- 1.
Lee, R.A.; Lavoie, J.-M. From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 3, 6–11. https://doi.org/10.2527/af.2013-0010.
- 2.
Hayashi, J.-i. Roles of Forests and Forest-Resource Conversion in Societies with Carbon Resource Regeneration and Storage. Chemical Engineering of Japan. 2025; Volume 89, pp. 15–18. Available online: https://service.kktcs.co.jp/smms2/member/journal_search/Download.htm?dummy=0&file=Bulletin089070351.pdf (accessed on 26 November 2025).
- 3.
Endo, S.; Aizawa, N. Annual Energy Reviews-2018. Enermix 2019, 98, 454–455. https://doi.org/10.20550/jieenermix.98.5_454.
- 4.
Warne, C.M.; Fadlallah, S.; Whitwood, A.C.; et al. Levoglucosenone-derived synthesis of bio-based solvents and polyesters. Green. Chem. Lett. Rev. 2022, 16, 2154573. https://doi.org/10.1080/17518253.2022.2154573.
- 5.
Tsai, Y.H.; Borini Etichetti, C.M.; Cicetti, S.; et al. Design, synthesis and evaluation of novel levoglucosenone derivatives as promising anticancer agents. Bioorg Med. Chem. Lett. 2020, 30, 127247. https://doi.org/10.1016/j.bmcl.2020.127247.
- 6.
Camp, J.E. Bio-available Solvent Cyrene: Synthesis, Derivatization, and Applications. ChemSusChem 2018, 11, 3048–3055. https://doi.org/10.1002/cssc.201801420.
- 7.
Liu, X.; Carr, P.; Gardiner, M.G.; et al. Levoglucosenone and Its Pseudoenantiomer iso-Levoglucosenone as Scaffolds for Drug Discovery and Development. ACS Omega 2020, 5, 13926–13939. https://doi.org/10.1021/acsomega.0c01331.
- 8.
Kudo, S.; Huang, X.; Asano, S.; et al. Catalytic Strategies for Levoglucosenone Production by Pyrolysis of Cellulose and Lignocellulosic Biomass. Energy Fuels 2021, 35, 9809–9824. https://doi.org/10.1021/acs.energyfuels.1c01062.
- 9.
Kudo, S.; Zhou, Z.; Norinaga, K.; et al. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green. Chem. 2011, 13, 3306–3311. https://doi.org/10.1039/c1gc15975e.
- 10.
Meng, X.; Zhang, H.; Liu, C.; et al. Comparison of Acids and Sulfates for Producing Levoglucosan and Levoglucosenone by Selective Catalytic Fast Pyrolysis of Cellulose Using Py-GC/MS. Energy Fuels 2016, 30, 8369–8376. https://doi.org/10.1021/acs.energyfuels.6b01436.
- 11.
Saragai, S.; Kudo, S.; Sperry, J.; et al. Catalytic deep eutectic solvent for levoglucosenone production by pyrolysis of cellulose. Bioresour. Technol. 2022, 344, 126323. https://doi.org/10.1016/j.biortech.2021.126323.
- 12.
Li, K.; Wang, B.; Bolatibieke, D.; et al. Catalytic fast pyrolysis of biomass with Ni-P-MCM-41 to selectively produce levoglucosenone. J. Anal. Appl. Pyrolysis 2020, 148, 104824. https://doi.org/10.1016/j.jaap.2020.104824.
- 13.
Ye, X.-n.; Lu, Q.; Wang, X.; et al. Catalytic Fast Pyrolysis of Cellulose and Biomass to Selectively Produce Levoglucosenone Using Activated Carbon Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10815–10825. https://doi.org/10.1021/acssuschemeng.7b02762.
- 14.
Wang, Z.; Lu, Q.; Zhu, X.F.; et al. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia. ChemSusChem 2011, 4, 79–84. https://doi.org/10.1002/cssc.201000210.
- 15.
