- 1.
Jung, H.; Shin, G.; Kwak, H.; et al. Review of Polymer Technologies for Improving the Recycling and Upcycling Efficiency of Plastic Waste. Chemosphere 2023, 320, 138089. https://doi.org/10.1016/j.chemosphere.2023.138089.
- 2.
U.S. Environmental Protection Agency. Plastics: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data (accessed on 6 April 2025).
- 3.
Kalina, M.; Tilley, E. “This Is Our Next Problem”: Cleaning Up from the COVID-19 Response. Waste Manag. 2020, 108, 202–205. https://doi.org/10.1016/j.wasman.2020.05.006.
- 4.
Ocean Plastic Pollution Explained. Available online: https://theoceancleanup.com/ocean-plastic-pollution-explained/ (accessed on 6 April 2025).
- 5.
Clark, J.H. Textile Waste—An Opportunity as Well as a Threat. Green. Carbon. 2023, 1, 146–149. https://doi.org/10.1016/j.greenca.2023.10.002.
- 6.
Effects of Disposable Diapers on Environment & Human Health. Available online: https://www.unsustainablemagazine.com/the-effects-of-disposable-diapers-on-the-environment-and-human-health/ (accessed on 6 April 2025).
- 7.
Home. GreenBlue. Available online: https://greenblue.org/ (accessed on 6 April 2025).
- 8.
Wimberger, L.; Ng, G.; Boyer, C. Light-Driven Polymer Recycling to Monomers and Small Molecules. Nat. Commun. 2024, 15, 2510. https://doi.org/10.1038/s41467-024-46656-3.
- 9.
Adam Minter. Junkyard Planet: Travels in the Billion-Dollar Trash Trade; Bloomsbury Publishing: London, UK, 2013.
- 10.
Plastics—The Facts 2016 an Analysis of European Plastics Production, Demand and Waste Data. 2016. Available online: https://plasticseurope.org/wp-content/uploads/2021/10/2016-Plastic-the-facts.pdf (accessed on 6 April 2025).
- 11.
Guidance on BAT/BEP for the Recycling and Waste Disposal of PBDEs. Available online: https://chm.pops.int/Implementation/NIPs/Guidance/GuidanceonBATBEPfortherecyclingofPBDEs/tabid/3172/Default.aspx (accessed on 6 April 2025).
- 12.
Rahimi, A.; García, J.M. Chemical Recycling of Waste Plastics for New Materials Production. Nat. Rev. Chem. 2017, 1, 0046. https://doi.org/10.1038/s41570-017-0046.
- 13.
Neste Doubles Waste Plastic Processed During. 2023. Available online: https://www.cpecn.com/news/neste-doubles-waste-plastic-processed-during-2023/ (accessed on 6 April 2025).
- 14.
Peplow, M. Can This Revolutionary Plastics-Recycling Plant Help Solve the Pollution Crisis? Nature 2025, 638, 22–25. https://doi.org/10.1038/d41586-025-00293-y.
- 15.
US-Based Refinity Acquires Worldwide License for VTT’s Chemical Plastic Recycling Technology. Available online: https://www.vttresearch.com/en/news-and-ideas/us-based-refinity-acquires-worldwide-license-vtts-chemical-plastic-recycling (accessed on 6 April 2025).
- 16.
Die Von Ihnen Aufgerufene Seite Existiert Nicht Bioplastics Magazine. Available online: https://www.bioplasticsmagazine.com/en/news/meldungen/20210413-avantium-successfully-produces-polyesters-with-its-plantmeg-from-the-ray-technology-demonstration-plant.php (accessed on 6 April 2025).
- 17.
UNEP. Sustainable Fashion to Take Centre Stage on Zero Waste Day. Available online: https://www.unep.org/technical-highlight/sustainable-fashion-take-centre-stage-zero-waste-day (accessed on 6 April 2025).
- 18.
Valentini, F.; Pegoretti, A. End-of-Life Options of Tyres. A Review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. https://doi.org/10.1016/j.aiepr.2022.08.006.
- 19.
Chen, J.; Li, Z.; Jin, L.; et al. Catalytic Hydrothermal Depolymerization of Nylon 6. J. Mater. Cycles Waste Manag. 2010, 12, 321–325. https://doi.org/10.1007/s10163-010-0304-y.
