2511002367
  • Open Access
  • Article

Searching for an Optimized Potassium Fertilization in Grapevine (Vitis vinifera L.) cv. Tempranillo with an Emphasis on Berry Quality and Nutrient Composition

  • Carolina Salazar-Parra 1,*,   
  • Fermín Morales 2

Received: 06 Jun 2025 | Revised: 07 Oct 2025 | Accepted: 22 Nov 2025 | Published: 12 Dec 2025

Abstract

Potassium (K) is an essential macronutrient that plays a central role in grapevine physiology and fruit quality. This study aimed to evaluate the effects of different K concentrations in the nutrient solution on berry composition, color development, and mineral concentration in leaves, petioles, and berries of fruit-bearing cuttings of Vitis vinifera L. cv. Tempranillo. Fruit-bearing cuttings were grown under controlled greenhouse conditions and irrigated with modified half-strength Hoagland solutions containing 0%, 25%, 50%, 75%, or 100% K and a control nutrient solution. Berry quality parameters, including total soluble solids, acidity, anthocyanins, and phenolic maturity, were significantly influenced by K availability. Moderate K treatments (50–75%) produced the most favorable outcomes in terms of sugar accumulation, anthocyanin concentration, and nutrient balance. The results suggest that optimized K fertilization is critical for improving grape quality while avoiding potential negative effects associated with deficiency or excess. These findings provide valuable insights for K management in viticulture.

References 

  • 1.

    Intrigliolo, D.S.; Castel, J.R. Response of Vitis vinifera cv. ‘Tempranillo’ to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality. Agric. Water Manag. 2009, 96, 282–292.

  • 2.

    Peuke, A.D. Nutrient composition of leaves and fruit juice of grapevine as affected by soil and nitrogen fertilization. J. Plant Nutr. Soil Sci. 2009, 172, 557–564.

  • 3.

    Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Cambridge, MA, USA, 1995.

  • 4.

    Bavaresco, L.; Gatti, M.; Fregoni, M. Nutritional deficiencies. In Methodologies and Results in Grapevine Research; Delrot, S., Medrano, H., Or, E.; et al., Eds.; Springer: Berlin, Germany, 2010; pp. 165–191.

  • 5.

    White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. https://doi.org/10.1093/aob/mcq085.

  • 6.

    Brunetto, G.; da Silva, J.A.B.; Ceretta, C.A.; et al. Grapevine mineral nutrition: Physiological basis and diagnosis. Acta Physiol. Plant. 2003, 25, 489–500. https://doi.org/10.1023/A:1024832113098.

  • 7.

    Schreiner, R.P. Nutrient uptake and distribution in young Pinot noir grapevines over two seasons. Am. J. Enol. Vitic. 2016, 67, 436–448. https://doi.org/10.5344/ajev.2016.15099.

  • 8.

    Pate, J.S. Transport and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. 1980, 31, 313–340.

  • 9.

    Lang, A.; Düring, H. Partitioning control by water potential gradient—Evidence for compartmentation breakdown in grape berries. J. Exp. Bot. 1991, 42, 1117–1122.

  • 10.

    Delgado, R.; Martín, P.; Del Álamo, M.; et al. Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilization rates. J. Sci. Food Agric. 2004, 84, 623–630.

  • 11.

    Buvaneshwari, S.; Riotte, J.; Sekhar, M.; et al. Potash fertilizer promotes incipient salinization in groundwater-irrigated semi-arid agriculture. Sci. Rep. 2020, 10, 3691. https://doi.org/10.1038/s41598-020-60365-z.

  • 12.

    Mpelasoka, B.S.; Schachtman, D.R.; Treeby, M.T.; et al. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168.

  • 13.

    Zhenming, N.; Xuefeng, X.; Yi, W.; et al. Effects of leaf-applied potassium, gibberellin and source-sink ratio on potassium absorption and distribution in grape fruits. Sci. Hortic. 2008, 115, 164–167.

  • 14.

    Villette, J.; Cuéllar, T.; Verdeil, J.L.; et al. Grapevine potassium nutrition and fruit quality in the context of climate change. Front. Plant Sci. 2020, 11, 123. https://doi.org/10.3389/fpls.2020.00123/full.

  • 15.

    Sperling, O.; Perry, A.; Ben-Gal, A.; et al. Potassium deficiency reduces grapevine transpiration through decreased leaf area and stomatal conductance. Plant Physiol. Biochem. 2024, 208, 108534. https://doi.org/10.1016/j.plaphy.2024.108534.

  • 16.

    Mohammed, S.; Singh, D.; Ahlawat, V.P. Growth, yield and quality of grapes as affected by pruning and basal application of potassium. Haryana J. Hortic. Sci. 1993, 22, 179–182

  • 17.

    Rogiers, S.Y.; Coetzee, Z.A.; Walker, R.R.; et al. Potassium in the grape (Vitis vinifera L.) berry: Transport and function. Front. Plant Sci. 2017, 8, 1629. https://doi.org/10.3389/fpls.2017.01629.

  • 18.

    Pirie, A.; Mullins, M.G. Interrelationships of sugars, anthocyanins, total phenols and dry weight in skin of grape berries during ripening. Am. J. Enol. Vitic. 1977, 28, 204–209.

  • 19.

    Morris, J.R.; Sims, C.A.; Cawthon, D.L. Effects of excessive potassium levels on pH, acidity and color of fresh and stored grape juice. Am. J. Enol. Vitic. 1983, 34, 35–39.

  • 20.

    Mullins, M.G. Test-plant for investigations of the physiology of fruiting in Vitis vinifera L. Nature 1966, 209, 419–420.

  • 21.

