- 1.
Sethupathy, S.; Morales, G.M.; Gao, L.; et al. Lignin valorization: Status, challenges and opportunities. Biores. Tech. 2022, 347, 126696. https://doi.org/10.1016/j.biortech.2022.126696.
- 2.
Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; et al. A concise review of current lignin production, applications, products and their environmental impact. J. Ind. Crops 2019, 139, 111526. https://doi.org/10.016/j.indcrop.2019.111526.
- 3.
Zijlstra, D.S.; Analbers, C.A.; de Korte, J.; et al. Efficient Mild Organosolv Lignin Extraction in a Flow-Through Setup Yielding Lignin with High β-O-4 Content. Polymers 2019, 11, 1913. https://doi.org/10.3390/polym11121913.
- 4.
Renders, T.; Van den Bossche, G.; Vangeel, T.; et al. Reductive catalytic fractionation: State of the art of the lignin-first biorefinery. Curr. Op. Biotech. 2019, 56, 193–201. https://doi.org/10.1016/j.copbio.2018.12.005.
- 5.
Khorshidi, F.H.; Najafi, S.K.; Najafi, F.; et al. The extraction of polyol for the synthesis of lignin-based polyurethane coatings—A review. Wood Mater. Sci. Eng. 2024, 19, 794–802. https://doi.org/10.1080/17480272.2024.2335502.
- 6.
Luo, Z.; Liu, C.; Radu, A.; et al. Carbon–carbon bond cleavage for a lignin refinery. Nat. Chem. Eng. 2024, 1, 61–72. https://doi.org/10.1038/s44286-023-00006-0.
- 7.
Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Progr. Polym. Sc. 2014, 39, 1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004.
- 8.
Wybo, N.; Duval, A.; Avérous, L. Benign and selective amination of lignins towards aromatic biobased building blocks with primary amines. Angew. Chem. Int. Ed. 2024, 63, e202403806. https://doi.org/10.1002/anie.202403806.
- 9.
Wybo, N.; Cherasse, E.; Duval, A.; et al. Unlocking sustainable, aromatic, and versatile materials through transurethanization: Development of non-isocyanate polyurethanes from lignins. Mater. Chem. A 2025, 13, 11557–11572. https://doi.org/10.1039/d4ta08582e.
- 10.
Pu, J.; Nguyen, T.-S.; Leclerc, E.; et al. Lignin catalytic hydroconversion in a semi-continuous reactor: An experimental study. Appl. Catal. B Env. 2019, 256, 117769. https://doi.org/10.1016/j.apcatb.2019.117769.
- 11.
Kosyakov, D.S.; Pikovskoi, I.I.; Ul’yanovskii, N.V. Dopant-assisted atmospheric pressure photoionization Orbitrap mass spectrometry–An approach to molecular characterization of lignin oligomers. Anal. Chim. Acta 2021, 1179, 338836. https://doi.org/10.1016/j.aca.2021.338836.
- 12.
Letourneau, D.R.; Volmer, D.A. Mass spectrometry‐based methods for the advanced characterization and structural analysis of lignin: A review. Mass Spec. Rev. 2023, 42, 144–188. https://doi.org/10.1002/mas.21716.
- 13.
Sander, K.; Dütsch, L.; Bremer, M.; et al. Characterization of soluble and insoluble lignin oligomers by means of ultrahigh resolving mass spectrometry. Energy Fuels 2023, 37, 439−449. https://doi.org/10.1021/acs.energyfuels.2c03538.
- 14.
Bartolomei, E.; Le Brech, Y.; Dufour, A.; et al. Lignin depolymerization: A comparison of methods to analyze monomers and oligomers. ChemSusChem 2020, 13, 4633. https://doi.org/10.1002/cssc.202001126.
- 15.
Alherech, M.; Omolabake, S.; Holland, C.M.; et al. From lignin to valuable aromatic chemicals: Lignin depolymerization and monomer separation via centrifugal partition chromatography. ACS Cent. Sci. 2021, 7, 1831–1837. https://doi.org/10.1021/acscentsci.1c00729.
- 16.
Tammekivi, E.; Batteau, M.; Laurenti, D.; et al. A powerful two-dimensional chromatography method for the non-target analysis of depolymerised lignin. Anal. Chim. Acta 2024, 1288, 342157. https://doi.org/10.1016/j.aca.2023.342157.
- 17.
Tammekivi, E.; Lilti, H.; Batteau, M.; et al. Complementarity of two-dimensional gas chromatography and two-dimensional liquid chromatography for the analysis of depolymerised lignin. J. Chrom. A 2024, 1736, 465401. https://doi.org/10.1016/j.chroma.2024.465401.
- 18.
Ferhan, M.; Yan, N.; Sain, M. A new method for demethylation of lignin from woody biomass using biophysical methods. J. Chem. Eng. Process. Techn. 2013, 4, 160. https://doi.org/10.4172/2157-7048.1000160.
- 19.
Kozmelj, T.R.; Bartolomei, E.; Dufour, A.; et al. Oligomeric fragments distribution, structure and functionalities upon ruthenium-catalyzed technical lignin depolymerization. Biomass Bioenergy 2024, 181, 107056. https://doi.org/10.1016/j.biombioe.2024.107056.
