2512002667
  • Open Access
  • Article

Unravelling the Role of Potassium and Calcium in Stomatal Regulation and Photochemical Efficiency of Olive (Olea europaea L.) under Salinity Stress

  • Hakim Boulal 1,   
  • Afef Ladhari 2,*,   
  • Amine EL Khouni 1,   
  • Rabii Lanwer 3,   
  • Fermin Morales 4,   
  • Ajmi larbi 2

Received: 20 Oct 2025 | Revised: 27 Dec 2025 | Accepted: 30 Dec 2025 | Published: 04 Feb 2026

Abstract

Climate change poses significant threats to the environment and agricultural productivity. To address these challenges, we aimed to enhance tolerance strategies to salinity stress by applying potassium and calcium to two-year-old potted olive plants grown under saline conditions. To better understand the mitigation of the detrimental effects of salinity stress, we elucidated the interaction between physiological and biochemical responses in olive plants. The results demonstrated that the application of calcium and potassium under salinity stress triggered an adaptive physiological response, notably enhancing photosynthetic efficiency, transpiration rate, and stomatal conductance. Under salinity conditions, the levels of neoxanthin and violaxanthin decreased, while their increase was strongly associated with higher potassium and calcium concentrations. Under stress conditions, the decreased photosynthetic efficiency increased sugar levels that may serve as part of the plant’s adaptive strategy to cope with stress. Meanwhile, the positive interaction was depicted among the effective quantum yield of photosystem II (PSII), stomatal conductance, and the photosynthetic rate, underscoring the crucial role of potassium and calcium treatments in maintaining plant physiological and biochemical processes under salt stress.

References 

  • 1.

    Pacifici, M.; Foden, W.B.; Visconti, P.; et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 2015, 5, 215–225.

  • 2.

    Okur, B.; Orçen, N. Soil Salinization and Climate Change. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 331–350.

  • 3.

    Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681.

  • 4.

    Azimi, M.; Khoshzaman, T.; Taheri, M.; et al. Evaluation of salinity tolerance of three olive (Olea europaea L.) cultivars. J. Cent. Eur. Agric. 2021, 22, 571–581.

  • 5.

    Vigo, C.; Therios, I.N.; Bosabalidis, M. Plant growth, nutrient concentration and leaf anatomy of olive plants irrigated with diluted seawater. J. Plant Nutr. 2005, 28, 1001–1021.

  • 6.

    Kapulnik, Y.; Tsror, L.; Zipori, I.; et al. Effect of AMF application on growth, productivity and susceptibility to Verticillium Wilt of olives grown under desert conditions. Symbiosis 2010, 52, 103–111.

  • 7.

    Boussadia, O.; Zgallai, H.; Mzid, N.; et al. Physiological responses of two olive cultivars to salt stress. Plants 2023, 12, 1926.

  • 8.

    Vergine, M.; Palm, E.R.; Salzano, A.M.; et al. Water and nutrient availability modulate the salinity stress response in Olea europaea cv. Arbequina. Plant Stress 2024, 14, 100648.

  • 9.

    Hassan, I.F.; Maybelle, G.; Bedour, A.L.; et al. Salinity stress effects on three different olive cultivars and the possibility of their cultivation in reclaimed lands. Plant Arch. 2020, 20, 2378–2382.

  • 10.

    Larbi, A.; Kchaou, H.; Gaaliche, B.; et al. Supplementary potassium and calcium improves salt tolerance in olive plants. Sci. Hortic. 2020, 260, 108912.

  • 11.

    Taha, R.S.; Seleiman, M.F.; Alotaibi, M.; et al. Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy 2020, 10, 1741.

  • 12.

    Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549.

  • 13.

    Gucci, R.; Lombardini, L.; Tattini, M. Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiol. 1997, 17, 13–21.

  • 14.

    Rugini, E.; Baldoni, L.; Muleo, R.; et al. The Olive Tree Genome; Springer: Cham, Switzerland, 2016.

  • 15.

    Loupassaki, M.H.; Chartzoulakis, K.S.; Digalaki, N.B.; et al. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. J. Plant Nutr. 2002, 25, 2457–2482.

  • 16.

    Tattini, M.; Melgar, J.C.; Traversi, M.L. Responses of Olea europaea to high salinity: A brief-ecophysiological review. Adv. Hort. Sci. 2008, 22, 159–173.

  • 17.

    Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92.

