2511002327
  • Open Access
  • Article

Pyrolysis of Woody Biomass Loaded with Phytic Acid in a Fluidized-Bed Reactor for Producing Levoglucosenone

  • Tsinjo Nirina Rafenomananjara 1,   
  • Shinji Kudo 1, 2, *,   
  • Chihiro Asano 1,   
  • Ren Akai 1,   
  • Yasuyo Hachiyama 2,   
  • Jun-ichiro Hayashi 1, 2

Received: 11 Oct 2025 | Revised: 13 Nov 2025 | Accepted: 19 Nov 2025 | Published: 27 Nov 2025

Abstract

Efficient conversion of lignocellulosic biomass into high-value chemicals remains challenging due to its complex structure. The selective production of levoglucosenone (LGO), a valuable bio-based building block derived from cellulose, has attracted increasing attention as part of efforts to establish sustainable chemical feedstocks. In this study, the continuous pyrolysis of woody biomass for LGO production was conducted using a fluidized-bed pyrolyzer, which is generally employed for bio-oil production but has not yet been tested for this reaction. Phytic acid (PA), a naturally occurring organic phosphorus compound abundant in agricultural residues, was employed as a biogenic catalyst and loaded over biomass. The pyrolysis characteristics were investigated in terms of LGO yield under various operating conditions of the fluidized-bed. Prior to PA loading, the removal of alkali and alkaline earth metals from feedstock biomass via oxalic acid-washing was examined to improve anhydrosugars yields. Thermogravimetric analysis (TGA) revealed that PA loading lowered the temperature of biomass pyrolysis and increased char yield, confirming its catalysis toward dehydration. TGA of model compounds of biomass components indicated PA catalyzed only cellulose pyrolysis, while it did not affect that of hemicellulose and lignin. In the continuous pyrolysis experiments, the best conditions achieved an LGO yield of 6.3 wt% (17.1 wt% on a cellulose basis) at an average bed temperature of 300 °C. The results demonstrate, for the first time, that a biogenic phosphorus catalyst such as PA can effectively promote LGO formation under continuous fluidized-bed operation. The study also provides fundamental insights for key factors affecting the LGO yield during steady-state operation of the fluidized-bed, such as the thermal stability of LGO and its interaction with char.

References 

  • 1.
    Lee, R.A.; Lavoie, J.-M. From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 3, 6–11. https://doi.org/10.2527/af.2013-0010.
  • 2.

    Hayashi, J.-i. Roles of Forests and Forest-Resource Conversion in Societies with Carbon Resource Regeneration and Storage. Chemical Engineering of Japan. 2025; Volume 89, pp. 15–18. Available online: https://service.kktcs.co.jp/smms2/member/journal_search/Download.htm?dummy=0&file=Bulletin089070351.pdf (accessed on 26 November 2025).

  • 3.
    Endo, S.; Aizawa, N. Annual Energy Reviews-2018. Enermix 2019, 98, 454–455. https://doi.org/10.20550/jieenermix.98.5_454.
  • 4.
    Warne, C.M.; Fadlallah, S.; Whitwood, A.C.; et al. Levoglucosenone-derived synthesis of bio-based solvents and polyesters. Green. Chem. Lett. Rev. 2022, 16, 2154573. https://doi.org/10.1080/17518253.2022.2154573.
  • 5.
    Tsai, Y.H.; Borini Etichetti, C.M.; Cicetti, S.; et al. Design, synthesis and evaluation of novel levoglucosenone derivatives as promising anticancer agents. Bioorg Med. Chem. Lett. 2020, 30, 127247. https://doi.org/10.1016/j.bmcl.2020.127247.
  • 6.
    Camp, J.E. Bio-available Solvent Cyrene: Synthesis, Derivatization, and Applications. ChemSusChem 2018, 11, 3048–3055. https://doi.org/10.1002/cssc.201801420.
  • 7.
    Liu, X.; Carr, P.; Gardiner, M.G.; et al. Levoglucosenone and Its Pseudoenantiomer iso-Levoglucosenone as Scaffolds for Drug Discovery and Development. ACS Omega 2020, 5, 13926–13939. https://doi.org/10.1021/acsomega.0c01331.
  • 8.
    Kudo, S.; Huang, X.; Asano, S.; et al. Catalytic Strategies for Levoglucosenone Production by Pyrolysis of Cellulose and Lignocellulosic Biomass. Energy Fuels 2021, 35, 9809–9824. https://doi.org/10.1021/acs.energyfuels.1c01062.
  • 9.
    Kudo, S.; Zhou, Z.; Norinaga, K.; et al. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green. Chem. 2011, 13, 3306–3311. https://doi.org/10.1039/c1gc15975e.
  • 10.

    Meng, X.; Zhang, H.; Liu, C.; et al. Comparison of Acids and Sulfates for Producing Levoglucosan and Levoglucosenone by Selective Catalytic Fast Pyrolysis of Cellulose Using Py-GC/MS. Energy Fuels 2016, 30, 8369–8376. https://doi.org/10.1021/acs.energyfuels.6b01436.