Xu, A.; Huang, X.; Tang, G.; et al. Levoglucosenone production by catalytic fast pyrolysis of cellulose mixed with alkali metal-doped Keggin heterpolyacid salt. Fuel Process Technol. 2023, 242, 107609. https://doi.org/10.1016/j.fuproc.2022.107609.
- 16.
A, L.; Radhakrishnan, H.; Hu, H.; et al. Plasma electrolysis of cellulose in polar aprotic solvents for production of levoglucosenone. Green. Chem. 2020, 22, 7871–7883, Article. https://doi.org/10.1039/d0gc02813d.
- 17.
Cao, F.; Schwartz, T.J.; McClelland, D.J.; et al. Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ. Sci. 2015, 8, 1808–1815. https://doi.org/10.1039/c5ee00353a.
- 18.
Huang, X.; Kudo, S.; Asano, S.; et al. Improvement of levoglucosenone selectivity in liquid phase conversion of cellulose-derived anhydrosugar over solid acid catalysts. Fuel Process Technol. 2021, 212, 106625. https://doi.org/10.1016/j.fuproc.2020.106625.
- 19.
Milescu, R.A.; Segatto, M.L.; Stahl, A.; et al. Sustainable Single-Stage Solid–Liquid Extraction of Hesperidin and Rutin from Agro-Products Using Cyrene. ACS Sustain. Chem. Eng. 2020, 8, 18245–18257. https://doi.org/10.1021/acssuschemeng.0c06751.
- 20.
Dobele, G.; Dizhbite, T.; Rossinskaja, G.; et al. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis. J. Anal. Appl. Pyrolysis 2003, 68–69, 197–211. https://doi.org/10.1016/s0165-2370(03)00063-9.
- 21.
Dobele, G.; Rossinskaja, G.; Telysheva, G.; et al. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J. Anal. Appl. Pyrolysis 1999, 49, 307–317. https://doi.org/10.1016/s0165-2370(98)00126-0.
- 22.
Wang, B.; Li, K.; Zhang, C.-b.; et al. Selective production of levoglucosenone from catalytic pyrolysis of regenerated cellulose from a H3PO4-H2O system. Ind. Crops Prod. 2023, 206, 117594. https://doi.org/10.1016/j.indcrop.2023.117594.
- 23.
Ung, S.P.M.; Li, C.-J. From rocks to bioactive compounds: A journey through the global P(v) organophosphorus industry and its sustainability. RSC Sustain. 2023, 1, 11–37. https://doi.org/10.1039/d2su00015f.
- 24.
Rafenomananjara, T.N.; Kudo, S.; Sperry, J.; et al. Phytic acid as a biorenewable catalyst for cellulose pyrolysis to produce levoglucosenone. RSC Sustain. 2025, 3, 1366–1375. https://doi.org/10.1039/d4su00502c.
- 25.
Court, G.R.; Lawrence, C.H.; Raverty, W.D.; et al. Method for Converting Lignocellulosic Materials into Useful Chemicals. WO 2011/000030 A1, 6 January 2011.
- 26.
Dobele, G.; Zhurinsh, A.; Volperts, A.; et al. Study of levoglucosenone obtained in analytical pyrolysis and screw-type reactor, separation and distillation. Wood Sci. Technol. 2020, 54, 383–400. https://doi.org/10.1007/s00226-020-01164-7 Scopus.
- 27.
Itabaiana Junior, I.; do Nascimento, A.M.; de Souza, R.O.M.A.; et al. Levoglucosan: A promising platform molecule? Green. Chem. 2020, 22, 5859–5880. https://doi.org/10.1039/d0gc01490g.
- 28.
Rover, M.R.; Aui, A.; Wright, M.M.; et al. Production and purification of crystallized levoglucosan from pyrolysis of lignocellulosic biomass. Green. Chem. 2019, 21, 5980–5989. https://doi.org/10.1039/c9gc02461a.
- 29.
Patwardhan, P.R.; Dalluge, D.L.; Shanks, B.H.; et al. Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour. Technol. 2011, 102, 5265–5269. https://doi.org/10.1016/j.biortech.2011.02.018.
