- 1.
Madhu, R.; Dalapati, G.K.; Wong, T.K.S.; et al. Clean energy for sustainable development: Importance of new materials. In Sulfide and Selenide Based Materials for Emerging Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–15.
- 2.
International Energy Agency. Energy and Climate Change: World Energy Outlook Special Report; International Energy Agency: Paris, France, 2015.
- 3.
Abdul Latif, S.N.; Chiong, M.S.; Rajoo, S.; et al. The trend and status of energy resources and greenhouse gas emissions in the Malaysia power generation mix. Energies 2021, 14, 2200.
- 4.
Aktar, M.A.; Harun, M.B.; Alam, M.M. Green energy and sustainable development. In Affordable and Clean Energy; Springer: Cham, Switzerland, 2020; pp. 1–11.
- 5.
Hoel, M.; Kverndokk, S. Depletion of fossil fuels and the impacts of global warming. Resour. Energy Econ. 1996, 18, 115–136.
- 6.
Bhatt, R.P. Achievement of SDGS globally in biodiversity conservation and reduction of greenhouse gas emissions by using green energy and maintaining forest cover. GSC Adv. Res. Rev. 2023, 17, 1–21.
- 7.
Androniceanu, A.; Sabie, O.M. Overview of green energy as a real strategic option for sustainable development. Energies 2022, 15, 8573.
- 8.
United Nations. Sustainability. Available online: https://www.un.org/en/academic-impact/sustainability (accessed on 10 October 2024).
- 9.
Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126.
- 10.
Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025.
- 11.
Chong, C.T.; Van Fan, Y.; Lee, C.T.; Klemeš, J.J. Post COVID-19 ENERGY sustainability and carbon emissions neutrality. Energy 2022, 241, 122801.
- 12.
European Parliament. Green Deal: Key to a Climate-Neutral and Sustainable EU. Available online: https://www.europarl.europa.eu/topics/en/article/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 1 April 2025).
- 13.
Obaideen, K.; Olabi, A.G.; Al Swailmeen, Y.; et al. Solar energy: Applications, trends analysis, bibliometric analysis and research contribution to sustainable development goals (SDGs). Sustainability 2023, 15, 1418.
- 14.
Gedam, R.S.; Kalyani, N.T.; Dhoble, S.J. Energy materials: Fundamental physics and latest advances in relevant technology. In Energy Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–26.
- 15.
Musilek, P.; Prauzek, M.; Krömer, P.; Rodway, J.; Bartoň, T. Intelligent energy management for environmental monitoring systems. In Smart Sensors Networks; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–94.
- 16.
Kalyani, N.T.; Dhoble, S.J. Energy materials: Applications and propelling opportunities. In Energy Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 567–580.
- 17.
Midilli, A.; Dincer, I.; Ay, M. Green energy strategies for sustainable development. Energy Policy 2006, 34, 3623–3633.
- 18.
Duehnen, S.; Betz, J.; Kolek, M.; Schmuch, R.; Winter, M.; Placke, T. Toward green battery cells: Perspective on materials and technologies. Small Methods 2020, 4, 2000039.
- 19.
Anastas, P.T. Introduction: Green chemistry. Chem. Rev. 2007, 6, 2167–2168.
- 20.
Horváth, I.T. Introduction: Sustainable chemistry. 2018, 118, 369–371.
- 21.
Saleh, H.E.-D.M.; Koller, M. Introductory chapter: Principles of green chemistry. In Green Chemistry; IntechOpen: London, UK, 2018.
- 22.
Goel, S.; Munjal, M.; Sharma, R.K.; et al. Advanced applications of green materials in supercapacitors. In Applications of Advanced Green Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 339–371.
- 23.
Bontempi, E.; Sorrentino, G.P.; Zanoletti, A.; et al. Sustainable materials and their contribution to the sustainable development goals (SDGs): A critical review based on an Italian example. Molecules 2021, 26, 1407.
- 24.
Zhao, Y.; Liu, L.; Yu, M. Comparison and analysis of carbon emissions of traditional, prefabricated, and green material buildings in materialization stage. J. Clean. Prod. 2023, 406, 137152.
- 25.
Nandy, S.; Fortunato, E.; Martins, R. Green economy and waste management: An inevitable plan for materials science. Prog. Nat. Sci. Mater. Int. 2022, 32, 1–9.