  • 11.
    Saragai, S.; Kudo, S.; Sperry, J.; et al. Catalytic deep eutectic solvent for levoglucosenone production by pyrolysis of cellulose. Bioresour. Technol. 2022, 344, 126323. https://doi.org/10.1016/j.biortech.2021.126323.
  • 12.
    Li, K.; Wang, B.; Bolatibieke, D.; et al. Catalytic fast pyrolysis of biomass with Ni-P-MCM-41 to selectively produce levoglucosenone. J. Anal. Appl. Pyrolysis 2020, 148, 104824. https://doi.org/10.1016/j.jaap.2020.104824.
  • 13.
    Ye, X.-n.; Lu, Q.; Wang, X.; et al. Catalytic Fast Pyrolysis of Cellulose and Biomass to Selectively Produce Levoglucosenone Using Activated Carbon Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10815–10825. https://doi.org/10.1021/acssuschemeng.7b02762.
  • 14.
    Wang, Z.; Lu, Q.; Zhu, X.F.; et al. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia. ChemSusChem 2011, 4, 79–84. https://doi.org/10.1002/cssc.201000210.
  • 15.
    Xu, A.; Huang, X.; Tang, G.; et al. Levoglucosenone production by catalytic fast pyrolysis of cellulose mixed with alkali metal-doped Keggin heterpolyacid salt. Fuel Process Technol. 2023, 242, 107609. https://doi.org/10.1016/j.fuproc.2022.107609.
  • 16.
    A, L.; Radhakrishnan, H.; Hu, H.; et al. Plasma electrolysis of cellulose in polar aprotic solvents for production of levoglucosenone. Green. Chem. 2020, 22, 7871–7883, Article. https://doi.org/10.1039/d0gc02813d.
  • 17.
    Cao, F.; Schwartz, T.J.; McClelland, D.J.; et al. Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ. Sci. 2015, 8, 1808–1815. https://doi.org/10.1039/c5ee00353a.
  • 18.
    Huang, X.; Kudo, S.; Asano, S.; et al. Improvement of levoglucosenone selectivity in liquid phase conversion of cellulose-derived anhydrosugar over solid acid catalysts. Fuel Process Technol. 2021, 212, 106625. https://doi.org/10.1016/j.fuproc.2020.106625.
  • 19.
    Milescu, R.A.; Segatto, M.L.; Stahl, A.; et al. Sustainable Single-Stage Solid–Liquid Extraction of Hesperidin and Rutin from Agro-Products Using Cyrene. ACS Sustain. Chem. Eng. 2020, 8, 18245–18257. https://doi.org/10.1021/acssuschemeng.0c06751.
  • 20.
    Dobele, G.; Dizhbite, T.; Rossinskaja, G.; et al. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis. J. Anal. Appl. Pyrolysis 2003, 68–69, 197–211. https://doi.org/10.1016/s0165-2370(03)00063-9.
  • 21.
    Dobele, G.; Rossinskaja, G.; Telysheva, G.; et al. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J. Anal. Appl. Pyrolysis 1999, 49, 307–317. https://doi.org/10.1016/s0165-2370(98)00126-0.
  • 22.

    Wang, B.; Li, K.; Zhang, C.-b.; et al. Selective production of levoglucosenone from catalytic pyrolysis of regenerated cellulose from a H3PO4-H2O system. Ind. Crops Prod. 2023, 206, 117594. https://doi.org/10.1016/j.indcrop.2023.117594.

  • 23.
    Ung, S.P.M.; Li, C.-J. From rocks to bioactive compounds: A journey through the global P(v) organophosphorus industry and its sustainability. RSC Sustain. 2023, 1, 11–37. https://doi.org/10.1039/d2su00015f.
  • 24.
    Rafenomananjara, T.N.; Kudo, S.; Sperry, J.; et al. Phytic acid as a biorenewable catalyst for cellulose pyrolysis to produce levoglucosenone. RSC Sustain. 2025, 3, 1366–1375. https://doi.org/10.1039/d4su00502c.
  • 25.
    Court, G.R.; Lawrence, C.H.; Raverty, W.D.; et al. Method for Converting Lignocellulosic Materials into Useful Chemicals. WO 2011/000030 A1, 6 January 2011.
  • 26.
    Dobele, G.; Zhurinsh, A.; Volperts, A.; et al. Study of levoglucosenone obtained in analytical pyrolysis and screw-type reactor, separation and distillation. Wood Sci. Technol. 2020, 54, 383–400. https://doi.org/10.1007/s00226-020-01164-7 Scopus.
  • 27.
    Itabaiana Junior, I.; do Nascimento, A.M.; de Souza, R.O.M.A.; et al. Levoglucosan: A promising platform molecule? Green. Chem. 2020, 22, 5859–5880. https://doi.org/10.1039/d0gc01490g.
  • 28.
    Rover, M.R.; Aui, A.; Wright, M.M.; et al. Production and purification of crystallized levoglucosan from pyrolysis of lignocellulosic biomass. Green. Chem. 2019, 21, 5980–5989. https://doi.org/10.1039/c9gc02461a.
  • 29.
    Patwardhan, P.R.; Dalluge, D.L.; Shanks, B.H.; et al. Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour. Technol. 2011, 102, 5265–5269. https://doi.org/10.1016/j.biortech.2011.02.018.
  • 30.

