2506000775
  • Open Access
  • Review
The Role of Catalysts in Waste Polymer Upcycling: Recent Developments and Future Trends
  • Roxana A. Milescu *

Received: 29 Apr 2025 | Revised: 11 Jun 2025 | Accepted: 13 Jun 2025 | Published: 19 Jun 2025

Abstract

The increasing environmental burden of plastic and polymer waste necessitates transformative recycling strategies. This review explores the critical role of catalysts in enabling efficient chemical recycling and upcycling of synthetic and natural polymers with an emphasis on industrial innovations. Emphasizing catalytic depolymerization techniques—such as pyrolysis, gasification, oxidation, hydrocracking, hydrogenolysis, solvolysis, and enzymatic catalysis—the paper highlights recent advances in catalyst design and reactor technologies. This research highlights the interplay between polymer structure and catalyst selection, demonstrating how variations in backbone chemistry can shape catalytic pathways and ultimately affect material performance. Key developments include the use of metal-zeolite systems, metal-organic frameworks (MOFs), hybrid chemo-enzymatic pathways, and AI-optimized processes for selective and scalable conversion of plastic waste. The study outlines the potential of catalytic systems to enhance resource circularity by converting mixed or contaminated waste streams into valuable monomers, fuels, and chemicals. Emerging trends in AI-driven catalyst discovery and process optimization are also examined, positioning catalysis at the forefront of sustainable polymer waste management and circular economy innovation. Organized by depolymerization mechanism to highlight key catalytic pathways, this review integrates representative industrial applications to illustrate both recent breakthroughs and the varying technological maturity of scalable chemical recycling strategies for converting complex waste streams into valuable products.

References 

  • 1.
    Jung, H.; Shin, G.; Kwak, H.; et al. Review of Polymer Technologies for Improving the Recycling and Upcycling Efficiency of Plastic Waste. Chemosphere 2023, 320, 138089. https://doi.org/10.1016/j.chemosphere.2023.138089.
  • 2.
    U.S. Environmental Protection Agency. Plastics: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data (accessed on 6 April 2025).
  • 3.
    Kalina, M.; Tilley, E. “This Is Our Next Problem”: Cleaning Up from the COVID-19 Response. Waste Manag. 2020, 108, 202–205. https://doi.org/10.1016/j.wasman.2020.05.006.
  • 4.
    Ocean Plastic Pollution Explained. Available online: https://theoceancleanup.com/ocean-plastic-pollution-explained/ (accessed on 6 April 2025).
  • 5.
    Clark, J.H. Textile Waste—An Opportunity as Well as a Threat. Green. Carbon. 2023, 1, 146–149. https://doi.org/10.1016/j.greenca.2023.10.002.
  • 6.

    Effects of Disposable Diapers on Environment & Human Health. Available online: https://www.unsustainablemagazine.com/the-effects-of-disposable-diapers-on-the-environment-and-human-health/ (accessed on 6 April 2025).

  • 7.
    Home. GreenBlue. Available online: https://greenblue.org/ (accessed on 6 April 2025).
  • 8.
    Wimberger, L.; Ng, G.; Boyer, C. Light-Driven Polymer Recycling to Monomers and Small Molecules. Nat. Commun. 2024, 15, 2510. https://doi.org/10.1038/s41467-024-46656-3.
  • 9.
    Adam Minter. Junkyard Planet: Travels in the Billion-Dollar Trash Trade; Bloomsbury Publishing: London, UK, 2013.
  • 10.
    Plastics—The Facts 2016 an Analysis of European Plastics Production, Demand and Waste Data. 2016. Available online: https://plasticseurope.org/wp-content/uploads/2021/10/2016-Plastic-the-facts.pdf (accessed on 6 April 2025).
  • 11.

    Guidance on BAT/BEP for the Recycling and Waste Disposal of PBDEs. Available online: https://chm.pops.int/Implementation/NIPs/Guidance/GuidanceonBATBEPfortherecyclingofPBDEs/tabid/3172/Default.aspx (accessed on 6 April 2025).

  • 12.
    Rahimi, A.; García, J.M. Chemical Recycling of Waste Plastics for New Materials Production. Nat. Rev. Chem. 2017, 1, 0046. https://doi.org/10.1038/s41570-017-0046.
  • 13.
    Neste Doubles Waste Plastic Processed During. 2023. Available online: https://www.cpecn.com/news/neste-doubles-waste-plastic-processed-during-2023/ (accessed on 6 April 2025).
  • 14.