- 20.
Liu, X.; Jiang, Z.; Feng, S.; et al. Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel 2019, 244, 247–257. https://doi.org/10.1016/j.fuel.2019.01.117.
- 21.
Karnitski, A.; Choi, J.-W.; Suh, D.J.; et al. Roles of metal and acid sites in the reductive depolymerization of concentrated lignin over supported Pd catalysts. Catal. Today 2023, 113844, 411–412. https://doi.org/10.1016/j.cattod.2022.07.012.
- 22.
Wu, X.; Liao, Y.; Bomon, J.; et al. Lignin‐first monomers to catechol: Rational cleavage of C−O and C−C bonds over zeolites. ChemSusChem 2022, 15, e202102248. https://doi.org/10.1002/cssc.202102248.
- 23.
Ji, N.; Wang, Z.; Diao, X.; et al. Highly selective demethylation of anisole to phenol over H 4 Nb 2 O 7 modified MoS 2 catalyst. Catal. Sci. Technol. 2021, 11, 800–809. https://doi.org/10.1039/D0CY01972K.
- 24.
Jiang, L.; Guo, H.; Li, C.; et al. Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts. Chem. Sci. 2019, 10, 4458–4468. https://doi.org/10.1039/C9SC00691E.
- 25.
Podschun, J.; Saake, B.; Lehnen, R. Catalytic demethylation of organosolv lignin in aqueous medium using indium triflate under microwave irradiation. React. Funct. Polym. 2017, 119, 82–86. https://doi.org/10.1016/j.reactfunctpolym.2017.08.007.
- 26.
Bui, V.N.; Laurenti, D.; Delichère, P.; et al. Hydrodeoxygenation of guaiacol. Part II: Support effect for CoMoS catalysts on HDO activity and selectivity. Appl. Cat. B Env. 2011, 101, 246–255. https://doi.org/10.1016/j.apcatb.2010.10.031.
- 27.
Meng, S.; Xue, X.; Wenig, Y.; et al. Synthesis and characterization of molybdenum carbide catalysts on different carbon supports. Cata. Today 2022, 402, 266–275. https://doi.org/10..1016/j.cattod.2022.04.020.
- 28.
Meng, X.; Crestini, C.; Ben, H.; et al. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 2019, 14, 2627–2647. https://doi.org/10.1038/s41596-019-0191-1.
- 29.
Smit, A.T.; Dezaire, T.; Riddell, L.A.; et al. Reductive partial depolymerization of acetone organosolv lignin to tailor lignin molar mass, dispersity, and reactivity for polymer applications. ACS Sustain. Chem. Eng. 2023, 11, 6070–6080. https://doi.org/10.1021/acssuschemeng.3c00617.
- 30.
Van Aelst, K.; Van Sinay, E.; Vangeel, T.; et al. Reductive catalytic fractionation of pine wood: Elucidating and quantifying the molecular structures in the lignin oil. Chem. Sci. 2020, 11, 11498–11508. https://doi.org/10.1039/D0SC04182C.
- 31.
Joffres, B.; Lorentz, C.; Vidalie, M.; et al. Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Appl. Cat. B Env. 2014, 145, 167–176. https://doi.org/10.1016/j.apcatb.2013.01.039.
- 32.
Oregui-Bengoechea, M.; Gandarias, I.; Arias, P.L.; et al. Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: A holistic approach. ChemSusChem 2017, 10, 754–766. https://doi.org/10.1002/cssc.201601410.
- 33.
Wu, X.; Smet, E.; Brandi, F.; et al. Advancements and perspectives toward lignin valorization via O‐demethylation. Angew. Chem. Int. Ed. 2023, 136, e202317257. https://doi.org/10.1002/anie.202317257.
- 34.
Chen, P.; Zhang, Q.; Shu, R.; et al. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bior. Tech. 2017, 226, 125–131. https://doi.org/10.1016/j.biortech.2016.12.030.
- 35.
Kloekhorst, A.; Heeres, H.J. Catalytic hydrotreatment of alcell lignin using supported Ru, Pd, and Cu catalysts. ACS Sust. Chem. Eng. 2015, 3, 1905–1914. https://doi.org/10.1021/acssuschemeng.5b00041.
- 36.
Yang, X.; Feng, M.; Choi, J.-S.; et al. Depolymerization of corn stover lignin with bulk molybdenum carbide catalysts. Fuel 2019, 244, 528–535. https://doi.org/10.1016/j.fuel.2019.02.023.
- 37.
Bui, V.N.; Laurenti, D.; Afanasiev, P.; et al. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Appl. Cat. B Env. 2011, 101, 239–245. https://doi.org/10.1016/j.apcatb.2010.10.025.
- 38.
Mañas, A.H.; Vilcocq, L.; Fongarland, P.; et al. Lignin catalytic oxidation by CuO/TiO2: Role of catalyst in phenolics formation. Waste Biom. Valor. 2023, 14, 3789–3809. https://doi.org/10.1007/s12649-023-02082-y.
- 39.
Huda, M.M.; Rai, N. Effect of solvent on the interaction of lignin with a zeolite nanosheet in the condensed phase. J. Phys. Chem. B 2023, 127, 6767–6777. https://doi.org/10.1021/acs.jpcb.3c02085.