- 20.
Xia, M.; Shao, X.; Sun, Z.; et al. Conversion of Cotton Textile Wastes into Porous Carbons by Chemical Activation with ZnCl2, H3PO4, and FeCl3. Environ. Sci. Pollut. Res. 2020, 27, 25186–25196. https://doi.org/10.1007/s11356-020-08873-3.
- 21.
Sanchis-Sebastiá, M.; Ruuth, E.; Stigsson, L.; et al. Novel Sustainable Alternatives for the Fashion Industry: A Method of Chemically Recycling Waste Textiles via Acid Hydrolysis. Waste Manag. 2021, 121, 248–254. https://doi.org/10.1016/j.wasman.2020.12.024.
- 22.
IDTechEx Home Page. Available online: https://www.idtechex.com/ (accessed on 6 April 2025).
- 23.
Whajah, B.; Da Silva Moura, N.; Blanchard, J.; et al. Catalytic Depolymerization of Waste Polyolefins by Induction Heating: Selective Alkane/Alkene Production. Ind. Eng. Chem. Res. 2021, 60, 15141–15150. https://doi.org/10.1021/acs.iecr.1c02674.
- 24.
Li, H.; Tang, K.Y.; Yao, D.; et al. Fe–Co Bimetallic Catalysts for Pyrolysis of Disposable Face Masks and Nitrile Gloves: Synthesis and Characterization of N-Doped Carbon Nanotubes. ACS Omega 2023, 8, 41586–41594. https://doi.org/10.1021/acsomega.3c05708.
- 25.
Lahtinen, J.; Ohra-aho, T.; Lindfors, C.; et al. Catalytic Pyrolysis of a Model Plastic Mixture with a Montmorillonite Clay Catalyst and Upgrading via Distillation. Energy Fuels 2024, 38, 21109–21121. https://doi.org/10.1021/acs.energyfuels.4c03070.
- 26.
Zabihi, O.; Ahmadi, M.; Liu, C.; et al. Development of a Low Cost and Green Microwave Assisted Approach towards the Circular Carbon Fibre Composites. Compos. Part B Eng. 2020, 184, 107750. https://doi.org/10.1016/j.compositesb.2020.107750.
- 27.
Cai, W.; Kumar, R.; Zhu, Z.; et al. Catalytic Pyrolysis of Polypropylene Waste for Liquid Fuels Production Using Ni/Al-MOF-Derived Catalysts. Next Sustain. 2024, 4, 100059. https://doi.org/10.1016/j.nxsust.2024.100059.
- 28.
Nabgan, W.; Tuan Abdullah, T.A.; Ikram, M.; et al. Hydrogen and Valuable Liquid Fuel Production from the In-Situ Pyrolysis-Catalytic Steam Reforming Reactions of Cellulose Bio-Polymer Wastes Dissolved in Phenol over Trimetallic Ni-La-Pd/TiCa Nanocatalysts. J. Environ. Chem. Eng. 2023, 11, 109311. https://doi.org/10.1016/j.jece.2023.109311.
- 29.
Chen, S.; Fang, S.; Lim, A.I.; et al. 3D Meso/Macroporous Carbon from MgO-Templated Pyrolysis of Waste Plastic as an Efficient Electrode for Supercapacitors. Chemosphere 2023, 322, 138174. https://doi.org/10.1016/j.chemosphere.2023.138174.
- 30.
He, Q.; Akin, O.; Ureel, Y.; et al. Enhancing Catalytic Pyrolysis of Polypropylene Using Mesopore-Modified HZSM-5 Catalysts: Insights and Strategies for Improved Performance. Front. Chem. Eng. 2024, 6, 1439400. https://doi.org/10.3389/fceng.2024.1439400.
- 31.
Mousavi, S.A.H.S.; Dehaghani, A.H.S. Catalytic Pyrolysis of Plastic Waste to Gasoline, Jet Fuel and Diesel with Nano MOF Derived-Loaded Y Zeolite: Evaluation of Temperature, Zeolite Crystallization and Catalyst Loading Effects. Energy Convers. Manag. 2024, 299, 117825. https://doi.org/10.1016/j.enconman.2023.117825.
- 32.
