- 1.
Graumnitz, S.; Jungmann, D. The Database ‘Pharmaceuticals in the Environment’—Update for the Period 2017–2020. 2021. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/texte_163-2021_the_database_pharmaceuticals_in_the_environment.pdf (accessed on 10 July 2025).
- 2.
Swan, G.; Naidoo, V.; Cuthbert, R.; et al. Removing the threat of diclofenac to critically endangered Asian vultures. PLoS Biol. 2006, 4, 395–402. https://doi.org/10.1371/journal.pbio.0040066.
- 3.
European Medicine Agency. Nitrosamine Impurities Scientific Review on the Risk of Nitrosamine Impurities in Human Medicines; European Medicine Agency: Amsterdam, The Netherlands, 2018; Volume 5, pp. 1–21.
- 4.
European Commission. European Union Strategic Approach to Pharmaceuticals in the Environment; European Commission: Brussels, Belgium, 2019; Volume 128, p. 13.
- 5.
Wells, A.S.; Finch, G.L.; Michels, P.C.; et al. Use of enzymes in the manufacture of active pharmaceutical ingredients—A science and safety-based approach to ensure patient safety and drug quality. Org. Process Res. Dev. 2012, 16, 1986–1993. https://doi.org/10.1021/op300153b.
- 6.
Bilal, M.; Iqbal, H.M.N.; Barceló, D. Perspectives on the Feasibility of Using Enzymes for Pharmaceutical Removal in Wastewater. Handb. Environ. Chem. 2021, 108, 119–143. https://doi.org/10.1007/698_2020_661.
- 7.
Mir-Tutusaus, J.A.; Parladé, E; Villagrasa, M.; et al. Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor. J. Biol. Eng. 2019, 13, 47. https://doi.org/10.1186/s13036-019-0179-y.
- 8.
Sá, H.; Michelin, M.; Tavares, T.; et al. Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques. Biomolecules 2022, 12, 1489. https://doi.org/10.3390/biom12101489.
- 9.
Somu, P.; Narayanasamy, S.; Gomez, L.A.; et al. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. Environ. Res. 2022, 212, 113411. https://doi.org/10.1016/j.envres.2022.113411.
- 10.
Slater, C.S.; Savelski, M.J. Towards a greener manufacturing environment. Innov. Pharm.Technol. 2009, 29, 78–83.
- 11.
Spina, F.; Cordero, C.E.I.; Sgorbini, B.; et al. Endocrine disrupting chemicals (EDCs) in municipal wastewaters: Effective degradation and detoxification by fungal laccases. Chem. Eng. Trans. 2013, 32, 391–396. https://doi.org/10.3303/CET1332066.
- 12.
Al-Sareji, O.J.; Meiczinger, M.; Salman, J.M.; et al. Ketoprofen and aspirin removal by laccase immobilized on date stones. Chemosphere 2023, 311, 137133. https://doi.org/10.1016/j.chemosphere.2022.137133.
- 13.
Huber, D.; Bleymaier, K.; Pellis, A.; et al. Laccase catalyzed elimination of morphine from aqueous systems. New Biotechnol. 2018, 42, 19–25. https://doi.org/10.1016/j.nbt.2018.01.003.
- 14.
Becker, D.; Della Giustina, S.V.; Rodriguez-Mozaz, S.; et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—Degradation of compounds does not always eliminate toxicity. Bioresour. Technol. 2016, 219, 500–509. https://doi.org/10.1016/j.biortech.2016.08.004.
- 15.
Yang, J.; Lin, Y.; Yang, X.; et al. Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. J. Hazard. Mater. 2017, 322, 525–531. https://doi.org/10.1016/j.jhazmat.2016.10.019.
- 16.
Alharbi, S.K.; Nghiem, L.D.; Van De Merwe, J.P.; et al. Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor: Transformation products and toxicity of treated effluent. Biocatal. Biotransform. 2019, 37, 399–408. https://doi.org/10.1080/10242422.2019.1580268.
- 17.