- 26.
Sarkar, B.; Ullah, M.; Sarkar, M. Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 2022, 332, 129813.
- 27.
Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636.
- 28.
Obaideen, K.; AlMallahi, M.N.; Alami, A.H.; et al. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123.
- 29.
Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; et al. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431.
- 30.
Ivanko, A. Solar PV Waste Management in the Context of Sustainable Development Goals. Master’s Thesis, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, 2021.
- 31.
Irena, I.P. End-of-Life Management: Solar Photovoltaic Panels; USDOE Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, USA, 2016.
- 32.
Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustain. Energy Technol. Assess. 2021, 47, 101410.
- 33.
Rajvikram, M.; Leoponraj, S. A method to attain power optimality and efficiency in solar panel. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 705–708.
- 34.
Dada, M.; Popoola, P. Recent advances in solar photovoltaic materials and systems for energy storage applications: A review. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 1–15.
- 35.
Ajayan, J.; Nirmal, D.; Mohankumar, P.; et al. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct. 2020, 143, 106549.
- 36.
Kumari, N.; Singh, S.K.; Kumar, S. A comparative study of different materials used for solar photovoltaics technology. Mater. Today Proc. 2022, 66, 3522–3528.
- 37.
Goetzberger, A.; Hebling, C.; Schock, H.-W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 2003, 40, 1–46.
- 38.
Ehrling, S.; Reynolds, E.M.; Bon, V.; et al. Adaptive response of a metal–organic framework through reversible disorder–disorder transitions. Nat. Chem. 2021, 13, 568–574.
- 39.
Stuckelberger, M.; Biron, R.; Wyrsch, N.; et al. Progress in solar cells from hydrogenated amorphous silicon. Renew. Sustain. Energy Rev. 2017, 76, 1497–1523.
- 40.
Cherradi, N. Solar PV Technologies What’s Next; Becquerel Institute: Brussels, Belgium, 2019.
- 41.
Poortmans, J.; Arkhipov, V. Thin Film Solar Cells: Fabrication, Characterization and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 18.
- 42.
Sharma, S.; Jain, K.K.; Sharma, A. Solar cells: In research and applications—A review. Mater. Sci. Appl. 2015, 6, 1145–1155.
- 43.
Younas, T.; Khan, U.A.; Zaidi, S.; et al. Increasing Efficiency of Solar Panels via Photovoltaic Materials. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; p. 012005.
- 44.
Chander, S.; Tripathi, S.K.; Kaur, I.; et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods. Mater. Today Sustain. 2023, 25, 100662.
- 45.
Green, M.A.; Dunlop, E.D.; Yoshita, M.; et al. Solar cell efficiency tables (Version 63). Prog. Photovolt. Res. Appl. 2023, 1–16. https://doi.org/10.1002/pip.3750.
- 46.
Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.
- 47.
Bahutair, W.N.; Alhajar, A.; Al Othman, A.; et al. The role of MXenes and MXene composites in enhancing dye-sensitized solar cells characteristics. Process Saf. Environ. Prot. 2024, 191, 490–504.
- 48.
Maisch, P.; Lucera, L.; Brabec, C.J.; et al. Flexible Carbon‐based Electronics: Flexible Solar Cells. Flex. Carbon‐Based Electron. 2018, 51–69.
- 49.
Fallahpour, A.H.; Gentilini, D.; Gagliardi, A.; et al. Systematic study of the PCE and device operation of organic tandem solar cells. IEEE J. Photovolt. 2015, 6, 202–210.
- 50.
Li, S.; Liu, X.; Zhang, X.; et al. Harvesting Thermal Energy through Pyroelectric and Thermoelectric Nanomaterials for Catalytic Applications. Catalysts 2024, 14, 159.
- 51.
Tzounis, L. Synthesis and processing of thermoelectric nanomaterials, nanocomposites, and devices. In Nanomaterials Synthesis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 295–336.
- 52.
Jia, N.; Cao, J.; Tan, X.Y.; et al. Thermoelectric materials and transport physics. Mater. Today Phys. 2021, 21, 100519.
- 53.