    Ollat, N.; Génny, L. Les boutures fructifères de vigne: Validation d’un modèle d’étude du développement de la physiologie de la vigne. I. Caractéristiques de l’appareil végétatif. J. Int. Des Sci. De La Vigne Et Du Vin 1998, 32, 1–9.

  • 22.

    Santa María, E. Incidencia de Botrytis Cinerea en Relación con Diferentes Aspectos Fisiológicos de la vid. Ph.D. Thesis, Universidad de Navarra, Navarra, Spain, 2004.

  • 23.

    Morales, F.; Antolín, M.C.; Aranjuelo, I.; et al. From vineyards to controlled environments in grapevine research: Investigating responses to climate change scenarios using fruit-bearing cuttings. Theor. Exp. Plant Physiol. 2016, 28, 171–191.

  • 24.

    Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 1950, 347, 1–32.

  • 25.

    Glories, Y.; Augustin, M. Maturité phénolique du raisin, conséquences technologiques: Applications aux millésimes 1991 et 1992. In Journée technique du CIVB; Actes du Colloque : Bordeaux, France, 1993; p. 56.

  • 26.

    AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Helrich, K., Ed.; AOAC: Washington, DC, USA, 1990.

  • 27.

    Abadía, J.; Nishio, J.N.; Terry, N. Mineral composition of peach leaves affected by iron chlorosis. J. Plant Nutr. 1985, 8, 697–707.

  • 28.

    Abadía, A.; Sanz, M.; Montañés, L. Photosynthetic pigments and mineral composition of iron-deficient pear leaves. J. Plant Nutr. 1989, 12, 827–838.

  • 29.

    Davies, C.; Shin, R.; Liu, W.; et al. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J. Exp. Bot. 2006, 57, 3209–3216.

  • 30.

    Amiri, M.E.; Fallahi, E. Influence of mineral nutrients on growth, yield, berry quality, and petiole mineral nutrient concentrations of table grape. J. Plant Nutr. 2007, 30, 463–470.

  • 31.

    Lang, A. Turgor-regulated translocation. Plant Cell Environ. 1983, 6, 683–689.

  • 32.

    Boulton, R. The general relationship between potassium, sodium and pH in grape juice and wine. Am. J. Enol. Vitic. 1980, 31, 182–186.

  • 33.

    Cui, W.; Wang, X.; Han, S.; et al. Research progress of tartaric acid stabilization on wine characteristics. Food Chem. X. 2024, 23, 101728. https://doi.org/10.1016/j.fochx.2024.101728.

  • 34.

    Somers, T.C. Pigment development during ripening of the grape. Vitis 1976, 14, 269–277.

  • 35.

    Wolf, T.K.; Haeseler, C.W.; Bergman, E.L. Growth and foliar elemental composition of Seyval Blanc grapevines as affected by four nutrient solution concentrations of nitrogen, potassium and magnesium. Am. J. Enol. Vitic. 1983, 34, 271–277.

  • 36.

    Garcia, M.; Daverede, C.; Gallego, P.; et al. Effect of various potassium–calcium ratios on cation nutrition of grape grown hydroponically. J. Plant Nutr. 1999, 22, 417–425.

  • 37.

    Poni, S.; Quartieri, M.; Tagliavini, M. Potassium nutrition of Cabernet Sauvignon grapevines (Vitis vinifera L.) as affected by shoot trimming. Plant Soil 2003, 253, 341–351.

  • 38.

    Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012.

  • 39.

    Morris, J.R.; Cawthon, D.L. Effect of irrigation, fruit load, and potassium fertilization on yield, quality, and petiole analysis of Concord (Vitis labrusca L.) grapes. Am. J. Enol. Vitic. 1982, 33, 145–148.

  • 40.

    Keller, M. The Science of Grapevines: Anatomy and Physiology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015.

  • 41.

    Gautier, P. Diagnostic foliaire de la vigne. Études par analyses factorielles en composantes principales sur plusieurs années. In Proceedings of the 5th International Colloquium Plant Nutrition Control, Casteltranco Veneto, Italy, 1980; pp. 587–590.

  • 42.

    Fregoni, M. Exigences d’éléments nutritifs en viticulture. Bull. l’OIV 1985, 650–651.

  • 43.

    Maguire, M.E.; Cowan, J.A. Magnesium chemistry and biochemistry. BioMetals 2002, 15, 203–210. https://doi.org/10.1023/A:1016058229972.

  • 44.

    Xie, K.; Cakmak, I.; Wang, S.; et al. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J. 2021, 9, 249–256. https://doi.org/10.1016/j.cj.2020.10.005.

  • 45.

    Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295.

  • 46.

    Bertamini, M.; Nedunchezhian, N. Grapevine growth and physiological responses to iron deficiency. J. Plant Nutr. 2005, 28, 737–749.

  • 47.

    Morris, J.R.; Cawthon, D.L.; Fleming, J.W. Effects of high rates of potassium fertilization on raw product quality and changes in pH and acidity during storage of Concord grape juice. Am. J. Enol. Vitic. 1980, 31, 323–328.

  • 48.

    Alloway, B. Zinc in Soils and Crop Nutrition. International Zinc Association: Brussels, Belgium; International Fertilizer Industry Association: Paris, France, 2008. Pp. 1–139.

  • 49.

    Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. https://doi.org/10.1111/ppl.12747.

Share this article:
How to Cite
Salazar-Parra, C.; Morales, F. Searching for an Optimized Potassium Fertilization in Grapevine (Vitis vinifera L.) cv. Tempranillo with an Emphasis on Berry Quality and Nutrient Composition. Physiology and Management of Sustainable Crops 2025, 1 (1), 7. https://doi.org/10.53941/pmsc.2025.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.