2512002661
  • Open Access
  • Article

Integrated Fish Oil Production from Tuna Processing Waste Using the LimoFish Process

  • Altea Pedullà 1,   
  • Sonia Carabetta 2,   
  • Rosaria Ciriminna 3,   
  • Mariateresa Russo 2,*,   
  • Mario Pagliaro 3,*,   
  • Paolo Salvatore Calabrò 1,*

Received: 03 Nov 2025 | Revised: 22 Dec 2025 | Accepted: 29 Dec 2025 | Published: 30 Dec 2025

Abstract

The LimoFish process was applied to the by-products of the canned tuna industry under mild and safe extraction and solvent recovery conditions. The process affords a valued fish oil (“TunaOil”) rich in health beneficial polyunsaturated and monounstaturated fatty acids in triglyceride form (and tocopherol from fish processing by-products (viscera, skin and head) so far primarily used to produce fishmeal. The oil yields vary between remarkably high yield of 13% for TunaOil extracted from the head, and 1–2% for oils sourced from viscera. Employed together, the LimoFish and anaerobic co-digestion processes close the material cycle for the world’s most commercially valuable fish, converting abundant biological resources into valued bioproducts (fish oil, biomethane and fertilizers). Limonene readily recovered after TunaOil extraction is reused in subsequent extraction runs.

References 

  • 1.

    Orth, D.J. Conserving Tuna: The Most Commercially Valuable Fish on Earth. In: Fish, Fishing, and Conservation; Virginia Tech Department of Fish and Wildlife Conservation: Blacksburg, VA, USA, 2023; pp. 272–304. https://doi.org/10.21061/fishandconservation.

  • 2.

    GVR Report cover Canned Tuna Market (2025–2030). Available online: https://www.grandviewresearch.com/industry-analysis/canned-tuna-market (accessed on 29 December 2025).

  • 3.

    Kawamoto, T. A challenge to estimate global canned tuna demand and its impact on future tuna resource management using the gamma model. Mar. Policy 2022, 139, 105016. https://doi.org/10.1016/j.marpol.2022.105016.

  • 4.

    Herpandi, N.H.; Rosma, A.; Wan Nadiah, W.A. The tuna fishing industry: A new outlook on fish protein hydrolysates. Compr. Rev. Food Sci. Food Saf. 2011, 10, 195–207. https://doi.org/10.1111/j.1541-4337.2011.00155.x.

  • 5.

    Vázquez, J.A.; Pedreira, A.; Durán, S.; et al. Biorefinery for tuna head wastes: Production of protein hydrolysates, high-quality oils, minerals and bacterial peptones. J. Clean. Prod. 2022, 357, 131909. https://doi.org/10.1016/j.jclepro.2022.131909.

  • 6.

    Garofalo, S.F.; Cavallini, N.; Demichelis, F.; et al. From tuna viscera to added-value products: A circular approach for fish-waste recovery by green enzymatic hydrolysis. J. Food Bioprod. Process. 2023, 137, 155–167. https://doi.org/10.1016/j.fbp.2022.11.006.

  • 7.

    Ferdosh, S.; Sarker, Z.I.; Norulaini, N.; et al. Quality of tuna fish oils extracted from processing the by-products of three species of Neritic tuna using supercritical carbon doxide. J. Food Process. Preserv. 2015, 39, 432–441. https://doi.org/10.1111/jfpp.12248.

  • 8.

    Todd, R.; Baroutian, S. A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape marc. J. Clean. Prod. 2017, 158, 349–358. https://doi.org/10.1016/j.jclepro.2017.05.043.

  • 9.

    European Food Safety Authority (EFSA), Comandella, D.; Bignami, M.; et al. Technical Report on the need for re-evaluation of the safety of hexane used as an extraction solvent in the production of foodstuffs and food ingredients. EFSA Support. Publ. 2024, 21, 9001E. https://doi.org/10.2903/sp.efsa.2024.EN-9001.

  • 10.

    Lands, W.E.M. Fish, Omega-3 And Human Health, 2nd ed.; AOCS Publishing: Urbana, IL, USA, 2005.

  • 11.

    Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Ann. Rev. Food Sci. Technol. 2018, 9, 345–381. https://doi.org/10.1146/annurev-food-111317-095850.

  • 12.

    Winkler, J.T. The Most Hidden of All the Hidden Hungers: The Global Deficiency in DHA and EPA and What to do About It. In: Hidden Hunger: Strategies to Improve Nutrition Quality; Biesalski, H.K., Birner, R., Eds.; Karger: Basel, Switzerland, 2018; pp.123–130. https://doi.org/10.1159/000484645.

  • 13.

    Global Organization for EPA and DHA Omega-3 (GOED). The Global EPA+DHA Omega-3 Finished Products Report. Available online: https://goedomega3.com/purchase-data-and-reports/global-epadha-finished-products-report (accessed on 2 July 2025).

  • 14.

    Shepon, A.; Makov, T.; Hamilton, H.A.; et al. Sustainable optimization of global aquatic omega-3 supply chain could substantially narrow the nutrient gap. Resour. Conserv. Recycl. 2022, 181, 106260. https://doi.org/10.1016/j.resconrec.2022.106260.