Zhang, Y.; Zhang, Q.; Chen, G. Carbon and carbon composites for thermoelectric applications. Carbon Energy 2020, 2, 408–436.
- 54.
Zhu, T.; Liu, Y.; Fu, C.; et al. Compromise and synergy in high‐efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.
- 55.
Chen, Z.-G.; Shi, X.; Zhao, L.-D.; et al. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346.
- 56.
Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.
- 57.
Gao, C.; Chen, G. Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Compos. Sci. Technol. 2016, 124, 52–70.
- 58.
Wan, C.; Gu, X.; Dang, F.; et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS 2. Nat. Mater. 2015, 14, 622–627.
- 59.
Zhang, Y.; Heo, Y.-J.; Park, M.; et al. Recent advances in organic thermoelectric materials: Principle mechanisms and emerging carbon-based green energy materials. Polymers 2019, 11, 167.
- 60.
Di, C.; Xu, W.; Zhu, D. Organic thermoelectrics for green energy. Natl. Sci. Rev. 2016, 3, 269–271.
- 61.
Caballero‐Calero, O.; Ares, J.R.; Martín‐González, M. Environmentally friendly thermoelectric materials: High performance from inorganic components with low toxicity and abundance in the earth. Adv. Sustain. Syst. 2021, 5, 2100095.
- 62.
Yu, C.; Zhang, G.; Zhang, Y.-W.; et al. Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano Energy 2015, 17, 104–110.
- 63.
Massetti, M.; Jiao, F.; Ferguson, A.J.; et al. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 2021, 121, 12465–12547.
- 64.
Kawamoto, M.; He, P.; Ito, Y. Green processing of carbon nanomaterials. Adv. Mater. 2017, 29, 1602423.
- 65.
Yuan, Y.; Lu, J. Demanding energy from carbon. Carbon Energy 2019, 1, 8–12.
- 66.
Wang, H.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13–18.
- 67.
Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.
- 68.
Abouricha, S.; Aziam, H.; Noukrati, H.; et al. Biopolymers‐Based Proton Exchange Membranes For Fuel Cell Applications: A Comprehensive Review. ChemElectroChem 2024, 11, e202300648.
- 69.
Pedram, S.; Batool, M.; Yapp, K.; et al. A review on bioinspired proton exchange membrane fuel cell: Design and materials. Adv. Energy Sustain. Res. 2021, 2, 2000092.
- 70.
Frey, T.; Linardi, M. Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance. Electrochim. Acta 2004, 50, 99–105.
- 71.
Gouda, M.H.; Elnouby, M.; Aziz, A.N.; et al. Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: Effect of double-layer electrodes and gas diffusion layer. Front. Mater. 2020, 6, 337.
- 72.
Gouda, M.H.; Gouveia, W.; Afonso, M.L.; et al. Poly (vinyl alcohol)-based crosslinked ternary polymer blend doped with sulfonated graphene oxide as a sustainable composite membrane for direct borohydride fuel cells. J. Power Sources 2019, 432, 92–101.
- 73.
Baroutaji, A.; Arjunan, A.; Robinson, J.; et al. PEMFC poly-generation systems: Developments, merits, and challenges. Sustainability 2021, 13, 11696.
- 74.
Liu, M.; Guo, X.; Hu, L.; et al. Fe3O4/Fe3C@ Nitrogen‐Doped Carbon for Enhancing Oxygen Reduction Reaction. ChemNanoMat 2019, 5, 187–193.
- 75.
Lucia, U. Overview on fuel cells. Renew. Sustain. Energy Rev. 2014, 30, 164–169.
- 76.
Elkafas, A.G.; Rivarolo, M.; Gadducci, E.; et al. Fuel cell systems for maritime: A review of research development, commercial products, applications, and perspectives. Processes 2022, 11, 97.
- 77.
Sajid, A.; Pervaiz, E.; Ali, H.; et al. A perspective on development of fuel cell materials: Electrodes and electrolyte. Int. J. Energy Res. 2022, 46, 6953–6988.
- 78.
Alinejad, Z.; Parham, N.; Tawalbeh, M.; et al. Progress in green hydrogen production and innovative materials for fuel cells: A pathway towards sustainable energy solutions. Int. J. Hydrogen Energy 2024, 140, 1078–1094.
- 79.