  • 18.

    Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185.

  • 19.

    Kchaou, H.; Larbi, A.; Chaieb, M.; et al. genotypic differentiation in the stomatal response to salinity and contrasting photosynthetic and photoprotection responses in five olive (Olea europaea L.) Cultivars. Sci. Hortic. 2013, 160, 129–138.

  • 20.

    Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207.

  • 21.

    Robyt, J.F.; White, B.J. Biochemical Techniques: Theory and Practice; Brooks/Cole: Monterey, CA, USA, 1987; p. 217.

  • 22.

    Melgar, J.C.; Mohamed, Y.; Ben Yahmed, J.; et al. Long-term responses of olive trees to salinity. Agric. Water Manag. 2009, 96, 1105–1113.

  • 23.

    Chartzoulakis, K.; Loupassaki, M.; Bertaki, M.; et al. Response of two olive cultivars to salt stress and potassium supplement. J. Plant Nutr. 2006, 29, 2063–2078.

  • 24.

    Cha-um, S.; Yooyongwech, S.; Supaibulwatana, K.; et al. Water relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application. Int. J. Plant Prod. 2010, 4, 187–198.

  • 25.

    Jafari, M.H.S.; Abbasi, A.R.; Mousavi, S.F. Interactive effects of NaCl induced salinity, calcium, and potassium on physio-morphological traits of Sorghum (Sorghum bicolor L.). Pak. J. Bot. 2009, 41, 3053–3063.

  • 26.

    Wang, M.; Zheng, Q.; Shen, Q.; et al. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390.

  • 27.

    Tattini, M.; Traversi, M.L.; Pinelli, P.; et al. Contrasting response mechanisms to root-zone salinity in three co-occurring Mediterranean woody evergreens: A physiological and biochemical study. Funct. Plant Biol. 2009, 36, 551–563.

  • 28.

    Sultana, N.; Ikeda, T.; Kashem, M.A. Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Environ. Exp. Bot. 2001, 46, 129–140.

  • 29.

    Ebert, G.; Eichert, T.; Fernández, V.; et al. Ameliorating effects of Ca(NO3)2 on growth, mineral uptake and photosynthesis of NaCl-stressed guava seedlings (Psidium guajava L.). Sci. Hortic. 2002, 93, 125–135.

  • 30.

    Kaya, C.; Higgs, D. Ameliorative effects of potassium phosphate on salt stressed pepper and cucumber. J. Plant Nutr. 2002, 26, 807–820.

  • 31.

    Tzortzakis, N.G. Potassium and calcium enrichment alleviate salinity-induced stress in hydroponically grown endives. Hort. Sci. 2010, 37, 155–162.

  • 32.

    Roussos, P.A.; Koubouris, G.C.; Tsantili, E. Intra- and inter-cultivar impacts of salinity stress on leaf photosynthetic performance, carbohydrates and nutrient content of nine indigenous Greek olive cultivars. Acta Physiol. Plant. 2017, 39, 136.

  • 33.

    Buono, D.; Muzzalupo, I.; Perri, E.; et al. Effects of Megafol on the olive cultivar ‘Arbequina’ grown under severe saline stress in terms of physiological traits, oxidative stress, antioxidant defenses, and cytosolic Ca2+. Front. Plant Sci. 2021, 11, 603576.

  • 34.

    Skodra, C.; Pateraki, I.; Madesis, P.; et al. Unraveling salt-responsive tissue-specific metabolic pathways in olive tree. Physiol. Plant. 2021, 173, 13565.

  • 35.

    Trabelsi, L.; Smaoui, A.; Ksouri, R.; et al. The effect of drought and saline water on the nutritional behaviour of the olive tree (Olea europaea L.) in an arid climate. S. Afr. J. Bot. 2024, 165, 126–135.

  • 36.

    Restrepo-Diaz, H.; Benlloch, M.; Navarro, C.; et al. Potassium fertilization of rainfed olive orchards. Sci. Hortic. 2008, 116, 399–403.

  • 37.

    Abdolzadeh, A.; Karimi, E.; Sadeghipour, H.R. Increasing salt tolerance in olive, Olea europaea L. plants by supplemental potassium nutrition involves changes in ion accumulation and anatomical attributes. Int. J. Plant Prod. 2009, 3, 49–60.

  • 38.

