- 1.
Shrivastav, G.; Khan, T.S.; Agarwal, M.; et al. Reformulation of Gasoline to Replace Aromatics by Biomass-Derived Alkyl Levulinates. ACS Sustain. Chem. Eng. 2017, 5, 7118–7127. https://doi.org/10.1021/acssuschemeng.7b01316.
- 2.
Li, Y.; Chen, Y.; Wu, G.; et al. Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine. Appl. Energy 2018, 29, 42–52. https://doi.org/10.1016/j.apenergy.2018.03.051.
- 3.
Kale, A.V.; Krishnasamy, A. Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends. Energy 2023, 264, 126152. https://doi.org/10.1016/j.energy.2022.126152.
- 4.
Sathyanarayanan, S.; Suresh, S.; Saravanan, C.G.; et al. Experimental investigation and performance prediction of gasoline engine operating parameters fueled with diisopropyl ether-gasoline blends: Response surface methodology based optimization. J. Clean. Prod. 2022, 375, 133941. https://doi.org/10.1016/j.jclepro.2022.133941.
- 5.
Dhamodaran, G.; Esakkimuthu, G.S.; Pochareddy, Y.K. Experimental study on performance, combustion, and emission behaviour of diisopropyl ether blends in MPFI SI engine. Fuel 2016, 173, 37–44. https://doi.org/10.1016/j.fuel.2016.01.014.
- 6.
Lü, X.; Hou, Y.; Ji, L.; et al. Heat Release Analysis on Combustion and Parametric Study on Emissions of HCCI Engines Fueled with 2-Propanol/n-Heptane Blend Fuels. Energy Fuels 2006, 20, 1870–1878. https://doi.org/10.1021/ef0601263.
- 7.
Saisirirat, P.; Foucher, F.; Chanchaona, S.; et al. Spectroscopic Measurements of Low-Temperature Heat Release for Homogeneous Combustion Compression Ignition (HCCI) n-Heptane/Alcohol Mixture Combustion. Energy Fuels 2010, 24, 5404–5409. https://doi.org/10.1021/ef100938u.
- 8.
Zhang, Y.; Boehman, A.L. Oxidation of 1-butanol and a mixture of n-heptane/1-butanol in a motored engine. Combust. Flame 2010, 157, 1816–1824. https://doi.org/10.1016/j.combustflame.2010.04.017.
- 9.
Kalaskar, V.; Kang, D.; Boehman, A.L. Impact of Fuel Composition and Intake Pressure on Lean Autoignition of Surrogate Gasoline Fuels in a CFR Engine. Energy Fuels 2017, 31, 11315–11327. https://doi.org/10.1021/acs.energyfuels.7b01157.
- 10.
Sarıkoç, S. Environmental and enviro-economic effect analysis of hydrogen-methanol-gasoline addition into an SI engine. Fuel 2023, 344, 128124. https://doi.org/10.1016/j.fuel.2023.128124.
- 11.
Gaspar, D.J.; West, B.H.; Ruddy, D.; et al. Top Ten Blendstocks for Turbocharged Gasoline Engines: Bioblendstocks with Potential to Deliver the for Highest Engine Efficiency; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2019. https://doi.org/10.2172/1567705.
- 12.
Baudry, G.; Macharis, C.; Vallée, T. Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-based Multi-Actor Multi-Criteria Analysis. Energy 2018, 155, 1032–1046. https://doi.org/10.1016/j.energy.2018.05.038.
- 13.
Haase, M.; Babenhauserheide, N.; Rösch, C. Multi criteria decision analysis for sustainability assessment of 2nd generation biofuels. Procedia CIRP 2020, 90, 226–231. https://doi.org/10.1016/j.procir.2020.02.124.
- 14.
Akhtari, S.; Malladi, K.T.; Sowlati, T.; et al. Incorporating risk in multi-criteria decision making: The case study of biofuel production from construction and demolition wood waste. Resour. Conserv. Recycl. 2021, 167, 105233. https://doi.org/10.1016/j.resconrec.2020.105233.
- 15.
Firouzi, S.; Allahyari, M.S.; Isazadeh, M.; et al. Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Sci. Total Environ. 2021, 770, 144449. https://doi.org/10.1016/j.scitotenv.2020.144449.
- 16.
Al-Ali, S.; Olabi, A.G.; Mahmoud, M. Multi-Criteria Decision Making for Selecting the Location of a Solar Photovoltaic Park: A Case Study in UAE. Energies 2024, 17, 4235. https://doi.org/10.3390/en17174235.
- 17.
Saaty, T.L. The Analytical Hierarchical Process; McGraw-Hill: New York, NY, USA, 1980.
- 18.