Zdarta, J.; Jankowska, K.; Wyszowska, M.; et al. Robust biodegradation of naproxen and diclofenac by laccase immobilized using electrospun nanofibers with enhanced stability and reusability. Mater. Sci. Eng. C 2019, 103, 109789. https://doi.org/10.1016/j.msec.2019.109789.
- 18.
Ostadhadi-Dehkordi, S.; Tabatabaei-Sameni, M.; Forootanfar, H.; et al. Degradation of some benzodiazepines by a laccase-mediated system in aqueous solution. Bioresour. Technol. 2012, 125, 344–347. https://doi.org/10.1016/j.biortech.2012.09.039.
- 19.
Chmelová, D.; Ondrejovič, M.; Miertuš, S. Laccases as Effective Tools in the Removal of Pharmaceutical Products from Aquatic Systems. Life 2024, 14, 230. https://doi.org/10.3390/life14020230.
- 20.
Fabbri, F.; Bischof, S.; Mayr, S.; et al. The Biomodified Lignin Platform: A Review. Polymers 2023, 15, 1694. https://doi.org/10.3390/polym15071694.
- 21.
Navada, K.K.; Kulal, A. Enzymatic degradation of chloramphenicol by laccase from Trametes hirsuta and comparison among mediators. Int. Biodeterior. Biodegrad. 2019, 138, 63–69. https://doi.org/10.1016/j.ibiod.2018.12.012.
- 22.
Collado, N.; Rodriguez-Mozaz, S.; Gros, M.; et al. Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system. Environ. Pollut. 2014, 185, 202–212. https://doi.org/10.1016/j.envpol.2013.10.040.
- 23.
Lacorte, S.; Gómez-Canela, C.; Calas-Blanchard, C. Pharmaceutical residues in senior residences wastewaters: High loads, emerging risks. Molecules 2021, 26, 5047. https://doi.org/10.3390/molecules26165047.
- 24.
Giebułtowicz, J.; Nałecz-Jawecki, G. Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicol. Environ. Saf. 2014, 104, 103–109. https://doi.org/10.1016/j.ecoenv.2014.02.020.
- 25.
Clinical.com. Trazodone Drug Usage Statistics, United States, 2013–2022. 2022. Available online: https://clincalc.com/DrugStats/Drugs/Trazodone (accessed on 1 May 2025).
- 26.
IMARC. Trazodone HCl pricing Report 2024: Price Trend, Chart, Market Analysis, News, Demand, Historical and Forecast Data. 2023. Available online: https://www.imarcgroup.com/trazodone-hcl-pricing-report (accessed on 1 May 2025).
- 27.
García-Zamora, J.L.; León-Aguirre, K.; Quiroz-Morales, R.; et al. Chloroperoxidase-mediated halogenation of selected pharmaceutical micropollutants. Catalysts 2018, 8, 32. https://doi.org/10.3390/catal8010032.
- 28.
Henschler, D. Toxicity of Chlorinated Organic Compounds: Effects of the Introduction of Chlorine in Organic Molecules. Angew. Chem. Int. Ed. Engl. 1994, 33, 1920–1935. https://doi.org/10.1002/anie.199419201.
- 29.
Iacoangeli, T.; Moro, L.M.; Torchiarolo, G.C.; et al. Continuous Process for the Preparation of Trazodone. U.S. Patent US20240139179A1, 2 May 2019.
- 30.
Marchetti, M.; Iacoangeli, T.; Ciottoli, G.B.; et al. Trazodone and Trazodone Hydrochloride in Purified Form. U.S. Patent US20240139179A1, 2007.
- 31.
Nyanhongo, G.S.; Gomes, J.; Gübitz, G.M.; et al. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res. 2002, 36, 1449–1456. https://doi.org/10.1016/S0043-1354(01)00365-7.
- 32.
Doppler, M.; Bueschl, C.; Ertl, F.; et al. Towards a broader view of the metabolome: Untargeted profiling of soluble and bound polyphenols in plants. Anal. Bioanal. Chem. 2022, 414, 7421–7433. https://doi.org/10.1007/s00216-022-04134-z.
- 33.
