- 1.
Covert, T.; Greenstone, M.; Knittel, C.R. Will we ever stop using fossil fuels? Econ. Perspect. 2016, 30, 117–138. https://doi.org/10.1257/jep.30.1.117.
- 2.
S. EPA. Part One—The Multiple Benefits of Energy Efficiency and Renewable Energy. Quantifying Mult. Benefits Energy Effic. Renew. Energy A Guid. State Local Gov. 2018, 2018, 1–17.
- 3.
Hee, W.J.; Alghoul, M.A.; Bakhtyar, B.; et al. The role of window glazing on daylighting and energy saving in buildings. Sustain. Energy Rev. 2015, 42, 323–343. https://doi.org/10.1016/j.rser.2014.09.020.
- 4.
Obaideen, K.; AlMallahi, M.N.; Alami, A.H.; et al. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. J. Thermofluids 2021, 12, 100123. https://doi.org/10.1016/j.ijft.2021.100123.
- 5.
Maka, A.O.M.; Alabid, J.M. Solar energy technology and its roles in sustainable development. Clean Energy 2022, 6, 476–483. https://doi.org/10.1093/ce/zkac023.
- 6.
Rabaia MK, H.; Abdelkareem, M.A.; Sayed, E.T.; et al. Environmental impacts of solar energy systems: A review. Total Environ. 2021, 754, 141989. https://doi.org/10.1016/j.scitotenv.2020.141989.
- 7.
International Energy Agency. Snapshot of Global PV Markets 2023 Task 1 Strategic PV Analysis and Outreach; International Energy Agency: Paris, France, 2023.
- 8.
International Energy Agency. Renewables 2023 Executive Summary. 2023. Available online: https://www.iea.org/reports/renewables-2023/executive-summary (accessed on 5 May 2024).
- 9.
Kargaran, M.; Goshayeshi, H.R.; Pourpasha, H.; et al. An extensive review on the latest developments of using oscillating heat pipe on cooling of photovoltaic thermal system. Sci. Eng. Prog. 2022, 36, 101489. https://doi.org/10.1016/j.tsep.2022.101489.
- 10.
Hassaan, M.A.; Hassan, A.; Al-Dashti, H. GIS-based suitability analysis for siting solar power plants in Kuwait. J. Remote Sens. Sp. Sci.2021, 24, 453–461. https://doi.org/10.1016/j.ejrs.2020.11.004.
- 11.
Salameh, T.; Zhang, D.; Juaidi, A.; et al. Review of solar photovoltaic cooling systems technologies with environmental and economical assessment. Clean. Prod.2021, 326, 129421. https://doi.org/10.1016/j.jclepro.2021.129421.
- 12.
Singh, B.P.; Goyal, S.K.; Kumar, P. Solar PV cell materials and technologies: Analyzing the recent developments. Today Proc.2021, 43, 2843–2849. https://doi.org/10.1016/j.matpr.2021.01.003.
- 13.
Fazal, M.A.; Rubaiee, S. Progress of PV cell technology: Feasibility of building materials, cost, performance, and stability. Energy 2023, 258, 203–219. https://doi.org/10.1016/j.solener.2023.04.066.
- 14.
The National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. 2024. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 5 May 2024).
- 15.
Tahir, Z.R.; Kanwal, A.; Asim, M.; et al. Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones. Sustainability 2022, 14, 15810. https://doi.org/10.3390/su142315810.
- 16.
Alshawaf, M.; Poudineh, R.; Alhajeri, N.S. Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Sustain. Energy Rev. 2020, 134, 110346. https://doi.org/10.1016/j.rser.2020.110346.
- 17.
Szostok, A.; Stanek, W. Thermo-ecological analysis–The comparison of collector and PV to PV/T system. Energy 2022, 200, 10–23. https://doi.org/10.1016/j.renene.2022.09.070.
- 18.
Al-Enezi, F.Q.; Sykulski, J.K.; Ahmed, N.A. Visibility and potential of solar energy on horizontal surface at Kuwait area. Energy Procedia2011, 12, 862–872. https://doi.org/10.1016/j.egypro.2011.10.114.
- 19.
Bunyan, H.; Ali, W. Investigating of Proper Photovoltaic Panel Tilt Angle to Be Used As Shading Device in Kuwait. J. Eng. Res. Appl. 2015, 5, 1–8.
- 20.
Ghoneim, A. Performance Analysis of Combined Photovoltaic-Thermal Collector in Kuwait Climate. In Proceedings of the Global Conference on Global Warming, Poznan, Poland, 1–12 December 2008.
- 21.
Ramadhan, M.; Naseeb, A. The cost benefit analysis of implementing photovoltaic solar system in the state of Kuwait. Energy 2011, 36, 1272–1276. https://doi.org/10.1016/j.renene.2010.10.004.
- 22.
Zhou, J.; Zhong, W.; Wu, D.; et al. A Review on the Heat Pipe Photovoltaic/Thermal (PV/T) System. Therm. Sci. 2021, 30, 1469–1490. https://doi.org/10.1007/s11630-021-1434-3.
- 23.
Osma-Pinto, G.; Ordóñez-Plata, G. Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system. Energy 2020, 152, 1041–1054. https://doi.org/10.1016/j.renene.2020.01.132.
- 24.
Abdo, S.; Saidani-Scott, H.; Abdelrahman, M.A. Numerical study with eco-exergy analysis and sustainability assessment for a stand-alone nanofluid PV/T. Sci. Eng. Prog. 2021, 24, 100931. https://doi.org/10.1016/j.tsep.2021.100931.