Liu, Q.; Jiang, D.; Zhou, H.; et al. Pyrolysis–Catalysis Upcycling of Waste Plastic Using a Multilayer Stainless-Steel Catalyst toward a Circular Economy. Proc. Natl. Acad. Sci. USA 2023, 120, e2305078120. https://doi.org/10.1073/pnas.2305078120.
- 33.
Shoukat, B.; Hussain, H.; Naz, M.Y.; et al. Microwave-Assisted Catalytic Deconstruction of Plastics Waste into Nanostructured Carbon and Hydrogen Fuel Using Composite Magnetic Ferrite Catalysts. Scientifica 2024, 2024, 3318047. https://doi.org/10.1155/2024/3318047.
- 34.
Yu, X.; Rao, Z.; Chen, G.; et al. Plasma-Enabled Process with Single-Atom Catalysts for Sustainable Plastic Waste Transformation. Angew. Chem. Int. Ed. 2024, 63, e202404196. https://doi.org/10.1002/anie.202404196.
- 35.
Cartolano, A.; Goud, S.; Cheng, Y.-T.; et al. Olefin and Aromatics Production by the Catalytic Pyrolysis of Polymers. WO2020231488A1, 19 November 2020.
- 36.
ExxonMobil Corporation. ExxonMobil. Available online: https://corporate.exxonmobil.com/ (accessed on 25 April 2025).
- 37.
Bridgestone to Build a Pilot Demonstration Plant for Precise Pyrolysis of End-of-Life Tires. Available online: https://www.bridgestone.com/corporate/news/2025013001.html (accessed on 6 April 2025).
- 38.
Boisart, C.; Maille, E. Method for Recycling Plastic Products. US10124512B2, 13 November 2018.
- 39.
- 40.
Pyrowave-Microwave Technology. Available online: https://www.pyrowave.com/en/microwave-technology (accessed on 6 April 2025).
- 41.
KleanFuel, More Commercial Reference Plants Built than Any Other Vendor. Available online: https://kleanfuel.com/plastic-to-oil-technologies/ (accessed on 3 April 2025).
- 42.
SABIC’s Circular Solutions Helping to Address Key Sustainability Challenges. Available online: https://www.sabic.com/en/newsandmedia/stories/our-world/sabics-circular-solutions-helping-to-address-key-sustainability-challenges (accessed on 12 March 2025).
- 43.
Covestro Home Page. Available online: https://www.covestro.com/en (accessed on 6 April 2025).
- 44.
Dow and Freepoint Eco-Systems Announce Supply Agreement to Transform Plastic Waste into New Circular Products. Available online: https://corporate.dow.com/en-us/news/press-releases/dow-and-freepoint-eco-systems-announce-supply-agreement-to-trans.html (accessed on 23 March 2025).
- 45.
Catalysts & Adsorbents for Efficient Plastics Recycling. Available online: https://www.clariant.com/en/Business-Units/Catalysts/Energy-Transition/Plastic-Recycling (accessed on 6 April 2025).
- 46.
Clark, J.H.; Bruyn, M.D.; Budarin, V.L. Method for Producing Levoglucosenone. WO2016170329A1, 27 October 2016.
- 47.
Khani, Y.; Valizadeh, S.; Yim, H.; et al. Upgrading of Plastic Waste-Derived Wax through Air Gasification Using Promoted Ni/Al2O3 Catalysts for H2 Generation. Chem. Eng. J. 2023, 477, 147053. https://doi.org/10.1016/j.cej.2023.147053.
- 48.
Abedin, A.; Bai, X.; Muley, P. Microwave-Assisted Catalytic Gasification of Mixed Plastics and Corn Stover for Low Tar, Hydrogen-Rich Syngas Production. Int. J. Hydrogen. Energy 2024, 77, 69–83. https://doi.org/10.1016/j.ijhydene.2024.06.176.
- 49.
Li, B.; Magoua Mbeugang, C.F.; Xie, X.; et al. Catalysis/CO2 Sorption Enhanced Pyrolysis-Gasification of Biomass for H2-Rich Gas Production: Effects of Activated Carbon, NiO Active Component and Calcined Dolomite. Fuel 2023, 334, 126842. https://doi.org/10.1016/j.fuel.2022.126842.
- 50.
