- 1.
Fankhauser, S.; Smith, S.M.; Allen, M.; et al. The meaning of net zero and how to get it right. Nat. Clim. Chang. 2022, 12, 15–21.
- 2.
Christopher, S.; Vikram, M.; Bakli, C.; et al. Renewable energy potential towards attainment of net-zero energy buildings status–A critical review. J. Clean. Prod. 2023, 405, 136942.
- 3.
Bonsu, N.O. Towards a circular and low-carbon economy: Insights from the transitioning to electric vehicles and net zero economy. J. Clean. Prod. 2020, 256, 120659.
- 4.
Ritchie, H. Sector by Sector: Where Do Global Greenhouse Gas Emissions Come from? Available online: https://ourworldindata.org/ghg-emissions-by-sector (accessed on 11 June 2025).
- 5.
Griffiths, S.; Sovacool, B.K.; Iskandarova, M.; et al. Bridging the gap between defossilization and decarbonization to achieve net-zero industry. Environ. Res. Lett. 2025, 20, 024063.
- 6.
Sparks, J.; Scaldaferri, C.; Welfle, A.; et al. Carbon for Chemicals: How Can Biomass Contribute to the Defossilisation of the Chemicals Sector? University of Manchester: Manchester, UK, 2024.
- 7.
Attard, T.M.; Clark, J.H.; McElroy, C.R. Recent developments in key biorefinery areas. Curr. Opin. Green Sustain. Chem. 2020, 21, 64–74.
- 8.
Clark, J.H. Green biorefinery technologies based on waste biomass. Green Chem. 2019, 21, 1168–1170.
- 9.
Awasthi, M.K.; Sindhu, R.; Sirohi, R.; et al. Agricultural waste biorefinery development towards circular bioeconomy. Renew. Sustain. Energy Rev. 2022, 158, 112122.
- 10.
Van den Bosch, S.; Schutyser, W.; Vanholme, R.; et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 2015, 8, 1748–1763.
- 11.
Mak, T.M.; Xiong, X.; Tsang, D.C.; et al. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresour. Technol. 2020, 297, 122497.
- 12.
Govindasamy, G.; Jaya Balaji, P.K. Configuring municipal solid and liquid waste treatment plants into bio-refinery to achieve sustainable development goals. J. Mater. Cycles Waste Manag. 2025, 27, 2016–2031.
- 13.
Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755.
- 14.
Farmer, T.J.; Mascal, M. Platform molecules. Introd. Chem. Biomass 2015, 89–155. https://doi.org/10.1002/9781118714478.ch4.
- 15.
Tian, C.; Dorakhan, R.; Wicks, J.; et al. Progress and roadmap for electro-privileged transformations of bio-derived molecules. Nat. Catal. 2024, 7, 350–360.
- 16.
Yong, K.J.; Wu, T.Y.; Lee, C.B.T.L.; et al. Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass Bioenergy 2022, 161, 106458.
- 17.
Rackemann, D.W.; Doherty, W.O. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefining 2011, 5, 198–214.
- 18.
Prete, P.; Cespi, D.; Passarini, F.; et al. Glycidol syntheses and valorizations: Boosting the glycerol biorefinery. Curr. Opin. Green Sustain. Chem. 2022, 35, 100624.
- 19.
Klement, T.; Büchs, J. Itaconic acid–A biotechnological process in change. Bioresour. Technol. 2013, 135, 422–431.
- 20.
Allais, F. Total syntheses and production pathways of levoglucosenone, a highly valuable chiral chemical platform for the chemical industry. Curr. Opin. Green Sustain. Chem. 2023, 40, 100744.
- 21.
Gomez, M.; Quincoces, J.; Kuhla, B.; et al. Synthesis of Push-Pull Derivatives of Levoglucosenone as Precursors of Annellated Pyranosides; Taylor Francis: Oxford, UK, 1999.
- 22.
Tsai, Y.-h.; Etichetti, C.M.B.; Cicetti, S.; et al. Design, synthesis and evaluation of novel levoglucosenone derivatives as promising anticancer agents. Bioorg. Med. Chem. Lett. 2020, 30, 127247.
- 23.
Camp, J.E.; Greatrex, B.W. Levoglucosenone: Bio-based platform for drug discovery. Front. Chem. 2022, 10, 902239.
- 24.
Sherwood, J.; Constantinou, A.; Moity, L.; et al. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem. Commun. 2014, 50, 9650–9652.
- 25.
Fan, J.; Budarin, V.; MacQuarrie, D.J.; et al. A new perspective in bio-refining: Levoglucosenone and cleaner lignin from waste biorefinery hydrolysis lignin by selective conversion of residual saccharides. Energy Environ. Sci. 2016, 9, 2571–2574.
- 26.
Huang, X.; Kudo, S.; Asano, S.; et al. Improvement of levoglucosenone selectivity in liquid phase conversion of cellulose-derived anhydrosugar over solid acid catalysts. Fuel Process. Technol. 2021, 212, 106625.