- 30.
Yoshimura, K.; Kaku, A.; Hachiyama, Y.; et al. Preparation of levoglucosan-rich bio-oil and its application to alkaline hydrothermal conversion of CO2 to formic acid. Tetsu-Hagané 2025, 111, 917–925 https://doi.org/10.2355/tetsutohagane.TETSU-2025-021.
- 31.
Cao, F.; Xia, S.; Yang, X.; et al. Lowering the pyrolysis temperature of lignocellulosic biomass by H2SO4 loading for enhancing the production of platform chemicals. Chem. Eng. J. 2020, 385, 123809. https://doi.org/10.1016/j.cej.2019.123809.
- 32.
Sluiter, A.; Hames, B.; Ruiz, R.; et al. Determination of Ash in Biomass; Technical Report NREL/TP-510-42622; NREL: Golden, CO, USA, 2008.
- 33.
Miura, K.; Maki, T. A Simple Method for Estimating f(E) and k0(E) in the Distributed Activation Energy Model. Energy Fuels 1998, 12, 864–869. https://doi.org/10.1021/ef970212q.
- 34.
Wei, F.; Kudo, S.; Asano, S.; et al. Staged Pyrolytic Conversion of Acid-Loaded Woody Biomass for Production of High-Strength Coke and Valorization of Volatiles. Energy Fuels 2022, 36, 6949–6958. https://doi.org/10.1021/acs.energyfuels.2c01352.
- 35.
Wang, W.; Lemaire, R.; Bensakhria, A.; et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. https://doi.org/10.1016/j.jaap.2022.105479.
- 36.
Amenaghawon, A.N.; Ayere, J.E.; Amune, U.O.; et al. A comprehensive review of recent advances in the applications and biosynthesis of oxalic acid from bio-derived substrates. Environ. Res. 2024, 251, 118703. https://doi.org/10.1016/j.envres.2024.118703.
- 37.
Kiyozumi, T.; Kudo, S.; Mori, A.; et al. Synthesis of Oxalate from CO2 and Cesium Carbonate Supported Over Porous Carbon. ISIJ Int. 2022, 62, 2476–2482. https://doi.org/10.2355/isijinternational.ISIJINT-2022-159.
- 38.
Słupianek, A.; Dolzblasz, A.; Sokołowska, K. Xylem Parenchyma—Role and Relevance in Wood Functioning in Trees. Plants 2021, 10, 1247. https://doi.org/10.3390/plants10061247.
- 39.
Zhao, L.; Fu, H.; Xia, Y.-g.; et al. Coproduction of 1,4:3,6-Dianhydro-α-d-glucopyranose, Furfural, and Formic Acid through Oxalic Acid-Assisted Staged Fast Pyrolysis of Cellulose. Energy Fuels 2024, 38, 4302–4311. https://doi.org/10.1021/acs.energyfuels.3c04958.
- 40.
Czajka, K.; Kisiela, A.; Moroń, W.; et al. Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect. Fuel Process Technol. 2016, 142, 42–53. https://doi.org/10.1016/j.fuproc.2015.09.027.
- 41.
Xie, W.-l.; Hu, B.; Yang, X.; et al. Phosphoric acid catalytic mechanism in lignin pyrolysis: Phosphoric-acid-assisted hydrogen transfer for the decomposition of β-O-4 linkage. Proc. Combust. Inst. 2024, 40, 105580. https://doi.org/10.1016/j.proci.2024.105580.
- 42.
Nowakowski, D.J.; Woodbridge, C.R. Jones, J.M. Phosphorus catalysis in the pyrolysis behaviour of biomass. J. Anal. Appl. Pyrolysis 2008, 83, 197–204. https://doi.org/10.1016/j.jaap.2008.08.003.
- 43.
Fukutome, A.; Kawamoto, H.; Saka, S. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate. ChemSusChem 2015, 8, 2240–2249. https://doi.org/10.1002/cssc.201500275.