Li, Y.; Nahil, M.A.; Williams, P.T. Hydrogen/Syngas Production from Different Types of Waste Plastics Using a Sacrificial Tire Char Catalyst via Pyrolysis–Catalytic Steam Reforming. Energy Fuels 2023, 37, 6661–6673. https://doi.org/10.1021/acs.energyfuels.3c00499.
- 51.
Wu, Y.; Liu, S.; Chen, Y.; et al. Alkali and Alkaline Earth Metals Catalytic Steam Gasification of Ashless Lignin: Influence of the Catalyst Type and Loading Amount. Fuel 2024, 356, 129549. https://doi.org/10.1016/j.fuel.2023.129549.
- 52.
Qin, T.H.; Ji, G.; Qu, B.; et al. Pyrolysis-Catalytic Gasification of Plastic Waste for Hydrogen-Rich Syngas Production with Hybrid-Functional Ni-CaO Ca2SiO4 Catalyst. Carbon. Capture Sci. Technol. 2025, 14, 100382. https://doi.org/10.1016/j.ccst.2025.100382.
- 53.
Zhu, H.L.; Zhang, Y.S.; Materazzi, M.; et al. Co-Gasification of Beech-Wood and Polyethylene in a Fluidized-Bed Reactor. Fuel Process. Technol. 2019, 190, 29–37. https://doi.org/10.1016/j.fuproc.2019.03.010.
- 54.
Bai, B.; Wang, W.; Jin, H. Experimental Study on Gasification Performance of Polypropylene (PP) Plastics in Supercritical Water. Energy 2020, 191, 116527. https://doi.org/10.1016/j.energy.2019.116527.
- 55.
Resonac’s Partnership with Itochu. Available online: https://www.itochu.co.jp/en/news/press/2023/230329_2.html (accessed on 6 April 2025).
- 56.
Firmansyah, S.N.; Sun, H.; Yoo, C.-J.; et al. Upgrading Polyethylene Plastic Waste into a Biodegradable Polymer: Harnessing a Hybrid Chemical Oxidation–Biological Conversion Approach. Chem. Eng. J. 2025, 504, 158823. https://doi.org/10.1016/j.cej.2024.158823.
- 57.
Cao, R.; Zhang, M.-Q.; Hu, C.; et al. Catalytic Oxidation of Polystyrene to Aromatic Oxygenates over a Graphitic Carbon Nitride Catalyst. Nat. Commun. 2022, 13, 4809. https://doi.org/10.1038/s41467-022-32510-x.
- 58.
Chen, Q.; Yan, H.; Zhao, K.; et al. Catalytic Oxidation Upcycling of Polyethylene Terephthalate to Commodity Carboxylic Acids. Nat. Commun. 2024, 15, 10732. https://doi.org/10.1038/s41467-024-54822-w.
- 59.
Wang, K.; Jia, R.; Cheng, P.; et al. Highly Selective Catalytic Oxi-upcycling of Polyethylene to Aliphatic Dicarboxylic Acid under a Mild Hydrogen-Free Process. Angew. Chem. Int. Ed. 2023, 62, e202301340. https://doi.org/10.1002/anie.202301340.
- 60.
Xu, Z.; Munyaneza, N.E.; Zhang, Q.; et al. Chemical Upcycling of Polyethylene, Polypropylene, and Mixtures to High-Value Surfactants. Science 2023, 381, 666–671. https://doi.org/10.1126/science.adh0993.
- 61.
Sullivan, K.P.; Werner, A.Z.; Ramirez, K.J.; et al. Mixed Plastics Waste Valorization through Tandem Chemical Oxidation and Biological Funneling. Science 2022, 378, 207–211. https://doi.org/10.1126/science.abo4626.
- 62.
Homepage. EcoCatalytic Technologies. Available online: https://ecocatalytic.com/ (accessed on 25 April 2025).
- 63.
Price Trend Data. Available online: https://businessanalytiq.com/ (accessed on 25 April 2025).
- 64.
Giraldo-Narcizo, S.; Guenani, N.; Sánchez-Pérez, A.M.; et al. Accelerated Polyethylene Terephthalate (PET) Enzymatic Degradation by Room Temperature Alkali Pre-treatment for Reduced Polymer Crystallinity. ChemBioChem 2023, 24, e202200503. https://doi.org/10.1002/cbic.202200503.