    Peplow, M. Can This Revolutionary Plastics-Recycling Plant Help Solve the Pollution Crisis? Nature 2025, 638, 22–25. https://doi.org/10.1038/d41586-025-00293-y.
  • 15.
    US-Based Refinity Acquires Worldwide License for VTT’s Chemical Plastic Recycling Technology. Available online: https://www.vttresearch.com/en/news-and-ideas/us-based-refinity-acquires-worldwide-license-vtts-chemical-plastic-recycling (accessed on 6 April 2025).
  • 16.
    Die Von Ihnen Aufgerufene Seite Existiert Nicht Bioplastics Magazine. Available online: https://www.bioplasticsmagazine.com/en/news/meldungen/20210413-avantium-successfully-produces-polyesters-with-its-plantmeg-from-the-ray-technology-demonstration-plant.php (accessed on 6 April 2025).
  • 17.
    UNEP. Sustainable Fashion to Take Centre Stage on Zero Waste Day. Available online: https://www.unep.org/technical-highlight/sustainable-fashion-take-centre-stage-zero-waste-day (accessed on 6 April 2025).
  • 18.
    Valentini, F.; Pegoretti, A. End-of-Life Options of Tyres. A Review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. https://doi.org/10.1016/j.aiepr.2022.08.006.
  • 19.
    Chen, J.; Li, Z.; Jin, L.; et al. Catalytic Hydrothermal Depolymerization of Nylon 6. J. Mater. Cycles Waste Manag. 2010, 12, 321–325. https://doi.org/10.1007/s10163-010-0304-y.
  • 20.
    Xia, M.; Shao, X.; Sun, Z.; et al. Conversion of Cotton Textile Wastes into Porous Carbons by Chemical Activation with ZnCl2, H3PO4, and FeCl3. Environ. Sci. Pollut. Res. 2020, 27, 25186–25196. https://doi.org/10.1007/s11356-020-08873-3.
  • 21.
    Sanchis-Sebastiá, M.; Ruuth, E.; Stigsson, L.; et al. Novel Sustainable Alternatives for the Fashion Industry: A Method of Chemically Recycling Waste Textiles via Acid Hydrolysis. Waste Manag. 2021, 121, 248–254. https://doi.org/10.1016/j.wasman.2020.12.024.
  • 22.
    IDTechEx Home Page. Available online: https://www.idtechex.com/ (accessed on 6 April 2025).
  • 23.
    Whajah, B.; Da Silva Moura, N.; Blanchard, J.; et al. Catalytic Depolymerization of Waste Polyolefins by Induction Heating: Selective Alkane/Alkene Production. Ind. Eng. Chem. Res. 2021, 60, 15141–15150. https://doi.org/10.1021/acs.iecr.1c02674.
  • 24.
    Li, H.; Tang, K.Y.; Yao, D.; et al. Fe–Co Bimetallic Catalysts for Pyrolysis of Disposable Face Masks and Nitrile Gloves: Synthesis and Characterization of N-Doped Carbon Nanotubes. ACS Omega 2023, 8, 41586–41594. https://doi.org/10.1021/acsomega.3c05708.
  • 25.
    Lahtinen, J.; Ohra-aho, T.; Lindfors, C.; et al. Catalytic Pyrolysis of a Model Plastic Mixture with a Montmorillonite Clay Catalyst and Upgrading via Distillation. Energy Fuels 2024, 38, 21109–21121. https://doi.org/10.1021/acs.energyfuels.4c03070.
  • 26.
    Zabihi, O.; Ahmadi, M.; Liu, C.; et al. Development of a Low Cost and Green Microwave Assisted Approach towards the Circular Carbon Fibre Composites. Compos. Part B Eng. 2020, 184, 107750. https://doi.org/10.1016/j.compositesb.2020.107750.
  • 27.
    Cai, W.; Kumar, R.; Zhu, Z.; et al. Catalytic Pyrolysis of Polypropylene Waste for Liquid Fuels Production Using Ni/Al-MOF-Derived Catalysts. Next Sustain. 2024, 4, 100059. https://doi.org/10.1016/j.nxsust.2024.100059.
  • 28.
    Nabgan, W.; Tuan Abdullah, T.A.; Ikram, M.; et al. Hydrogen and Valuable Liquid Fuel Production from the In-Situ Pyrolysis-Catalytic Steam Reforming Reactions of Cellulose Bio-Polymer Wastes Dissolved in Phenol over Trimetallic Ni-La-Pd/TiCa Nanocatalysts. J. Environ. Chem. Eng. 2023, 11, 109311. https://doi.org/10.1016/j.jece.2023.109311.
  • 29.