Wu, M.H.; Lin, M.C.; Lee, C.C.; et al. Enhancement of laccase activity by pre-incubation with organic solvents. Sci. Rep. 2019, 9, 1–11. https://doi.org/10.1038/s41598-019-45118-x.
- 34.
Dordick, J.S. Designing Enzymes for Use in Organic Solvents. Biotechnol. Prog. 1992, 8, 259–267. https://doi.org/10.1021/bp00016a001.
- 35.
Mohtashami, M.; Fooladi, J.; Haddad-Mashadrizeh, A.; et al. Molecular mechanism of enzyme tolerance against organic solvents: Insights from molecular dynamics simulation. Int. J. Biol. Macromol. 2019, 122, 914–923. https://doi.org/10.1016/j.ijbiomac.2018.10.172.
- 36.
Dezfouli, R.A.; Esmaeilidezfouli, E. Optimizing laccase selection for enhanced outcomes: A comprehensive review. 3 Biotech 2024, 14, 165. https://doi.org/10.1007/s13205-024-04015-5.
- 37.
Abadulla, E.; Tzanov, T.; Costa, S.; et al. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol. 2000, 66, 3357–3362. https://doi.org/10.1128/AEM.66.8.3357-3362.2000.
- 38.
Mizuno, H.; Hirai, H.; Kawai, S.; et al. Removal of estrogenic activity of iso-butylparaben and n-butylparaben by laccase in the presence of 1-hydroxybenzotriazole. Biodegradation 2009, 20, 533–539. https://doi.org/10.1007/s10532-008-9242-y.
- 39.
Ashe, B.; Nguyen, L.N.; Hai, F.I.; et al. Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. Int. Biodeterior. Biodegrad. 2016, 113, 169–176. https://doi.org/10.1016/j.ibiod.2016.04.027.
- 40.
Rebrikov, D.N.; Stepanova, E.V.; Koroleva, O.V.; et al. Laccase of the lignolytic fungus Trametes hirsuta: Purification and characterization of the enzyme, and cloning and primary structure of the gene. Appl. Biochem. Microbiol. 2006, 42, 564–572. https://doi.org/10.1134/S0003683806060068.
- 41.
Hegde, R.N.; Shetti, N.P.; Nandibewoor, S.T. Electro-oxidation and determination of trazodone at multi-walled carbon nanotube-modified glassy carbon electrode. Talanta 2009, 79, 361–368. https://doi.org/10.1016/j.talanta.2009.03.064.
- 42.
Fabbrini, M.; Galli, C.; Gentili, P. Comparing the catalytic efficiency of some mediators of laccase. J. Mol. Catal. B Enzym. 2002, 16, 231–240. https://doi.org/10.1016/S1381-1177(01)00067-4.
- 43.
Osawa, R.A.; Barrocas, B.T.; Monteiro, O.C.; et al. Photocatalytic degradation of amitriptyline, trazodone and venlafaxine using modified cobalt-titanate nanowires under UV–Vis radiation: Transformation products and in silico toxicity. Chem. Eng. J. 2019, 373, 1338–1347. https://doi.org/10.1016/j.cej.2019.05.137.
- 44.
Osawa, R.A.; Monteiro, O.C.; Oliveira, M.C.; et al. Comparative study on photocatalytic degradation of the antidepressant trazodone using (Co, Fe and Ru) doped titanate nanowires: Kinetics, transformation products and in silico toxicity assessment. Chemosphere 2020, 259, 127486. https://doi.org/10.1016/j.chemosphere.2020.127486.
- 45.
Thummar, M.; Patel, P.N.; Kushwah, B.S.; et al. Application of the UHPLC method for separation and characterization of major photolytic degradation products of trazodone by LC-MS and NMR. New J. Chem. 2018, 42, 16972–16984. https://doi.org/10.1039/c8nj03545h.
- 46.
Mathur, P.; Kochar, M.; Conlan, X.A.; et al. Laccase mediated transformation of fluoroquinolone antibiotics: Analyzing degradation pathways and assessing algal toxicity. Environ. Pollut. 2024, 360, 124700. https://doi.org/10.1016/j.envpol.2024.124700.