Ali, A.A.; Al-Othman, A.; Tawalbeh, M. Exploring natural polymers for the development of proton exchange membranes in fuel cells. Process Saf. Environ. Prot. 2024, 189, 1379–1401.
- 80.
Mahmoud, M.; Ramadan, M.; Abdelkareem, M.A.; Olabi, A.G. Introduction and definition of wind energy. In Renewable Energy-Volume 1: Solar, Wind, and Hydropower; Elsevier: Amsterdam, The Netherlands, 2023; pp. 299–314.
- 81.
Olabi, A.G.; Wilberforce, T.; Elsaid, K.; et al. A review on failure modes of wind turbine components. Energies 2021, 14, 5241.
- 82.
El Mouhsine, S.; Oukassou, K.; Ichenial, M.M.; et al. Aerodynamics and structural analysis of wind turbine blade. Procedia Manuf. 2018, 22, 747–756.
- 83.
Abrahamsen, A.B.; Natarajan, A.; Kitzing, L.; et al. Towards sustainable wind energy. In DTU International Energy Report 2021: Perspectives on Wind Energy; DTU Wind Energy: Roskilde, Denmark, 2021; pp. 144–150.
- 84.
Bashir, M.B.A. Principle parameters and environmental impacts that affect the performance of wind turbine: An overview. Arab. J. Sci. Eng. 2022, 47, 7891–7909.
- 85.
Karuppannan Gopalraj, S.; Kärki, T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2020, 2, 433.
- 86.
Mdallal, A.; Mahmoud, M.; Abdelkareem, M.A.; et al. Green Materials in Wind Turbines. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, Netherlands, 2023.
- 87.
Thomas, L.; Ramachandra, M. Advanced materials for wind turbine blade-A Review. Mater. Today Proc. 2018, 5, 2635–2640.
- 88.
Mishnaevsky Jr, L.; Branner, K.; Petersen, H.N.; et al. Materials for wind turbine blades: An overview. Materials 2017, 10, 1285.
- 89.
Leon, M.J. Recycling of wind turbine blades: Recent developments. Curr. Opin. Green Sustain. Chem. 2023, 39, 100746.
- 90.
Chen, J.; Wang, J.; Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. J. Reinf. Plast. Compos. 2019, 38, 567–577.
- 91.
Rathore, N.; Panwar, N.L. Environmental impact and waste recycling technologies for modern wind turbines: An overview. Waste Manag. Res. 2023, 41, 744–759.
- 92.
Khan, K.; Tareen, A.K.; Aslam, M.; et al. Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 2020, 58, 100254.
- 93.
Tawalbeh, M.; Ali, A.; Aljawrneh, B.; et al. Progress in safe nano-structured electrolytes for sodium ion batteries: A comprehensive review. Nano-Struct. Nano-Objects 2024, 39, 101311.
- 94.
Saikia, B.K.; Benoy, S.M.; Bora, M.; et al. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 2020, 282, 118796.
- 95.
Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825.
- 96.
Xie, J.; Yang, P.; Wang, Y.; et al. Puzzles and confusions in supercapacitor and battery: Theory and solutions. J. Power Sources 2018, 401, 213–223.
- 97.
Wayu, M. Manganese oxide carbon-based nanocomposite in energy storage applications. Solids 2021, 2, 232–248.
- 98.
Manjakkal, L.; Jain, A.; Nandy, S.; et al. Sustainable electrochemical energy storage devices using natural bast fibres. Chem. Eng. J. 2023, 465, 142845.
- 99.
Bhattacharjya, D.; Yu, J.-S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 2014, 262, 224–231.
- 100.
Debnath, S. Flax fibre extraction to textiles and sustainability: A holistic approach. In Sustainable Fashion and Textiles in Latin America; Springer: Singapore, 2021; pp. 73–85.
- 101.
Jakubec, P.; Bartusek, S.; Dvořáček, J.J.; et al. Flax-derived carbon: A highly durable electrode material for electrochemical double-layer supercapacitors. Nanomaterials 2021, 11, 2229.
- 102.
Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Potential natural fiber polymeric nanobiocomposites: A review. Polymers 2020, 12, 1072.
- 103.