    Chen, S.; Fang, S.; Lim, A.I.; et al. 3D Meso/Macroporous Carbon from MgO-Templated Pyrolysis of Waste Plastic as an Efficient Electrode for Supercapacitors. Chemosphere 2023, 322, 138174. https://doi.org/10.1016/j.chemosphere.2023.138174.
  • 30.
    He, Q.; Akin, O.; Ureel, Y.; et al. Enhancing Catalytic Pyrolysis of Polypropylene Using Mesopore-Modified HZSM-5 Catalysts: Insights and Strategies for Improved Performance. Front. Chem. Eng. 2024, 6, 1439400. https://doi.org/10.3389/fceng.2024.1439400.
  • 31.
    Mousavi, S.A.H.S.; Dehaghani, A.H.S. Catalytic Pyrolysis of Plastic Waste to Gasoline, Jet Fuel and Diesel with Nano MOF Derived-Loaded Y Zeolite: Evaluation of Temperature, Zeolite Crystallization and Catalyst Loading Effects. Energy Convers. Manag. 2024, 299, 117825. https://doi.org/10.1016/j.enconman.2023.117825.
  • 32.
    Liu, Q.; Jiang, D.; Zhou, H.; et al. Pyrolysis–Catalysis Upcycling of Waste Plastic Using a Multilayer Stainless-Steel Catalyst toward a Circular Economy. Proc. Natl. Acad. Sci. USA 2023, 120, e2305078120. https://doi.org/10.1073/pnas.2305078120.
  • 33.
    Shoukat, B.; Hussain, H.; Naz, M.Y.; et al. Microwave-Assisted Catalytic Deconstruction of Plastics Waste into Nanostructured Carbon and Hydrogen Fuel Using Composite Magnetic Ferrite Catalysts. Scientifica 2024, 2024, 3318047. https://doi.org/10.1155/2024/3318047.
  • 34.
    Yu, X.; Rao, Z.; Chen, G.; et al. Plasma-Enabled Process with Single-Atom Catalysts for Sustainable Plastic Waste Transformation. Angew. Chem. Int. Ed. 2024, 63, e202404196. https://doi.org/10.1002/anie.202404196.
  • 35.
    Cartolano, A.; Goud, S.; Cheng, Y.-T.; et al. Olefin and Aromatics Production by the Catalytic Pyrolysis of Polymers. WO2020231488A1, 19 November 2020.
  • 36.
    ExxonMobil Corporation. ExxonMobil. Available online: https://corporate.exxonmobil.com/ (accessed on 25 April 2025).
  • 37.
    Bridgestone to Build a Pilot Demonstration Plant for Precise Pyrolysis of End-of-Life Tires. Available online: https://www.bridgestone.com/corporate/news/2025013001.html (accessed on 6 April 2025).
  • 38.
    Boisart, C.; Maille, E. Method for Recycling Plastic Products. US10124512B2, 13 November 2018.
  • 39.
  • 40.
    Pyrowave-Microwave Technology. Available online: https://www.pyrowave.com/en/microwave-technology (accessed on 6 April 2025).
  • 41.
    KleanFuel, More Commercial Reference Plants Built than Any Other Vendor. Available online: https://kleanfuel.com/plastic-to-oil-technologies/ (accessed on 3 April 2025).
  • 42.
    SABIC’s Circular Solutions Helping to Address Key Sustainability Challenges. Available online: https://www.sabic.com/en/newsandmedia/stories/our-world/sabics-circular-solutions-helping-to-address-key-sustainability-challenges (accessed on 12 March 2025).
  • 43.
    Covestro Home Page. Available online: https://www.covestro.com/en (accessed on 6 April 2025).
  • 44.
    Dow and Freepoint Eco-Systems Announce Supply Agreement to Transform Plastic Waste into New Circular Products. Available online: https://corporate.dow.com/en-us/news/press-releases/dow-and-freepoint-eco-systems-announce-supply-agreement-to-trans.html (accessed on 23 March 2025).
  • 45.
    Catalysts & Adsorbents for Efficient Plastics Recycling. Available online: https://www.clariant.com/en/Business-Units/Catalysts/Energy-Transition/Plastic-Recycling (accessed on 6 April 2025).
  • 46.
    Clark, J.H.; Bruyn, M.D.; Budarin, V.L. Method for Producing Levoglucosenone. WO2016170329A1, 27 October 2016.
  • 47.
    Khani, Y.; Valizadeh, S.; Yim, H.; et al. Upgrading of Plastic Waste-Derived Wax through Air Gasification Using Promoted Ni/Al2O3 Catalysts for H2 Generation. Chem. Eng. J. 2023, 477, 147053. https://doi.org/10.1016/j.cej.2023.147053.