- 65.
Yao, C.; Xia, W.; Dou, M.; et al. Oxidative Degradation of UV-Irradiated Polyethylene by Laccase-Mediator System. J. Hazard. Mater. 2022, 440, 129709. https://doi.org/10.1016/j.jhazmat.2022.129709.
- 66.
Meza Huaman, S.M.; Nicholson, J.H.; Brogan, A.P.S. A General Route to Retooling Hydrolytic Enzymes toward Plastic Degradation. Cell Rep. Phys. Sci. 2024, 5, 101783. https://doi.org/10.1016/j.xcrp.2024.101783.
- 67.
Kong, D.; Wang, L.; Chen, X.; et al. Chemical-Biological Degradation of Polyethylene Combining Baeyer–Villiger Oxidation and Hydrolysis Reaction of Cutinase. Green. Chem. 2022, 24, 2203–2211. https://doi.org/10.1039/D2GC00425A.
- 68.
Shi, L.; Liu, P.; Tan, Z.; et al. Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution. Angew. Chem. Int. Ed. 2023, 62, e202218390. https://doi.org/10.1002/anie.202218390.
- 69.
Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of Polyethylene by Penicillium Simplicissimum Isolated from Local Dumpsite of Shivamogga District. Environ. Dev. Sustain. 2015, 17, 731–745. https://doi.org/10.1007/s10668-014-9571-4.
- 70.
Zangiabadi, M.; Zhao, Y. Synergistic Hydrolysis of Cellulose by a Blend of Cellulase-Mimicking Polymeric Nanoparticle Catalysts. J. Am. Chem. Soc. 2022, 144, 17110–17119. https://doi.org/10.1021/jacs.2c06848.
- 71.
Branson, Y.; Liu, J.; Schmidt, L.; et al. One-Pot Depolymerization of Mixed Plastics Using a Dual Enzyme System. ChemSusChem 2025, 18, e202402416. https://doi.org/10.1002/cssc.202402416.
- 72.
Azam, M.U.; Fernandes, A.; Ferreira, M.J.; et al. Pore-Structure Engineering of Hierarchical β Zeolites for the Enhanced Hydrocracking of Waste Plastics to Liquid Fuels. ACS Catal. 2024, 14, 16148–16165. https://doi.org/10.1021/acscatal.4c05354.
- 73.
Han, X.; Zhou, X.; Ji, T.; et al. Boosting the Catalytic Performance of Metal–Zeolite Catalysts in the Hydrocracking of Polyolefin Wastes by Optimizing the Nanoscale Proximity. EES. Catal. 2024, 2, 300–310. https://doi.org/10.1039/D3EY00180F.
- 74.
Liu, S.; Kots, P.A.; Vance, B.C.; et al. Plastic Waste to Fuels by Hydrocracking at Mild Conditions. Sci. Adv. 2021, 7, eabf8283. https://doi.org/10.1126/sciadv.abf8283.
- 75.
Al-Iessa, M.; Al-Zaidi, B.; Almukhtar, R.; et al. Optimization of Polypropylene Waste Recycling Products as Alternative Fuels through Non-Catalytic Thermal and Catalytic Hydrocracking Using Fresh and Spent Pt/Al2O3 and NiMo/Al2O3 Catalysts. Energies 2023, 16, 4871. https://doi.org/10.3390/en16134871.
- 76.
Qiu, Z.; Lin, S.; Chen, Z.; et al. A Reusable, Impurity-Tolerant and Noble Metal–Free Catalyst for Hydrocracking of Waste Polyolefins. Sci. Adv. 2023, 9, eadg5332. https://doi.org/10.1126/sciadv.adg5332.
- 77.
Lee, W.-T.; Bobbink, F.D.; Van Muyden, A.P.; et al. Catalytic Hydrocracking of Synthetic Polymers into Grid-Compatible Gas Streams. Cell Rep. Phys. Sci. 2021, 2, 100332. https://doi.org/10.1016/j.xcrp.2021.100332.
- 78.
正純 田村圭一 冨重善直 中川. Solid Catalyst, Method for Producing Same, Method for Producing Oil. JP7304615B2, 7 July 2023.
- 79.