Keya, K.N.; Kona, N.A.; Koly, F.A.; et al. Natural fiber reinforced polymer composites: History, types, advantages and applications. Mater. Eng. Res. 2019, 1, 69–85.
- 104.
Cheng, X.B.; Liu, H.; Yuan, H.; et al. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50.
- 105.
Barke, A.; Cistjakov, W.; Steckermeier, D.; et al. Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft. J. Ind. Ecol. 2023, 27, 795–810.
- 106.
Liedel, C. Sustainable battery materials from biomass. ChemSusChem 2020, 13, 2110–2141.
- 107.
Wu, F.; Li, L.; Crandon, L.; et al. Environmental hotspots and greenhouse gas reduction potential for different lithium-ion battery recovery strategies. J. Clean. Prod. 2022, 339, 130697.
- 108.
Piątek, J.; Afyon, S.; Budnyak, T.M.; et al. Sustainable Li‐ion batteries: Chemistry and recycling. Adv. Energy Mater. 2021, 11, 2003456.
- 109.
Muzaffar, A.; Ahamed, M.B.; Hussain, C.M. Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability. Renew. Sustain. Energy Rev. 2024, 195, 114324.
- 110.
Shetti, N.P.; Dias, S.; Reddy, K.R. Nanostructured organic and inorganic materials for Li-ion batteries: A review. Mater. Sci. Semicond. Process. 2019, 104, 104684.
- 111.
Zhang, Y.; Song, X.; Xu, Y.; et al. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J. Clean. Prod. 2019, 210, 366–375.
- 112.
Misnon, I.I.; Zain, N.K.M.; Abd Aziz, R.; et al. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta 2015, 174, 78–86.
- 113.
Tian, Q.; Wang, X.; Xu, X.; et al. A novel porous carbon material made from wild rice stem and its application in supercapacitors. Mater. Chem. Phys. 2018, 213, 267–276.
- 114.
Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; et al. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.
- 115.
Novoselov, K.S.; Colombo, L.; Gellert, P.R.; et al. A roadmap for graphene. Nature 2012, 490, 192–200.
- 116.
Zhang, K.; Yang, X.; Li, D. Engineering graphene for high-performance supercapacitors: Enabling role of colloidal chemistry. J. Energy Chem. 2018, 27, 1–5.
- 117.
Khan, H.A.; Tawalbeh, M.; Aljawrneh, B.; et al. A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges. Energy 2024, 295, 131043.
- 118.
Meena, J.; Sivasubramaniam, S.S.; David, E.; et al. Green supercapacitor: Review and perspectives of sustainable template-free synthesis of metal and metal oxide nanoparticle. RSC Sustain. 2024, 2, 1224–1245.
- 119.
Murdock, H.E.; Gibb, D.; Andre, T.; et al. Renewables 2020-Global Status Report. 2020. Available online: https://inis.iaea.org/records/7cske-9rp48 (accessed on 1 April 2025).
- 120.
Gunasekara, S.N.; Barreneche, C.; Inés Fernández, A.; et al. Thermal energy storage materials (TESMs)—What does it take to make them fly? Crystals 2021, 11, 1276.
- 121.
Okogeri, O.; Stathopoulos, V.N. What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications. Int. J. Thermofluids 2021, 10, 100081.
- 122.
Romdhane, S.B.; Amamou, A.; Khalifa, R.B.; et al. A review on thermal energy storage using phase change materials in passive building applications. J. Build. Eng. 2020, 32, 101563.
- 123.
Peer, M.S.; Cascetta, M.; Migliari, L.; et al. Nanofluids in Thermal Energy Storage Systems: A Comprehensive Review. Energies 2025, 18, 707. https://doi.org/10.3390/en18030707.
- 124.
Wei, G.; Wang, G.; Xu, C.; et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2018, 81, 1771–1786.
- 125.
Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378.
- 126.
Barnes, F.; Levine, J. Large Energy Storage Systems; Taylor & Francis Group: New York, NY, USA, 2011; Volume 7, pp. 1–11.
- 127.
Tawalbeh, M.; Khan, H.A.; Al-Othman, A.; et al. A comprehensive review on the recent advances in materials for thermal energy storage applications. Int. J. Thermofluids 2023, 18, 100326.
- 128.