  • 48.
    Abedin, A.; Bai, X.; Muley, P. Microwave-Assisted Catalytic Gasification of Mixed Plastics and Corn Stover for Low Tar, Hydrogen-Rich Syngas Production. Int. J. Hydrogen. Energy 2024, 77, 69–83. https://doi.org/10.1016/j.ijhydene.2024.06.176.
  • 49.
    Li, B.; Magoua Mbeugang, C.F.; Xie, X.; et al. Catalysis/CO2 Sorption Enhanced Pyrolysis-Gasification of Biomass for H2-Rich Gas Production: Effects of Activated Carbon, NiO Active Component and Calcined Dolomite. Fuel 2023, 334, 126842. https://doi.org/10.1016/j.fuel.2022.126842.
  • 50.
    Li, Y.; Nahil, M.A.; Williams, P.T. Hydrogen/Syngas Production from Different Types of Waste Plastics Using a Sacrificial Tire Char Catalyst via Pyrolysis–Catalytic Steam Reforming. Energy Fuels 2023, 37, 6661–6673. https://doi.org/10.1021/acs.energyfuels.3c00499.
  • 51.
    Wu, Y.; Liu, S.; Chen, Y.; et al. Alkali and Alkaline Earth Metals Catalytic Steam Gasification of Ashless Lignin: Influence of the Catalyst Type and Loading Amount. Fuel 2024, 356, 129549. https://doi.org/10.1016/j.fuel.2023.129549.
  • 52.
    Qin, T.H.; Ji, G.; Qu, B.; et al. Pyrolysis-Catalytic Gasification of Plastic Waste for Hydrogen-Rich Syngas Production with Hybrid-Functional Ni-CaO Ca2SiO4 Catalyst. Carbon. Capture Sci. Technol. 2025, 14, 100382. https://doi.org/10.1016/j.ccst.2025.100382.
  • 53.
    Zhu, H.L.; Zhang, Y.S.; Materazzi, M.; et al. Co-Gasification of Beech-Wood and Polyethylene in a Fluidized-Bed Reactor. Fuel Process. Technol. 2019, 190, 29–37. https://doi.org/10.1016/j.fuproc.2019.03.010.
  • 54.
    Bai, B.; Wang, W.; Jin, H. Experimental Study on Gasification Performance of Polypropylene (PP) Plastics in Supercritical Water. Energy 2020, 191, 116527. https://doi.org/10.1016/j.energy.2019.116527.
  • 55.
    Resonac’s Partnership with Itochu. Available online: https://www.itochu.co.jp/en/news/press/2023/230329_2.html (accessed on 6 April 2025).
  • 56.
    Firmansyah, S.N.; Sun, H.; Yoo, C.-J.; et al. Upgrading Polyethylene Plastic Waste into a Biodegradable Polymer: Harnessing a Hybrid Chemical Oxidation–Biological Conversion Approach. Chem. Eng. J. 2025, 504, 158823. https://doi.org/10.1016/j.cej.2024.158823.
  • 57.
    Cao, R.; Zhang, M.-Q.; Hu, C.; et al. Catalytic Oxidation of Polystyrene to Aromatic Oxygenates over a Graphitic Carbon Nitride Catalyst. Nat. Commun. 2022, 13, 4809. https://doi.org/10.1038/s41467-022-32510-x.
  • 58.
    Chen, Q.; Yan, H.; Zhao, K.; et al. Catalytic Oxidation Upcycling of Polyethylene Terephthalate to Commodity Carboxylic Acids. Nat. Commun. 2024, 15, 10732. https://doi.org/10.1038/s41467-024-54822-w.
  • 59.
    Wang, K.; Jia, R.; Cheng, P.; et al. Highly Selective Catalytic Oxi-upcycling of Polyethylene to Aliphatic Dicarboxylic Acid under a Mild Hydrogen-Free Process. Angew. Chem. Int. Ed. 2023, 62, e202301340. https://doi.org/10.1002/anie.202301340.
  • 60.
    Xu, Z.; Munyaneza, N.E.; Zhang, Q.; et al. Chemical Upcycling of Polyethylene, Polypropylene, and Mixtures to High-Value Surfactants. Science 2023, 381, 666–671. https://doi.org/10.1126/science.adh0993.
  • 61.
    Sullivan, K.P.; Werner, A.Z.; Ramirez, K.J.; et al. Mixed Plastics Waste Valorization through Tandem Chemical Oxidation and Biological Funneling. Science 2022, 378, 207–211. https://doi.org/10.1126/science.abo4626.
