- 1.
Gao, J.; Huang, J.; Li, X.; et al. Challenges of the UK government and industries regarding emission control after ICE vehicle bans. Sci. Total Environ. 2022, 835, 155406. https://doi.org/10.1016/j.scitotenv.2022.155406.
- 2.
Shuai, S.; Ma, X.; Li, Y.; et al. Recent Progress in Automotive Gasoline Direct Injection Engine Technology. Automot. Innov. 2018, 1, 95–113. https://doi.org/10.1007/s42154-018-0020-1.
- 3.
Hoekman, S.K. Biofuels in the U.S.—Challenges and Opportunities. Renew. Energy 2009, 34, 14–22. https://doi.org/10.1016/j.renene.2008.04.030.
- 4.
Moka, S.; Pande, M.; Rani, M.; et al. Alternative fuels: An overview of current trends and scope for future. Renew. Sustain. Energy Rev. 2014, 32, 697–712. https://doi.org/10.1016/j.rser.2014.01.023.
- 5.
Abdellatief, T.M.M.; Ershov, M.A.; Kapustin, V.M.; et al. Low carbon energy technologies envisaged in the context of sustainable energy for producing high-octane gasoline fuel. Sustain. Energy Technol. Assess. 2023, 56, 103103. https://doi.org/10.1016/j.seta.2023.103103.
- 6.
Cardona, C.A.; Sánchez, Ó.J. Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol. 2007, 98, 2415–2457. https://doi.org/10.1016/j.biortech.2007.01.002.
- 7.
Das, L.M.; Gulati, R.; Gupta, P.K. A comparative evaluation of the performance characteristics of a spark ignition engine using hydrogen and compressed natural gas as alternative fuels. Int. J. Hydrogen Energy 2000, 25, 783–793. https://doi.org/10.1016/S0360-3199(99)00103-2.
- 8.
Haldar, S.K.; Ghosh, B.B.; Nag, A. Utilization of unattended Putranjiva roxburghii non-edible oil as fuel in diesel engine. Renew. Energy 2009, 34, 343–347. https://doi.org/10.1016/j.renene.2008.03.008.
- 9.
Göktaş, M.; Kemal Balki, M.; Sayin, C.; et al. An evaluation of the use of alcohol fuels in SI engines in terms of performance, emission and combustion characteristics: A review. Fuel 2021, 286, 119425. https://doi.org/10.1016/j.fuel.2020.119425.
- 10.
Thaweelap, N.; Plerdsranoy, P.; Poo-arporn, Y.; et al. Ni-doped activated carbon nanofibers for storing hydrogen at ambient temperature: Experiments and computations. Fuel 2021, 288, 119608. https://doi.org/10.1016/j.fuel.2020.119608.
- 11.
Doğan, O. The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. Fuel 2011, 90, 2467–2472. https://doi.org/10.1016/j.fuel.2011.02.033.
- 12.
Merola, S.S.; Valentino, G.; Tornatore, C.; et al. In-cylinder spectroscopic measurements of knocking combustion in a SI engine fuelled with butanol–gasoline blend. Energy 2013, 62, 150–161. https://doi.org/10.1016/j.energy.2013.05.056.
- 13.
Iodice, P.; Cardone, M. Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions. Energies 2021, 14, 4034. https://doi.org/10.3390/en14134034.
- 14.
Yusuf, A.A.; Inambao, F.L. Progress in alcohol-gasoline blends and their effects on the performance and emissions in SI engines under different operating conditions. Int. J. Ambient. Energy 2021, 42, 465–481. https://doi.org/10.1080/01430750.2018.1531261.
- 15.
Balki, M.K.; Sayin, C. The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fueled with pure ethanol, methanol and unleaded gasoline. Energy 2014, 71, 194–201. https://doi.org/10.1016/j.energy.2014.04.074.
- 16.