Taherdoost, H. Decision making using the analytic hierarchy process (AHP); A step by step approach. Int. J. Econ. Manag. Syst. 2017, 2, 244–246.
- 19.
Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; et al. Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. https://doi.org/10.1080/15623599.2018.1452098.
- 20.
Franek, J.; Kresta, A. Judgment Scales and Consistency Measure in AHP. Procedia Econ. Financ. 2014, 12, 164–173. https://doi.org/10.1016/S2212-5671(14)00332-3.
- 21.
Menon, R.R.; Ravi, V. Using AHP-TOPSIS methodologies in the selection of sustainable suppliers in an electronics supply chain. Clean. Mater. 2022, 5, 100130.
- 22.
Hanine, M.; Boutkhoum, O.; Tikniouine, A.; et al. Application of an integrated multi-criteria decision making AHP-TOPSIS methodology for ETL software selection. SpringerPlus 2016, 5, 263.
- 23.
Guo, Z.; Yu, X.; Du, Y.; et al. Comparative study on combustion and emissions of SI engine with gasoline port injection plus acetone-butanol-ethanol (ABE), isopropanol-butanol-ethanol (IBE) or butanol direct injection. Fuel 2022, 316, 123363. https://doi.org/10.1016/j.fuel.2022.123363.
- 24.
Awad, O.I.; Zhou, B.; Chen, Z.; et al. Influence of PODE1 additive into ethanol-gasoline blends (E10) on fuel properties and phase stability. Heliyon 2023, 9, e22364. https://doi.org/10.1016/j.heliyon.2023.e22364.
- 25.
Qi, D.H.; Lee, C.F. Combustion and emissions behaviour for ethanol–gasoline-blended fuels in a multipoint electronic fuel injection engine. Int. J. Sustain. Energy 2016, 35, 323–338. https://doi.org/10.1080/14786451.2014.895004.
- 26.
Mack, J.H.; Schuler, D.; Butt, R.H.; et al. Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines. Appl. Energy 2016, 165, 612–626. https://doi.org/10.1016/j.apenergy.2015.12.105.
- 27.
Cesur, I.; Uysal, F. Experimental investigation and artificial neural network-based modelling of thermal barrier engine performance and exhaust emissions for methanol-gasoline blends. Energy 2024, 291, 130393. https://doi.org/10.1016/j.energy.2024.130393.
- 28.
Waluyo, B.; Setiyo, M.; Wardana, I.N.G. Fuel performance for stable homogeneous gasoline-methanol-ethanol blends. Fuel 2021, 294, 120565. https://doi.org/10.1016/j.fuel.2021.120565.
- 29.
Chaichan, M.T.; Abaas, K.I.; Mohammed, B.A. Experimental Study of the Effect of Fuel Type on the Emitted Emissions from SIE at Idle Period. Al-Khwarizmi Eng. J. 2018, 13, 1–12. https://doi.org/10.22153/kej.2017.11.001.
- 30.
Sinaga, N.; Mel, M.; Majanasastra, R.; et al. Enhancement of M15 Engine Performance by the Addition of Propylene Glycol. Int. J. Emerg. Trends Eng. Res. 2020, 8.
- 31.
Sani, M.S.M.; Mamat, R.; Khoerunnisa, F.; et al. Vibration analysis of the engine using biofuel blends: A review. MATEC Web Conf. 2018, 225, 1010.
- 32.
Wojcieszyk, M.; Knuutila, L.; Kroyan, Y.; et al. Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines. Sustainability 2021, 13, 8729. https://doi.org/10.3390/su13168729.
- 33.
Fenkl, M.; Pechout, M.; Vojtisek, M. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics. EPJ Web Conf. 2016, 114, 02021.
- 34.
Tao, L.; Tan, E.C.; McCormick, R.; et al. Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Biofuels Bioprod. Biorefining 2014, 8, 30–48. https://doi.org/10.1002/bbb.1431.
- 35.
CAMEO Chemicals. Diisobutylene, Isomeric Compounds. Available online: https://cameochemicals.noaa.gov/chemical/3225#:~:text=A%20clear%20colorless%20liquid%20with,Vapors%20heavier%20than%20air (accessed on 2 April 2024).
- 36.
Dhamodaran, G.; Esakkimuthu, G.S. Experimental measurement of physico-chemical properties of oxygenate (DIPE) blended gasoline. Measurement 2019, 134, 280–285. https://doi.org/10.1016/j.measurement.2018.10.077.
- 37.
Dunjo, J.; Nguyen, D.; Murphy, M. Laminar Flame Speeds Data Collection. Ensuring Reliable Data for Explosions Characterization. Available online: https://iomosaic.com/docs/default-source/papers/laminar-flame-speeds-data-collection-2014.pdf?sfvrsn=e1f3cad4_6 (accessed on 20 December 2024).