  • 62.
    Homepage. EcoCatalytic Technologies. Available online: https://ecocatalytic.com/ (accessed on 25 April 2025).
  • 63.
    Price Trend Data. Available online: https://businessanalytiq.com/ (accessed on 25 April 2025).
  • 64.
    Giraldo-Narcizo, S.; Guenani, N.; Sánchez-Pérez, A.M.; et al. Accelerated Polyethylene Terephthalate (PET) Enzymatic Degradation by Room Temperature Alkali Pre-treatment for Reduced Polymer Crystallinity. ChemBioChem 2023, 24, e202200503. https://doi.org/10.1002/cbic.202200503.
  • 65.
    Yao, C.; Xia, W.; Dou, M.; et al. Oxidative Degradation of UV-Irradiated Polyethylene by Laccase-Mediator System. J. Hazard. Mater. 2022, 440, 129709. https://doi.org/10.1016/j.jhazmat.2022.129709.
  • 66.
    Meza Huaman, S.M.; Nicholson, J.H.; Brogan, A.P.S. A General Route to Retooling Hydrolytic Enzymes toward Plastic Degradation. Cell Rep. Phys. Sci. 2024, 5, 101783. https://doi.org/10.1016/j.xcrp.2024.101783.
  • 67.
    Kong, D.; Wang, L.; Chen, X.; et al. Chemical-Biological Degradation of Polyethylene Combining Baeyer–Villiger Oxidation and Hydrolysis Reaction of Cutinase. Green. Chem. 2022, 24, 2203–2211. https://doi.org/10.1039/D2GC00425A.
  • 68.
    Shi, L.; Liu, P.; Tan, Z.; et al. Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution. Angew. Chem. Int. Ed. 2023, 62, e202218390. https://doi.org/10.1002/anie.202218390.
  • 69.
    Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of Polyethylene by Penicillium Simplicissimum Isolated from Local Dumpsite of Shivamogga District. Environ. Dev. Sustain. 2015, 17, 731–745. https://doi.org/10.1007/s10668-014-9571-4.
  • 70.
    Zangiabadi, M.; Zhao, Y. Synergistic Hydrolysis of Cellulose by a Blend of Cellulase-Mimicking Polymeric Nanoparticle Catalysts. J. Am. Chem. Soc. 2022, 144, 17110–17119. https://doi.org/10.1021/jacs.2c06848.
  • 71.
    Branson, Y.; Liu, J.; Schmidt, L.; et al. One-Pot Depolymerization of Mixed Plastics Using a Dual Enzyme System. ChemSusChem 2025, 18, e202402416. https://doi.org/10.1002/cssc.202402416.
  • 72.
    Azam, M.U.; Fernandes, A.; Ferreira, M.J.; et al. Pore-Structure Engineering of Hierarchical β Zeolites for the Enhanced Hydrocracking of Waste Plastics to Liquid Fuels. ACS Catal. 2024, 14, 16148–16165. https://doi.org/10.1021/acscatal.4c05354.
  • 73.
    Han, X.; Zhou, X.; Ji, T.; et al. Boosting the Catalytic Performance of Metal–Zeolite Catalysts in the Hydrocracking of Polyolefin Wastes by Optimizing the Nanoscale Proximity. EES. Catal. 2024, 2, 300–310. https://doi.org/10.1039/D3EY00180F.
  • 74.
    Liu, S.; Kots, P.A.; Vance, B.C.; et al. Plastic Waste to Fuels by Hydrocracking at Mild Conditions. Sci. Adv. 2021, 7, eabf8283. https://doi.org/10.1126/sciadv.abf8283.
  • 75.
    Al-Iessa, M.; Al-Zaidi, B.; Almukhtar, R.; et al. Optimization of Polypropylene Waste Recycling Products as Alternative Fuels through Non-Catalytic Thermal and Catalytic Hydrocracking Using Fresh and Spent Pt/Al2O3 and NiMo/Al2O3 Catalysts. Energies 2023, 16, 4871. https://doi.org/10.3390/en16134871.
  • 76.
    Qiu, Z.; Lin, S.; Chen, Z.; et al. A Reusable, Impurity-Tolerant and Noble Metal–Free Catalyst for Hydrocracking of Waste Polyolefins. Sci. Adv. 2023, 9, eadg5332. https://doi.org/10.1126/sciadv.adg5332.
  • 77.