  • 15.

    Ciriminna, R.; Scurria, A.; Avellone, G.; et al. A circular economy approach to fish oil extraction. ChemistrySelect 2019, 4, 5106–5109. https://doi.org/10.1002/slct.201900851.

  • 16.

    Muscolo, A.; Mauriello, F.; Marra, F.; et al. AnchoisFert: A new organic fertilizer from fish processing waste for sustainable Agriculture. Global Chall. 2022, 6, 2100141. https://doi.org/10.1002/gch2.202100141.

  • 17.

    Pagliaro, M.; Lino, C.; Pizzone, D.M.; et al. Amino acids in new organic fertilizer AnchoisFert. ChemistrySelect 2022, 7, e202203665. https://doi.org/10.1002/slct.202203665.

  • 18.

    Pizzone, D.M.; Angellotti, G.; Carabetta, S.; et al. The LimoFish circular economy process for the marine bioeconomy. ChemSusChem 2024, 17, e202301826. https://doi.org/10.1002/cssc.202301826.

  • 19.

    Scurria, A.; Fabiano Tixier, A.S.; Lino, C.; et al. High yields of shrimp oil rich in omega-3 and natural astaxanthin from shrimp waste. ACS Omega 2020, 5, 17500–17505. https://doi.org/10.1021/acsomega.0c01978.

  • 20.

    Pedulla, A.; Ferreri, M.; Bonaccorsi, L.; et al. Impact of emerging and traditional solvents on anaerobic digestion in biorefinery processes. ACS Sustain. Chem. Eng 2025, 13, 4729–4739. https://doi.org/10.1021/acssuschemeng.4c09589.

  • 21.

    Shin, Y.R.; Roy, V.C.; Park, J.S.; et al. Consecutive extraction of neutral and polar lipids from skipjack tuna (Katsuwonus pelamis) byproducts using supercritical carbon dioxide. J. Supercrit. Fluids 2024, 206, 106175. https://doi.org/10.1016/j.supflu.2024.106175.

  • 22.

    Agostoni, C.; Moreno, L.; Shamir, R. Palmitic acid and health: Introduction. Crit. Rev. Food Sci. Nutr. 2016, 9, 1941–1942. https://doi.org/10.1080/10408398.2015.1017435.

  • 23.

    Teres, S.; Barceló-Coblijn, G.; Benet, M.; et al. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. USA 2008, 105, 13811–13816. https://doi.org/10.1073/pnas.0807500105.

  • 24.

    Sanjulian, L.; Lamas, A.; Barreiro, R.; et al. Investigating the dietary impact on trans-vaccenic acid (trans-C18:1 n-7) and other beneficial fatty acids in breast milk and infant formulas. Foods 2024, 13, 2164. https://doi.org/10.3390/foods13142164.

  • 25.

    Tobin, D.; Midtbø, L.K.; Mildenberger, J.; et al. The effect of fish oil rich in cetoleic acid on the omega-3 index and skin quality. Prostaglandins Leukot. Essent. Fat. Acids 2024, 201, 102616. https://doi.org/10.1016/j.plefa.2024.102616.

  • 26.

    Angellotti, G.; Pizzone, D.M.; Pagliaro, M.; et al. High stability of AnchoisOil extracted with limonene from anchovy fillet leftovers. Discov. Appl. Sci. 2024, 6, 115. https://doi.org/10.1007/s42452-024-05781-w.

  • 27.

    Gupta, A.; Jeyakumar, E.; Lawrence, R. Journey of limonene as an antimicrobial agent. J. Pure Appl. Microbiol. 2021, 15, 1094–1110. https://doi.org/10.22207/jpam.15.3.01.

  • 28.

    Clayton, P.R.; Ladi, S. From alga to omega; have we reached peak (fish) oil? J. R. Soc. Med. 2015, 108, 351–357. https://doi.org/10.1177/0141076815599673.

  • 29.

    Claux, O.; Rapinel, V.; Goupy, P.; et al. Dry and aqueous 2-methyloxolane as green solvents for simultaneous production of soybean oil and defatted meal. ACS Sustain. Chem. Eng. 2021, 9, 7211–7223. https://doi.org/10.1021/acssuschemeng.0c09252.

  • 30.

    Pedullà, A.; Bonaccorsi, L.M.; Limonti, C.; et al. Advancing the circular economy: A zero-waste valorisation approach for the de-oiled fish waste through anaerobic co-digestion and fertilisers production. J. Environ. Chem. Eng. 2025, 13, 117322. https://doi.org/10.1016/j.jece.2025.117322.

  • 31.

    Arfelli, F.; Pizzone, D.M.; Cespi, D.; et al. Prospective life cycle assessment for the full valorization of anchovy fillet leftovers: The LimoFish process. Waste Manag. 2023, 168, 156–166. https://doi.org/10.1016/j.wasman.2023.06.002.

Share this article:
How to Cite
Pedullà, A.; Carabetta, S.; Ciriminna, R.; Russo, M.; Pagliaro, M.; Calabrò, P. S. Integrated Fish Oil Production from Tuna Processing Waste Using the LimoFish Process. Renewable Chemistry 2025, 1 (1), 7. https://doi.org/10.53941/rc.2025.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.