- 25.
Abdallah, S.R.; Elsemary, I.M.M.; Altohamy, A.A.; et al. Experimental investigation on the effect of using nano fluid (Al2O3-Water) on the performance of PV/T system. Sci. Eng. Prog.2018, 7, 1–7. https://doi.org/10.1016/j.tsep.2018.04.016.
- 26.
Togun, H.; Basem, A.; Kadhum, A.A.H.; et al. Advancing photovoltaic thermal (PV/T) systems: Innovative cooling technique, thermal management, and future prospects. Energy 2025, 291, 113402. https://doi.org/10.1016/j.solener.2025.113402.
- 27.
Vassiliades, C.; Barone, G.; Buonomano, A.; et al. Assessment of an innovative plug and play PV/T system integrated in a prefabricated house unit: Active and passive behaviour and life cycle cost analysis. Energy 2022, 186, 845–863. https://doi.org/10.1016/j.renene.2021.12.140.
- 28.
Gang, P.; Huide, F.; Tao, Z.; et al. A numerical and experimental study on a heat pipe PV/T system. Energy 2011, 85, 911–921. https://doi.org/10.1016/j.solener.2011.02.006.
- 29.
Zhu, X.; Yu, M.; Zhou, L.; et al. Performance investigation and parametric analysis of a novel flat copper tube loop-heat-pipe PV/T system. Build. Eng. 2025, 100, 111820. https://doi.org/10.1016/j.jobe.2025.111820.
- 30.
Ahmed, B.O.; Ibrahim, A.; Azeez, H.L.; et al. Energy and exergy analysis of a newly designed photovoltaic thermal system featuring ribs, petal array, and coiled twisted tapes: Experimental analysis. Case Stud. Therm. Eng. 2024, 63, 105388. https://doi.org/10.1016/j.csite.2024.105388.
- 31.
Moradgholi, M.; Nowee, S.M.; Abrishamchi, I. Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Energy 2014, 107, 82–88. https://doi.org/10.1016/j.solener.2014.05.018.
- 32.
Khordehgah, N.; Żabnieńska-Góra, A.; Jouhara, H. Analytical modelling of a photovoltaics-thermal technology combined with thermal and electrical storage systems. Energy 2021, 165, 350–358. https://doi.org/10.1016/j.renene.2020.11.058.
- 33.
Laubscher, R.; Dobson, R.T. Theoretical and experimental modelling of a heat pipe heat exchanger for high temperature nuclear reactor technology. Therm. Eng. 2013, 61, 259–267. https://doi.org/10.1016/j.applthermaleng.2013.06.063.
- 34.
Jouhara, H.; Milko, J.; Danielewicz, J.; et al. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material. Energy 2016, 108, 148–154. https://doi.org/10.1016/j.energy.2015.07.063.
- 35.
Bailey, E. Advantages and Disadvantages of Polycrystalline Solar Panels: A Comprehensive Guide. SolVoltaics. 2023. Available online: https://solvoltaics.com/advantages-and-disadvantages-of-polycrystalline-solar-panels/#:~:text=Polycrystalline (accessed on 3 May 2024).
- 36.
Prediction of Worldwide Energy Resources (POWER). Data Access Viewer. 2022. Available online: https://data.nasa.gov/Earth-Science/Prediction-Of-Worldwide-Energy-Resources-POWER-/wn3p-qsan (accessed on 30 August 2024).
- 37.
Beale, A. Solar Panel Tilt Angle Calculator. 2022. Available online: https://footprinthero.com/solar-panel-tilt-angle-calculator (accessed on 30 August 2022).
- 38.
RS PRO. Datasheet; RS Pro 20W Polycrystalline Flexible solar panel; RS Stock No: 914-8457.Available Online: https://docs.rs-online.com/158f/0900766b81587500.pdf (accessed on 30 August 2022).
- 39.
ULTRA MAX. Sealed Lead Acid Rechargeable Battery Product Specification: SLAUMXNP 18-12 (12V18AH). The Battery Masters. 2018. Available online: https://batterymasters.co.uk/pub/media/catalog/product/pdf/s/l/slaumxnp18-12-tech_2.pdf (accessed on 26 August 2022).
- 40.
Chauvin Arnoux Group.Optimize Your Energy Efficiency with the PEL100 For Economical, Sustainable Buildings, Improve Your Energy Efficiency. Available Online: https://pjwmeters.com/wp-content/uploads/2025/01/PELOG-103-Guide.pdf (accessed on 23 October 2024).
- 41.
RS PRO.Instruction Manual; ISM 400; Solar Power Meter. Available Online: https://docs.rs-online.com/178d/A700000009677517.pdf (accessed on 30 August 2022).
- 42.
Brass Water Turbines. Available online: https://www.omega.co.uk/pptst/FTB370_SERIES.html#manuals (accessed on 27 August 2022).
- 43.
6-Digit Rate Meter/Totalizer. Available online: https://www.omega.co.uk/pptst/DPF701.html (accessed on 27 August 2022).
- 44.
Thermal Energy System Specialists.TRNSYS, Transient System Simulation Tool. Available Online: https://www.trnsys.com/ (accessed on 12 October 2024).
- 45.
Khordehgah, N.; Guichet, V.; Lester, S.P.; et al. Computational study and experimental validation of a solar photovoltaics and thermal technology. Energy 2019, 143, 1348–1356. https://doi.org/10.1016/j.renene.2019.05.108.