    Lee, W.-T.; Bobbink, F.D.; Van Muyden, A.P.; et al. Catalytic Hydrocracking of Synthetic Polymers into Grid-Compatible Gas Streams. Cell Rep. Phys. Sci. 2021, 2, 100332. https://doi.org/10.1016/j.xcrp.2021.100332.
  • 78.
    正純 田村圭一 冨重善直 中川. Solid Catalyst, Method for Producing Same, Method for Producing Oil. JP7304615B2, 7 July 2023.
  • 79.
    Dow to Simplify Plastic Waste-to-Feedstock Process through Investment with Start-Up Plastogaz. Available online: https://ch.dow.com/en-us/news/press-releases/dow-invests-in-plastogaz.html (accessed on 6 April 2025).
  • 80.
    Garforth, A.; Hernandez-Martinez, J.; Akah, A.; et al. Modified Zeolites and Their Use in the Recycling of Plastics Waste. WO2010139997A2, 9 December 2010.
  • 81.
    Garforth, A.; Martin, A.; Akah, A. Plastics Recycling Process. WO2012076890A1, 14 June 2012.
  • 82.
    Combating Plastics Waste. Available online: https://engr.udel.edu/news/2021/04/combating-plastics-waste/ (accessed on 6 April 2025).
  • 83.
    Wu, X.; Tennakoon, A.; Yappert, R.; et al. Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and Selective Hydrogenolysis of Polyolefins. J. Am. Chem. Soc. 2022, 144, 5323–5334. https://doi.org/10.1021/jacs.1c11694.
  • 84.
    Vance, B.C.; Kots, P.A.; Wang, C.; et al. Ni/SiO2 Catalysts for Polyolefin Deconstruction via the Divergent Hydrogenolysis Mechanism. Appl. Catal. B Environ. 2023, 322, 122138. https://doi.org/10.1016/j.apcatb.2022.122138.
  • 85.
    Yuan, Y.; Xie, Z.; Turaczy, K.K.; et al. Controlling Product Distribution of Polyethylene Hydrogenolysis Using Bimetallic RuM3 (M = Fe, Co, Ni) Catalysts. Chem. Bio Eng. 2024, 1, 67–75. https://doi.org/10.1021/cbe.3c00007.
  • 86.
    Lee, J.; Kwon, T.; Hyuk Kang, K.; et al. Tandem Catalysis for Plastic Depolymerization: In Situ Hydrogen Generation via Methanol Aqueous Phase Reforming for Sustainable Polyethylene Hydrogenolysis. Angew. Chem. Int. Ed. 2025, 64, e202420748. https://doi.org/10.1002/anie.202420748.
  • 87.
    Yamazaki, Y.; Jin, X.; Sun, W.; et al. Bimetallic Synergy in Ru−Pt Alloy Catalyst for Polyethylene Hydrogenolysis. Catalysis 2024. https://doi.org/10.26434/chemrxiv-2024-sm1lp.
  • 88.
    McCullough, K.E.; Peczak, I.L.; Kennedy, R.M.; et al. Synthesis of Platinum Nanoparticles on Strontium Titanate Nanocuboids via Surface Organometallic Grafting for the Catalytic Hydrogenolysis of Plastic Waste. J. Mater. Chem. A 2023, 11, 1216–1231. https://doi.org/10.1039/D2TA08133D.
  • 89.
    Chauhan, M.; Thadhani, C.; Rana, B.; et al. Hydrogenolysis of Polyethylene by Metal–Organic Framework Confined Single-Site Ruthenium Catalysts. Chem. Mater. 2024, 36, 10670–10679. https://doi.org/10.1021/acs.chemmater.4c02186.
  • 90.
    Sadow, A.D.; Huang, W.; Perras, F.A.; et al. Pore-Encapsulated Catalysts for Selective Hydrogenolysis of Plastic Waste. US11857951B2, 2 January 2024.
  • 91.
    Zhang, Z.; Wang, J.; Ge, X.; et al. Mixed Plastics Wastes Upcycling with High-Stability Single-Atom Ru Catalyst. J. Am. Chem. Soc. 2023, 145, 22836–22844. https://doi.org/10.1021/jacs.3c09338.
  • 92.
    Green Lizard Group Home Page. Available online: https://www.greenlizard.com/ (accessed on 6 April 2025).
  • 93.
    Demonstration of Lignin-First Technology at Pilot-Scale. Available online: https://sels-group.eu/demonstration-of-lignin-first-technology-at-pilot-scale-1 (accessed on 6 April 2025).
  • 94.
    Wang, Y.; Zhang, Y.; Song, H.; et al. Zinc-Catalyzed Ester Bond Cleavage: Chemical Degradation of Polyethylene Terephthalate. J. Clean. Prod. 2019, 208, 1469–1475. https://doi.org/10.1016/j.jclepro.2018.10.117.