Dow to Simplify Plastic Waste-to-Feedstock Process through Investment with Start-Up Plastogaz. Available online: https://ch.dow.com/en-us/news/press-releases/dow-invests-in-plastogaz.html (accessed on 6 April 2025).
- 80.
Garforth, A.; Hernandez-Martinez, J.; Akah, A.; et al. Modified Zeolites and Their Use in the Recycling of Plastics Waste. WO2010139997A2, 9 December 2010.
- 81.
Garforth, A.; Martin, A.; Akah, A. Plastics Recycling Process. WO2012076890A1, 14 June 2012.
- 82.
Combating Plastics Waste. Available online: https://engr.udel.edu/news/2021/04/combating-plastics-waste/ (accessed on 6 April 2025).
- 83.
Wu, X.; Tennakoon, A.; Yappert, R.; et al. Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and Selective Hydrogenolysis of Polyolefins. J. Am. Chem. Soc. 2022, 144, 5323–5334. https://doi.org/10.1021/jacs.1c11694.
- 84.
Vance, B.C.; Kots, P.A.; Wang, C.; et al. Ni/SiO2 Catalysts for Polyolefin Deconstruction via the Divergent Hydrogenolysis Mechanism. Appl. Catal. B Environ. 2023, 322, 122138. https://doi.org/10.1016/j.apcatb.2022.122138.
- 85.
Yuan, Y.; Xie, Z.; Turaczy, K.K.; et al. Controlling Product Distribution of Polyethylene Hydrogenolysis Using Bimetallic RuM3 (M = Fe, Co, Ni) Catalysts. Chem. Bio Eng. 2024, 1, 67–75. https://doi.org/10.1021/cbe.3c00007.
- 86.
Lee, J.; Kwon, T.; Hyuk Kang, K.; et al. Tandem Catalysis for Plastic Depolymerization: In Situ Hydrogen Generation via Methanol Aqueous Phase Reforming for Sustainable Polyethylene Hydrogenolysis. Angew. Chem. Int. Ed. 2025, 64, e202420748. https://doi.org/10.1002/anie.202420748.
- 87.
Yamazaki, Y.; Jin, X.; Sun, W.; et al. Bimetallic Synergy in Ru−Pt Alloy Catalyst for Polyethylene Hydrogenolysis. Catalysis 2024. https://doi.org/10.26434/chemrxiv-2024-sm1lp.
- 88.
McCullough, K.E.; Peczak, I.L.; Kennedy, R.M.; et al. Synthesis of Platinum Nanoparticles on Strontium Titanate Nanocuboids via Surface Organometallic Grafting for the Catalytic Hydrogenolysis of Plastic Waste. J. Mater. Chem. A 2023, 11, 1216–1231. https://doi.org/10.1039/D2TA08133D.
- 89.
Chauhan, M.; Thadhani, C.; Rana, B.; et al. Hydrogenolysis of Polyethylene by Metal–Organic Framework Confined Single-Site Ruthenium Catalysts. Chem. Mater. 2024, 36, 10670–10679. https://doi.org/10.1021/acs.chemmater.4c02186.
- 90.
Sadow, A.D.; Huang, W.; Perras, F.A.; et al. Pore-Encapsulated Catalysts for Selective Hydrogenolysis of Plastic Waste. US11857951B2, 2 January 2024.
- 91.
Zhang, Z.; Wang, J.; Ge, X.; et al. Mixed Plastics Wastes Upcycling with High-Stability Single-Atom Ru Catalyst. J. Am. Chem. Soc. 2023, 145, 22836–22844. https://doi.org/10.1021/jacs.3c09338.
- 92.
Green Lizard Group Home Page. Available online: https://www.greenlizard.com/ (accessed on 6 April 2025).
- 93.
Demonstration of Lignin-First Technology at Pilot-Scale. Available online: https://sels-group.eu/demonstration-of-lignin-first-technology-at-pilot-scale-1 (accessed on 6 April 2025).
- 94.
Wang, Y.; Zhang, Y.; Song, H.; et al. Zinc-Catalyzed Ester Bond Cleavage: Chemical Degradation of Polyethylene Terephthalate. J. Clean. Prod. 2019, 208, 1469–1475. https://doi.org/10.1016/j.jclepro.2018.10.117.
- 95.