- 27.
Richardson, D.E.; Raverty, W.D. Predicted environmental effects from liquid emissions in the manufacture of levoglucosenone and Cyrene. Appita: Technol. Innov. Manuf. Environ. 2016, 69, 344–351.
- 28.
Wilson, K.L.; Murray, J.; Jamieson, C.; et al. Cyrene as a bio-based solvent for HATU mediated amide coupling. Org. Biomol. Chem. 2018, 16, 2851–2854.
- 29.
Camp, J.E. Bio-available solvent Cyrene: Synthesis, derivatization, and applications. ChemSusChem 2018, 11, 3048–3055.
- 30.
Wilson, K.L.; Murray, J.; Jamieson, C.; et al. Cyrene as a bio-based solvent for the Suzuki–Miyaura cross-coupling. Synlett 2018, 29, 650–654.
- 31.
ReSolute High Performing and Safe Solvent Derived from Celllulosic Feedstocks. Available online: https://www.cbe.europa.eu/projects/resolute (accessed on 17 June 2025).
- 32.
Sheldon, R.A. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chem. A Eur. J. 2024, 30, e202402207.
- 33.
Warne, C.M.; Fadlallah, S.; Whitwood, A.C.; et al. Levoglucosenone-derived synthesis of bio-based solvents and polyesters. Green Chem. Lett. Rev. 2023, 16, 2154573.
- 34.
Stanfield, M.K.; Terry, R.S.; Smith, J.A.; et al. Levoglucosan and levoglucosenone as bio-based platforms for polymer synthesis. Polym. Chem. 2023, 14, 4949–4956.
- 35.
Mouterde, L.M.; Allais, F.; Stewart, J.D. Enzymatic reduction of levoglucosenone by an alkene reductase (OYE 2.6): A sustainable metal-and dihydrogen-free access to the bio-based solvent Cyrene®. Green Chem. 2018, 20, 5528–5532.
- 36.
Ma, X.; Liu, X.; Yates, P.; et al. Manipulating the enone moiety of levoglucosenone: 1, 3-Transposition reactions including ones leading to isolevoglucosenone. Tetrahedron 2018, 74, 5000–5011.
- 37.
Sharipov, B.T.; Davydova, A.N.; Faizullina, L.K.; et al. Preparation of the diastereomerically pure 2S-hydroxy derivative of dihydrolevoglucosenone (cyrene). Mendeleev Commun. 2019, 29, 200–202.
- 38.
Witczak, Z.J.; Kaplon, P.; Kolodziej, M. Thiosugars VI: A Simple Stereoselective Approach to (1→3)-3-S-Thiodisaccharides from Levoglucosenone; Springer: Berlin/Heidelberg, Germany, 2002.
- 39.
Sharipov, B.T.; Davidova, A.N.; Ryabova, A.S.; et al. Synthesis and fungicidal activity of methylsulfanylmethyl ether derivatives of levoglucosenone. Chem. Heterocycl. Compd. 2019, 55, 31–37.
- 40.
Witczak, Z.J.; Kaplon, P.; Kolodziej, M. Thiosugars VI: A Simple Stereoselective Approach to (1→3)-3-S-Thiodisaccharides from Levoglucosenone. In Timely Research Perspectives in Carbohydrate Chemistry; Springer: Berlin/Heidelberg, Germany, 2002; pp. 171–180.
- 41.
Krishna, S.H.; Walker, T.W.; Dumesic, J.A.; et al. Kinetics of levoglucosenone isomerization. ChemSusChem 2017, 10, 129–138.
- 42.
Diot-Néant, F.; Mouterde, L.; Couvreur, J.; et al. Green synthesis of 2-deoxy-D-ribonolactone from cellulose-derived levoglucosenone (LGO): A promising monomer for novel bio-based polyesters. Eur. Polym. J. 2021, 159, 110745.
- 43.
Shafizadeh, F.; Furneaux, R.H.; Stevenson, T.T. Some reactions of levoglucosenone. Carbohydr. Res. 1979, 71, 169–191.
- 44.
Mlostoń, G.; Urbaniak, K.; Palusiak, M.; et al. (3 + 2)-Cycloadditions of Levoglucosenone (LGO) with Fluorinated Nitrile Imines Derived from Trifluoroacetonitrile: An Experimental and Computational Study. Molecules 2023, 28, 7348.
- 45.
Camp, J.; Greatrex, B. Levoglucosenone: Bio-based platform for drug discovery Front. Chem 2022, 10, 902239.
- 46.
Plenert, A.C.; Mendez-Vega, E.; Sander, W. Micro-vs. macrosolvation in Reichardt’s dyes. J. Am. Chem. Soc. 2021, 143, 13156–13166.
- 47.
Jessop, P.G.; Jessop, D.A.; Fu, D.; et al. Solvatochromic parameters for solvents of interest in green chemistry. Green Chem. 2012, 14, 1245–1259.