  • 95.
    Wang, Y.; Song, H.; Ge, H.; et al. Controllable Degradation of Polyurethane Elastomer via Selective Cleavage of C O and C N Bonds. J. Clean. Prod. 2018, 176, 873–879. https://doi.org/10.1016/j.jclepro.2017.12.046.
  • 96.
    Teke, S.; Saud, S.; Bhattarai, R.M.; et al. Optimization of PET Depolymerization for Enhanced Terephthalic Acid Recovery from Commercial PET and Post Consumer PET-Bottles via Low-Temperature Alkaline Hydrolysis. Chemosphere 2024, 365, 143391. https://doi.org/10.1016/j.chemosphere.2024.143391.
  • 97.
    Tang, S.; Li, F.; Liu, J.; et al. MgO/NaY as Modified Mesoporous Catalyst for Methanolysis of Polyethylene Terephthalate Wastes. J. Environ. Chem. Eng. 2022, 10, 107927. https://doi.org/10.1016/j.jece.2022.107927.
  • 98.
    Marullo, S.; Rizzo, C.; Dintcheva, N.T.; et al. Amino Acid-Based Cholinium Ionic Liquids as Sustainable Catalysts for PET Depolymerization. ACS Sustain. Chem. Eng. 2021, 9, 15157–15165. https://doi.org/10.1021/acssuschemeng.1c04060.
  • 99.
    Azeem, M.; Fournet, M.B.; Attallah, O.A. Ultrafast 99% Polyethylene Terephthalate Depolymerization into Value Added Monomers Using Sequential Glycolysis-Hydrolysis under Microwave Irradiation. Arab. J. Chem. 2022, 15, 103903. https://doi.org/10.1016/j.arabjc.2022.103903.
  • 100.
    Jin, S.B.; Jeong, J.-M.; Son, S.G.; et al. Synthesis of Two-Dimensional Holey MnO2/Graphene Oxide Nanosheets with High Catalytic Performance for the Glycolysis of Poly(Ethylene Terephthalate). Mater. Today Commun. 2021, 26, 101857. https://doi.org/10.1016/j.mtcomm.2020.101857.
  • 101.
    Yang, Y.; Chen, F.; Shen, T.; et al. Catalytic Depolymerization of Waste Polyethylene Terephthalate Plastic in Supercritical Ethanol by ZnO/γ-Al2O3 Catalyst. Process Saf. Environ. Prot. 2023, 173, 881–892. https://doi.org/10.1016/j.psep.2023.04.001.
  • 102.
    Wang, T.; Zheng, Y.; Yu, G.; et al. Glycolysis of Polyethylene Terephthalate: Magnetic Nanoparticle CoFe2O4 Catalyst Modified Using Ionic Liquid as Surfactant. Eur. Polym. J. 2021, 155, 110590. https://doi.org/10.1016/j.eurpolymj.2021.110590.
  • 103.
    Quartinello, F.; Vajnhandl, S.; Volmajer Valh, J.; et al. Synergistic Chemo-enzymatic Hydrolysis of Poly(Ethylene Terephthalate) from Textile Waste. Microb. Biotechnol. 2017, 10, 1376–1383. https://doi.org/10.1111/1751-7915.12734.
  • 104.
    Shi, Z.; Jiang, H.; Xue, C.; et al. Metal Synergistic Dual Activation Enables Efficient Transesterification by Multinuclear Titanium Catalyst: Recycling and Upcycling of Polyester Waste. Angew. Chem. Int. Ed. 2025, e202505024. https://doi.org/10.1002/anie.202505024.
  • 105.
    Reju Inaugurates Its First Recycling Plant. Available online: https://recycle.refashion.fr/en/reju-inaugurates-its-first-recycling-plant-ecotextile-news/ (accessed on 6 April 2025).
  • 106.
    Teijin Frontier Develops New Chemical Recycling Technology for Polyester Fibers. Available online: https://www2.teijin-frontier.com/english/news/post/120/ (accessed on 6 April 2025).
  • 107.
    Loop Industries-Accelerating the Circular Plastics Economy. Available online: https://www.loopindustries.com/cms/wp-content/uploads/2025/01/Loop-Industries-Investor-Presentation-January-2025-1.pdf (accessed on 6 April 2025).
  • 108.
    Home. Poseidon Plastics. Available online: https://poseidonplastics.com/ (accessed on 25 April 2025).
  • 109.
