2 respiratory quotient revisited. Comput. Electron. Agric. 2024, 217, 108659. https://doi.org/10.1016/j.compag.2024.108659.

  • 48.
    Ollat, N.; Gaudillère, J.P. Carbon balance in developing grapevine berries. In Proceedings of the V International Symposium on Grapevine Physiology, Jerusalem, Israel, 1 March 2000; pp. 345–350.
  • 49.
    Ollat, N.; Gaudillère, J.P. Investigation of assimilate import mechanisms in berries of Vitis vinifera var. Cabernet Sauvignon. In Proceedings of the Workshop Strategies to Optimize Wine Grape Quality, Conegliano, Italy, 9 July 1996; pp. 141–149.
  • 50.
    Sadok, W.; Jagadish, S.V.K. The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci. 2020, 25, 644–651. https://doi.org/10.1016/j.tplants.2020.02.003.
  • 51.
    Rogiers, S.Y.; Greer, D.H.; Hutton, R.J.; et al. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar? J. Exp. Bot. 2009, 60, 3751–3763. https://doi.org/10.1093/jxb/erp217.
  • 52.
    Escalona, J.M.; Fuentes, S.; Tomás, M.; et al. Responses of leaf night transpiration to drought stress in Vitis vinifera L. Agric. Water Manag. 2013, 118, 50–58. https://doi.org/10.1016/j.agwat.2012.11.018.
  • 53.
    Tombesi, S.; Cincera, I.; Frioni, T.; et al. Relationship among night temperature, carbohydrate translocation and inhibition of grapevine leaf photosynthesis. Environ. Exp. Bot. 2019, 157, 293–298. https://doi.org/10.1016/j.envexpbot.2018.10.023.
  • 54.
    Flexas, J.; Galmés, J.; Gallé, A.; et al. Improving water use efficiency in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. https://doi.org/10.1111/j.1755-0238.2009.00057.x.
Share this article:
How to Cite
Perera-Castro, A. V.; Hernández-Montes, E. Canopy Management Effects on Temperature and CO2 Dynamics in Garnacha Grapes Under Mediterranean Conditions. Physiology and Management of Sustainable Crops 2025, 1 (1), 5. https://doi.org/10.53941/pmsc.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.