Wang, Y.; Song, H.; Ge, H.; et al. Controllable Degradation of Polyurethane Elastomer via Selective Cleavage of C O and C N Bonds. J. Clean. Prod. 2018, 176, 873–879. https://doi.org/10.1016/j.jclepro.2017.12.046.
- 96.
Teke, S.; Saud, S.; Bhattarai, R.M.; et al. Optimization of PET Depolymerization for Enhanced Terephthalic Acid Recovery from Commercial PET and Post Consumer PET-Bottles via Low-Temperature Alkaline Hydrolysis. Chemosphere 2024, 365, 143391. https://doi.org/10.1016/j.chemosphere.2024.143391.
- 97.
Tang, S.; Li, F.; Liu, J.; et al. MgO/NaY as Modified Mesoporous Catalyst for Methanolysis of Polyethylene Terephthalate Wastes. J. Environ. Chem. Eng. 2022, 10, 107927. https://doi.org/10.1016/j.jece.2022.107927.
- 98.
Marullo, S.; Rizzo, C.; Dintcheva, N.T.; et al. Amino Acid-Based Cholinium Ionic Liquids as Sustainable Catalysts for PET Depolymerization. ACS Sustain. Chem. Eng. 2021, 9, 15157–15165. https://doi.org/10.1021/acssuschemeng.1c04060.
- 99.
Azeem, M.; Fournet, M.B.; Attallah, O.A. Ultrafast 99% Polyethylene Terephthalate Depolymerization into Value Added Monomers Using Sequential Glycolysis-Hydrolysis under Microwave Irradiation. Arab. J. Chem. 2022, 15, 103903. https://doi.org/10.1016/j.arabjc.2022.103903.
- 100.
Jin, S.B.; Jeong, J.-M.; Son, S.G.; et al. Synthesis of Two-Dimensional Holey MnO2/Graphene Oxide Nanosheets with High Catalytic Performance for the Glycolysis of Poly(Ethylene Terephthalate). Mater. Today Commun. 2021, 26, 101857. https://doi.org/10.1016/j.mtcomm.2020.101857.
- 101.
Yang, Y.; Chen, F.; Shen, T.; et al. Catalytic Depolymerization of Waste Polyethylene Terephthalate Plastic in Supercritical Ethanol by ZnO/γ-Al2O3 Catalyst. Process Saf. Environ. Prot. 2023, 173, 881–892. https://doi.org/10.1016/j.psep.2023.04.001.
- 102.
Wang, T.; Zheng, Y.; Yu, G.; et al. Glycolysis of Polyethylene Terephthalate: Magnetic Nanoparticle CoFe2O4 Catalyst Modified Using Ionic Liquid as Surfactant. Eur. Polym. J. 2021, 155, 110590. https://doi.org/10.1016/j.eurpolymj.2021.110590.
- 103.
Quartinello, F.; Vajnhandl, S.; Volmajer Valh, J.; et al. Synergistic Chemo-enzymatic Hydrolysis of Poly(Ethylene Terephthalate) from Textile Waste. Microb. Biotechnol. 2017, 10, 1376–1383. https://doi.org/10.1111/1751-7915.12734.
- 104.
Shi, Z.; Jiang, H.; Xue, C.; et al. Metal Synergistic Dual Activation Enables Efficient Transesterification by Multinuclear Titanium Catalyst: Recycling and Upcycling of Polyester Waste. Angew. Chem. Int. Ed. 2025, e202505024. https://doi.org/10.1002/anie.202505024.
- 105.
Reju Inaugurates Its First Recycling Plant. Available online: https://recycle.refashion.fr/en/reju-inaugurates-its-first-recycling-plant-ecotextile-news/ (accessed on 6 April 2025).
- 106.
Teijin Frontier Develops New Chemical Recycling Technology for Polyester Fibers. Available online: https://www2.teijin-frontier.com/english/news/post/120/ (accessed on 6 April 2025).
- 107.
Loop Industries-Accelerating the Circular Plastics Economy. Available online: https://www.loopindustries.com/cms/wp-content/uploads/2025/01/Loop-Industries-Investor-Presentation-January-2025-1.pdf (accessed on 6 April 2025).
- 108.
Home. Poseidon Plastics. Available online: https://poseidonplastics.com/ (accessed on 25 April 2025).
- 109.