Jiao, J.; Li, J.; Bai, Y. Ethanol as a vehicle fuel in China: A review from the perspectives of raw material resource, vehicle, and infrastructure. J. Clean. Prod. 2018, 180, 832–845. https://doi.org/10.1016/j.jclepro.2018.01.141.
- 17.
Yang, C.-J.; Jackson, R.B. China’s growing methanol economy and its implications for energy and the environment. Energy Policy 2012, 41, 878–884. https://doi.org/10.1016/j.enpol.2011.11.037.
- 18.
Larsen, U.; Johansen, T.; Schramm, J. Ethanol as a Fuel for Road Transportation; IEA: Paris, France, 2009.
- 19.
dos Santos Vieira, C.F.; Maugeri Filho, F.; Maciel Filho, R.; et al. Acetone-free biobutanol production: Past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation. Bioresour. Technol. 2019, 287, 121425. https://doi.org/10.1016/j.biortech.2019.121425.
- 20.
Kujawska, A.; Kujawski, J.; Bryjak, M.; et al. ABE fermentation products recovery methods—A review. Renew. Sustain. Energy Rev. 2015, 48, 648–661. https://doi.org/10.1016/j.rser.2015.04.028.
- 21.
Kumar, M.; Goyal, Y.; Sarkar, A.; et al. Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl. Energy 2012, 93, 193–204. https://doi.org/10.1016/j.apenergy.2011.12.079.
- 22.
Oksal, I.N.; Kaymak, D.B. Design and control of a Biobutanol Purification Process through IBE Fermentation: Basic Design Configuration. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2021; Volume 50, pp. 1167–1172. https://doi.org/10.1016/B978-0-323-88506-5.50180-7.
- 23.
Zhen, X.; Wang, Y.; Liu, D. Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renew. Energy 2020, 147, 2494–2521. https://doi.org/10.1016/j.renene.2019.10.119.
- 24.
Graham, L.A.; Belisle, S.L.; Baas, C.-L. Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos. Environ. 2008, 42, 4498–4516. https://doi.org/10.1016/j.atmosenv.2008.01.061.
- 25.
Sileghem, L.; Alekseev, V.A.; Vancoillie, J.; et al. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. Fuel 2013, 112, 355–365. https://doi.org/10.1016/j.fuel.2013.05.049.
- 26.
Veloo, P.S.; Wang, Y.L.; Egolfopoulos, F.N.; et al. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combust. Flame 2010, 157, 1989–2004. https://doi.org/10.1016/j.combustflame.2010.04.001.
- 27.
Iliev, S. Investigation of the Gasoline Engine Performance and Emissions Working on Methanol-Gasoline Blends Using Engine Simulation. In Numerical and Experimental Studies on Combustion Engines and Vehicles; IntechOpen: London, UK, 2020. https://doi.org/10.5772/intechopen.92858.
- 28.
MAN Energy Solutions. The Methanolfuelled MAN B&W LGIM Engine; MAN Energy Solutions: Copenhagen, Denmark, 2014.
- 29.
Dutta, A. Forecasting ethanol market volatility: New evidence from the corn implied volatility index. Biofuels Bioprod. Biorefining 2019, 13, 48–54. https://doi.org/10.1002/bbb.1931.
- 30.
Wallner, T.; Ickes, A.; Lawyer, K. Analytical Assessment of C2–C8 Alcohols as Spark-Ignition Engine Fuels. In Proceedings of the FISITA 2012 World Automotive Congress, Beijing, China, 27–30 November 2012; pp. 15–26.
- 31.
Veloo, P.S.; Egolfopoulos, F.N. Studies of n-propanol, iso-propanol, and propane flames. Combust. Flame 2011, 158, 501–510. https://doi.org/10.1016/j.combustflame.2010.10.001.
- 32.
Rochón, E.; Cortizo, G.; Cabot, M.I.; et al. Bioprocess intensification for isopropanol, butanol and ethanol (IBE) production by fermentation from sugarcane and sweet sorghum juices through a gas stripping-pervaporation recovery process. Fuel 2020, 281, 118593. https://doi.org/10.1016/j.fuel.2020.118593.