    El Khouni, A.; El Aouni, M.H.; Ghnaya, T.; et al. Structural and functional integrity of Sulla carnosa photosynthetic apparatus under iron deficiency conditions. Plant Biol. 2018, 20, 415–425.

  • 39.

    Netondo, G.W.; Onyango, J.C.; Beck, E. Sorghum and salinity II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci. 2004, 44, 806–811.

  • 40.

    Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560.

  • 41.

    Kaya, C.; Kirnak, H.; Higgs, D.; et al. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic. 2002, 93, 65–74.

  • 42.

    Boualem, S.; Boutaleb, S.; Boukhalfa-Deraoui, N. Effect of salinity on the physiological behavior of the olive tree (variety Sigoise). J. Fundam. Appl. Sci. 2019, 11, 525–538.

  • 43.

    Ayaz, M.; Hakki, E.E.; Ercisli, S.; et al. Three Turkish olive cultivars display contrasting salt stress-coping mechanisms under high salinity. Trees 2021, 35, 1283–1298.

  • 44.

    El Yamani, M.; Cordovilla, M.P. Tolerance mechanisms of olive tree (Olea europaea) under saline conditions. Plants 2024, 13, 2094.

  • 45.

    Ben Ahmed, C.; Ben Rouina, B.; Sensoy, S.; et al. Changes in water relations, photosynthetic activity and proline accumulation in one-year-old olive trees (Olea europaea L. cv. Chemlali) in response to NaCl salinity. Acta Physiol. Plant. 2008, 30, 553–560.

  • 46.

    Poury, N.; Kholdebarin, B.; Shariati, M. Effects of salinity and proline on growth and physiological characteristics of three olive cultivars. Gesunde Pflanz. 2023, 75, 1169–1180.

  • 47.

    Mozafari, M.R.; Johnson, C.; Hatziantoniou, S.; et al. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 2008, 18, 309–327.

  • 48.

    Jin, Z.; Wang, Z.; Ma, Q.; et al. Potassium supply improves salt tolerance in wheat through better K/Na ratio and enhanced antioxidative metabolism. Plant Sci. 2015, 230, 103–111.

  • 49.

    Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324.

  • 50.

    Farooq, M.; Nawaz, A.; Chaudhary, H.J.; et al. Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean. Sci. Hortic. 2021, 281, 109894.

  • 51.

    Zhao, Y.; Ma, Q.; Jin, Z.; et al. Physiological, proteomic and metabolomic analysis provide insights into Bacillus sp. mediated salt tolerance in wheat. Plant Cell Rep. 2022, 41, 95–118.

  • 52.

    Flexas, J.; Bota, J.; Loreto, F.; et al. Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiol. Plant. 2004, 122, 545–552.

  • 53.

    Villalobos, F.J.; López-Bernal, Á.; García-Tejera, O.; et al. Is olive crop modelling ready to assess the impacts of global change? Front. Plant Sci. 2023, 14, 1249793.

  • 54.

    Karaca, C.; Aslan, G.E.; Kurunc, A.; et al. Effect of irrigation water salinity on physiological parameters and yield of tomato plants across phenological stages. Earth Sci. Hum. Constr. 2024, 4, 177–186.

  • 55.

    Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530.

  • 56.

    Ma, Y.; Yuan, Z.; Wei, Z.; et al. Stomatal and non-stomatal regulations of photosynthesis in response to salinity, and K and Ca fertigation in cotton (Gossypium hirsutum L. cv.). Environ. Exp. Bot. 2025, 230, 106092.

  • 57.

    Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in c3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189.

  • 58.

    Guerfel, M.; Baccouri, O.; Boujnah, D.; et al. impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main tunisian olive (Olea europaea L.) cultivars. Sci. Hortic. 2009, 119, 257–263.

  • 59.

    Rady, M.M.; Taha, R.S.; Semida, W.M.; et al. Modulation of salt stress effects on Vicia faba L. plants grown on a reclaimed-saline soil by salicylic acid application. Rom. Agric. Res. 2017, 34, 175–185.

Share this article:
How to Cite
Boulal, H.; Ladhari, A.; EL Khouni, A.; Lanwer, R.; Morales, F.; larbi, A. Unravelling the Role of Potassium and Calcium in Stomatal Regulation and Photochemical Efficiency of Olive (Olea europaea L.) under Salinity Stress. Physiology and Management of Sustainable Crops 2026, 2 (1), 1. https://doi.org/10.53941/pmsc.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.