    Yoshimura, K.; Kaku, A.; Hachiyama, Y.; et al. Preparation of levoglucosan-rich bio-oil and its application to alkaline hydrothermal conversion of CO2 to formic acid. Tetsu-Hagané 2025, 111, 917–925 https://doi.org/10.2355/tetsutohagane.TETSU-2025-021.

  • 31.

    Cao, F.; Xia, S.; Yang, X.; et al. Lowering the pyrolysis temperature of lignocellulosic biomass by H2SO4 loading for enhancing the production of platform chemicals. Chem. Eng. J. 2020, 385, 123809. https://doi.org/10.1016/j.cej.2019.123809.

  • 32.
    Sluiter, A.; Hames, B.; Ruiz, R.; et al. Determination of Ash in Biomass; Technical Report NREL/TP-510-42622; NREL: Golden, CO, USA, 2008.
  • 33.
    Miura, K.; Maki, T. A Simple Method for Estimating f(E) and k0(E) in the Distributed Activation Energy Model. Energy Fuels 1998, 12, 864–869. https://doi.org/10.1021/ef970212q.
  • 34.
    Wei, F.; Kudo, S.; Asano, S.; et al. Staged Pyrolytic Conversion of Acid-Loaded Woody Biomass for Production of High-Strength Coke and Valorization of Volatiles. Energy Fuels 2022, 36, 6949–6958. https://doi.org/10.1021/acs.energyfuels.2c01352.
  • 35.
    Wang, W.; Lemaire, R.; Bensakhria, A.; et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. https://doi.org/10.1016/j.jaap.2022.105479.
  • 36.

    Amenaghawon, A.N.; Ayere, J.E.; Amune, U.O.; et al. A comprehensive review of recent advances in the applications and biosynthesis of oxalic acid from bio-derived substrates. Environ. Res. 2024, 251, 118703. https://doi.org/10.1016/j.envres.2024.118703.

  • 37.

    Kiyozumi, T.; Kudo, S.; Mori, A.; et al. Synthesis of Oxalate from CO2 and Cesium Carbonate Supported Over Porous Carbon. ISIJ Int. 2022, 62, 2476–2482. https://doi.org/10.2355/isijinternational.ISIJINT-2022-159.

  • 38.
    Słupianek, A.; Dolzblasz, A.; Sokołowska, K. Xylem Parenchyma—Role and Relevance in Wood Functioning in Trees. Plants 2021, 10, 1247. https://doi.org/10.3390/plants10061247.
  • 39.

    Zhao, L.; Fu, H.; Xia, Y.-g.; et al. Coproduction of 1,4:3,6-Dianhydro-α-d-glucopyranose, Furfural, and Formic Acid through Oxalic Acid-Assisted Staged Fast Pyrolysis of Cellulose. Energy Fuels 2024, 38, 4302–4311. https://doi.org/10.1021/acs.energyfuels.3c04958.

  • 40.
    Czajka, K.; Kisiela, A.; Moroń, W.; et al. Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect. Fuel Process Technol. 2016, 142, 42–53. https://doi.org/10.1016/j.fuproc.2015.09.027.
  • 41.
    Xie, W.-l.; Hu, B.; Yang, X.; et al. Phosphoric acid catalytic mechanism in lignin pyrolysis: Phosphoric-acid-assisted hydrogen transfer for the decomposition of β-O-4 linkage. Proc. Combust. Inst. 2024, 40, 105580. https://doi.org/10.1016/j.proci.2024.105580.
  • 42.
    Nowakowski, D.J.; Woodbridge, C.R. Jones, J.M. Phosphorus catalysis in the pyrolysis behaviour of biomass. J. Anal. Appl. Pyrolysis 2008, 83, 197–204. https://doi.org/10.1016/j.jaap.2008.08.003.
  • 43.
    Fukutome, A.; Kawamoto, H.; Saka, S. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate. ChemSusChem 2015, 8, 2240–2249. https://doi.org/10.1002/cssc.201500275.
Share this article:
How to Cite
Rafenomananjara, T. N.; Kudo, S.; Asano, C.; Akai, R.; Hachiyama, Y.; Hayashi, J.-i. Pyrolysis of Woody Biomass Loaded with Phytic Acid in a Fluidized-Bed Reactor for Producing Levoglucosenone. Renewable Chemistry 2025, 1 (1), 6. https://doi.org/10.53941/rc.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.