    Ioniqa Home Page. Available online: https://ioniqa.com/ (accessed on 6 April 2025).
  • 110.
    Lu, H.; Diaz, D.J.; Czarnecki, N.J.; et al. Machine Learning-Aided Engineering of Hydrolases for PET Depolymerization. Nature 2022, 604, 662–667. https://doi.org/10.1038/s41586-022-04599-z.
  • 111.
    Meng, S.; Li, Z.; Zhang, P.; et al. Deep Learning Guided Enzyme Engineering of Thermobifida Fusca Cutinase for Increased PET Depolymerization. Chin. J. Catal. 2023, 50, 229–238. https://doi.org/10.1016/S1872-2067(23)64470-5.
  • 112.
    Zheng, J.; Gao, Y.; Li, K.; et al. Machine Learning Assisted Optimization of Polyoxometalate Catalyzed Lignin Oxidation and Depolymerization through Reverse Design. Resour. Conserv. Recycl. 2025, 220, 108337. https://doi.org/10.1016/j.resconrec.2025.108337.
  • 113.
    Cui, Y.; Chen, Y.; Sun, J.; et al. Computational Redesign of a Hydrolase for Nearly Complete PET Depolymerization at Industrially Relevant High-Solids Loading. Nat. Commun. 2024, 15, 1417. https://doi.org/10.1038/s41467-024-45662-9.
  • 114.
    Ayub, Y.; Ren, J. Co-Pyrolysis of Biomass and Plastic Waste: Process Prediction and Optimization Based on Artificial Intelligence and Response Optimizer Surrogate Model. Process Saf. Environ. Prot. 2024, 186, 612–624. https://doi.org/10.1016/j.psep.2024.04.049.
  • 115.
    Robot Does the Recycling Work: UMass Grads Show Off Their AI-Powered Robotic Trash Sorter: I-Corps @ UMass Amherst : UMass Amherst. Available online: https://www.umass.edu/icorps/news/robot-does-recycling-work-umass-grads-show-their-ai-powered-robotic-trash-sorter (accessed on 13 April 2025).
  • 116.
    Seyyedi, S.R.; Kowsari, E.; Ramakrishna, S.; et al. Marine Plastics, Circular Economy, and Artificial Intelligence: A Comprehensive Review of Challenges, Solutions, and Policies. J. Environ. Manag. 2023, 345, 118591. https://doi.org/10.1016/j.jenvman.2023.118591.
  • 117.
    Tai, X.Y.; Ocone, R.; Christie, S.D.R.; et al. Multi-Objective Optimisation with Hybrid Machine Learning Strategy for Complex Catalytic Processes. Energy AI 2022, 7, 100134. https://doi.org/10.1016/j.egyai.2021.100134.
  • 118.
    Paavani, K.; Agarwal, K.; Alam, S.S.; et al. Advances in Plastic to Fuel Conversion: Reactor Design, Operational Optimization, and Machine Learning Integration. Sustain. Energy Fuels 2025, 9, 54–71. https://doi.org/10.1039/D4SE01045K.
  • 119.
    Ma, Z.; Zhang, Z.; Wang, C.; et al. Boosting Engineering Strategies for Plastic Hydrocracking Applications: A Machine Learning-Based Multi-Objective Optimization Framework. Green. Chem. 2025, 27, 1169–1182. https://doi.org/10.1039/D4GC05259E.
  • 120.
    Li, J.; Liu, T.; Palansooriya, K.N.; et al. Zeolite-Catalytic Pyrolysis of Waste Plastics: Machine Learning Prediction, Interpretation, and Optimization. Appl. Energy 2025, 382, 125258. https://doi.org/10.1016/j.apenergy.2024.125258.
  • 121.
    Kolganov, A.A.; Sreenithya, A.; Pidko, E.A. Homogeneous Catalysis in Plastic Waste Upcycling: A DFT Study on the Role of Imperfections in Polymer Chains. ACS Catal. 2023, 13, 13310–13318. https://doi.org/10.1021/acscatal.3c03269.
  • 122.
    Ramya, L.; Sumathi Thilagasree, C.; Jayakumar, T.; et al. An Appropriate Artificial Intelligence Technique for Plastic Materials Recycling Using Bipolar Dual Hesitant Fuzzy Set. Sci. Rep. 2024, 14, 24817. https://doi.org/10.1038/s41598-024-73180-7.
Share this article:
How to Cite
Milescu, R. A. The Role of Catalysts in Waste Polymer Upcycling: Recent Developments and Future Trends. Renewable Chemistry 2025, 1 (1), 2. https://doi.org/10.53941/rc.2025.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.