- 33.
Pyrgakis, K.A.; de Vrije, T.; Budde, M.A.W.; et al. A process integration approach for the production of biological iso-propanol, butanol and ethanol using gas stripping and adsorption as recovery methods. Biochem. Eng. J. 2016, 116, 176–194. https://doi.org/10.1016/j.bej.2016.07.014.
- 34.
Liu, Y.; Xu, B.; Jia, J.; et al. Effect of Injection Timing on Performance and Emissions of DI-diesel Engine Fueled with Isopropanol. In Proceedings of the 2015 International Conference on Electrical, Electronics and Mechatronics, Phuket, Thailand, 20–21 December 2015; pp. 133–137. https://doi.org/10.2991/iceem-15.2015.33.
- 35.
Li, G.; Lee, T.H.; Zhang, C. Optical investigation on impacts of component ratio on spray, combustion and flame structure of isopropanol-butanol-ethanol (IBE)/diesel blends. Fuel 2020, 280, 118602. https://doi.org/10.1016/j.fuel.2020.118602.
- 36.
Alptekin, E. Evaluation of ethanol and isopropanol as additives with diesel fuel in a CRDI diesel engine. Fuel 2017, 205, 161–172. https://doi.org/10.1016/j.fuel.2017.05.076.
- 37.
Iliev, S.; Ivanov, Z.; Dimitrov, R.; et al. An Experimental Investigation into the Performance and Emission Characteristics of a Gasoline Direct Injection Engine Fueled with Isopropanol Gasoline Blends. Machines 2023, 11, 1062. https://doi.org/10.3390/machines11121062.
- 38.
Zhang, P.; Su, X.; Chen, H.; et al. Experimental investigation on NOx and PM pollutions of a common-rail diesel engine fueled with diesel/gasoline/isopropanol blends. Sustain. Energy Fuels 2019, 3, 2260–2274. https://doi.org/10.1039/C9SE00209J.
- 39.
Gainey, B.; Yan, Z.; Moser, S.; et al. Lean flammability limit of high-dilution spark ignition with ethanol, propanol, and butanol. Int. J. Engine Res. 2021, 23, 638–648. https://doi.org/10.1177/1468087421993256.
- 40.
Sivasubramanian, H.; Pochareddy, Y.K.; Dhamodaran, G.; et al. Performance, emission and combustion characteristics of a branched higher mass, C3 alcohol (isopropanol) blends fuelled medium duty MPFI SI engine. Eng. Sci. Technol. Int. J. 2017, 20, 528–535. https://doi.org/10.1016/j.jestch.2016.11.013.
- 41.
Awad, O.I.; Mamat, R.; Ali, O.M.; et al. Alcohol and ether as alternative fuels in spark ignition engine: A review. Renew. Sustain. Energy Rev. 2018, 82, 2586–2605. https://doi.org/10.1016/j.rser.2017.09.074.
- 42.
Monteiro, M.R.; Ambrozin, A.R.P.; Santos, A.O.; et al. Evaluation of metallic corrosion caused by alcohol fuel and some contaminants. Mater. Sci. Forum 2010, 636, 1024–1029. https://doi.org/10.4028/www.scientific.net/MSF.636-637.1024.
- 43.
Muthuraman, V.S.; Patel, A.; Shreya, V.; et al. Progress on compatibility issues of alcohols on automotive materials: Kinetics, challenges and future prospects- a comprehensive review. Process Saf. Environ. Prot. 2022, 162, 463–493. https://doi.org/10.1016/j.psep.2022.04.022.
- 44.
Ambrozin, A.R.P.; Monteiro, M.R.; Santos, A.O.; et al. Evaluation of galvanic corrosion of a Zn alloy in alcohol fuel. Fuel Process. Technol. 2010, 91, 1687–1690. https://doi.org/10.1016/j.fuproc.2010.07.005.