Ioniqa Home Page. Available online: https://ioniqa.com/ (accessed on 6 April 2025).
- 110.
Lu, H.; Diaz, D.J.; Czarnecki, N.J.; et al. Machine Learning-Aided Engineering of Hydrolases for PET Depolymerization. Nature 2022, 604, 662–667. https://doi.org/10.1038/s41586-022-04599-z.
- 111.
Meng, S.; Li, Z.; Zhang, P.; et al. Deep Learning Guided Enzyme Engineering of Thermobifida Fusca Cutinase for Increased PET Depolymerization. Chin. J. Catal. 2023, 50, 229–238. https://doi.org/10.1016/S1872-2067(23)64470-5.
- 112.
Zheng, J.; Gao, Y.; Li, K.; et al. Machine Learning Assisted Optimization of Polyoxometalate Catalyzed Lignin Oxidation and Depolymerization through Reverse Design. Resour. Conserv. Recycl. 2025, 220, 108337. https://doi.org/10.1016/j.resconrec.2025.108337.
- 113.
Cui, Y.; Chen, Y.; Sun, J.; et al. Computational Redesign of a Hydrolase for Nearly Complete PET Depolymerization at Industrially Relevant High-Solids Loading. Nat. Commun. 2024, 15, 1417. https://doi.org/10.1038/s41467-024-45662-9.
- 114.
Ayub, Y.; Ren, J. Co-Pyrolysis of Biomass and Plastic Waste: Process Prediction and Optimization Based on Artificial Intelligence and Response Optimizer Surrogate Model. Process Saf. Environ. Prot. 2024, 186, 612–624. https://doi.org/10.1016/j.psep.2024.04.049.
- 115.
Robot Does the Recycling Work: UMass Grads Show Off Their AI-Powered Robotic Trash Sorter: I-Corps @ UMass Amherst : UMass Amherst. Available online: https://www.umass.edu/icorps/news/robot-does-recycling-work-umass-grads-show-their-ai-powered-robotic-trash-sorter (accessed on 13 April 2025).
- 116.
Seyyedi, S.R.; Kowsari, E.; Ramakrishna, S.; et al. Marine Plastics, Circular Economy, and Artificial Intelligence: A Comprehensive Review of Challenges, Solutions, and Policies. J. Environ. Manag. 2023, 345, 118591. https://doi.org/10.1016/j.jenvman.2023.118591.
- 117.
Tai, X.Y.; Ocone, R.; Christie, S.D.R.; et al. Multi-Objective Optimisation with Hybrid Machine Learning Strategy for Complex Catalytic Processes. Energy AI 2022, 7, 100134. https://doi.org/10.1016/j.egyai.2021.100134.
- 118.
Paavani, K.; Agarwal, K.; Alam, S.S.; et al. Advances in Plastic to Fuel Conversion: Reactor Design, Operational Optimization, and Machine Learning Integration. Sustain. Energy Fuels 2025, 9, 54–71. https://doi.org/10.1039/D4SE01045K.
- 119.
Ma, Z.; Zhang, Z.; Wang, C.; et al. Boosting Engineering Strategies for Plastic Hydrocracking Applications: A Machine Learning-Based Multi-Objective Optimization Framework. Green. Chem. 2025, 27, 1169–1182. https://doi.org/10.1039/D4GC05259E.
- 120.
Li, J.; Liu, T.; Palansooriya, K.N.; et al. Zeolite-Catalytic Pyrolysis of Waste Plastics: Machine Learning Prediction, Interpretation, and Optimization. Appl. Energy 2025, 382, 125258. https://doi.org/10.1016/j.apenergy.2024.125258.
- 121.
Kolganov, A.A.; Sreenithya, A.; Pidko, E.A. Homogeneous Catalysis in Plastic Waste Upcycling: A DFT Study on the Role of Imperfections in Polymer Chains. ACS Catal. 2023, 13, 13310–13318. https://doi.org/10.1021/acscatal.3c03269.
- 122.
Ramya, L.; Sumathi Thilagasree, C.; Jayakumar, T.; et al. An Appropriate Artificial Intelligence Technique for Plastic Materials Recycling Using Bipolar Dual Hesitant Fuzzy Set. Sci. Rep. 2024, 14, 24817. https://doi.org/10.1038/s41598-024-73180-7.