Hassan, F.; Jamil, F.; Hussain, A.; et al. Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustain. Energy Technol. Assess. 2022, 49, 101646.
- 129.
Nazir, H.; Batool, M.; Osorio, F.J.B.; et al. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523.
- 130.
Ling, T.-C.; Poon, C.-S. Use of phase change materials for thermal energy storage in concrete: An overview. Constr. Build. Mater. 2013, 46, 55–62.
- 131.
Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60.
- 132.
Jegadheeswaran, S.; Pohekar, S.D.; Kousksou, T. Conductivity particles dispersed organic and inorganic phase change materials for solar energy storage–an exergy based comparative evaluation. Energy Procedia 2012, 14, 643–648.
- 133.
Verma, P.; Singal, S.K. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew. Sustain. Energy Rev. 2008, 12, 999–1031.
- 134.
Kang, Y.; Jeong, S.-G.; Wi, S.; et al. Energy efficient Bio-based PCM with silica fume composites to apply in concrete for energy saving in buildings. Sol. Energy Mater. Sol. Cells 2015, 143, 430–434.
- 135.
Reyes-Cueva, E.; Nicolalde, J.F.; Martínez-Gómez, J. Characterization of unripe and mature avocado seed oil in different proportions as phase change materials and simulation of their cooling storage. Molecules 2020, 26, 107.
- 136.
Yang, G.; Yim, Y.-J.; Lee, J.W.; et al. Carbon-filled organic phase-change materials for thermal energy storage: A review. Molecules 2019, 24, 2055.
- 137.
Dogkas, G.; Koukou, M.K.; Konstantaras, J.; et al. Investigating the performance of a thermal energy storage unit with paraffin as phase change material, targeting buildings’ cooling needs: An experimental approach. Int. J. Thermofluids 2020, 3, 100027.
- 138.
Rasta, I.M.; Suamir, I.N. Study on thermal properties of bio-PCM candidates in comparison with propylene glycol and salt based PCM for sub-zero energy storage applications. In Proceedings of the International Conference on Mechanical Engineering Research and Application, Malang, Indonesia, 23–25 October 2018; IOP Publishing: Bristol, UK, 2019; p. 012024.
- 139.
Kahwaji, S.; White, M.A. Edible oils as practical phase change materials for thermal energy storage. Appl. Sci. 2019, 9, 1627.
- 140.
Berger, K.G. Palm kernel oil. In Encyclopedia of Food Sciences and Nutrition, 2dn ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 4322–4324.
- 141.
Fabiani, C.; Pisello, A.L.; Barbanera, M.; et al. Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. J. Energy Storage 2020, 28, 101129.
- 142.
Kenisarin, M.M. Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol. Energy 2014, 107, 553–575.
- 143.
Jeong, S.-G.; Chung, O.; Yu, S.; et al. Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 2013, 117, 87–92.
- 144.
Ramadan, M. A review on coupling Green sources to Green storage (G2G): Case study on solar-hydrogen coupling. Int. J. Hydrogen Energy 2021, 46, 30547–30558.
- 145.
Atilhan, S.; Park, S.; El-Halwagi, M.M.; et al. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668.
- 146.
Al Bostami, R.D.; Al Othman, A.; Tawalbeh, M.; et al. Advancements in Zinc-Air Battery Technology and Water-Splitting. Energy Nexus 2025, 17, 100387.
- 147.
Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029.
- 148.
Gutiérrez-Martín, F.; García-De María, J.M.; Baïri, A.; et al. Management strategies for surplus electricity loads using electrolytic hydrogen. Int. J. Hydrogen Energy 2009, 34, 8468–8475.
- 149.
Osman, A.I.; Nasr, M.; Eltaweil, A.S.; et al. Advances in hydrogen storage materials: Harnessing innovative technology, from machine learning to computational chemistry, for energy storage solutions. Int. J. Hydrogen Energy 2024, 57, 1270–1294.
- 150.
Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.
- 151.
Chanchetti, L.F.; Leiva, D.R.; de Faria, L.I.L.; et al. A scientometric review of research in hydrogen storage materials. Int. J. Hydrogen Energy 2020, 45, 5356–5366.
- 152.
Kukkapalli, V.K.; Kim, S.; Thomas, S.A. Thermal management techniques in metal hydrides for hydrogen storage applications: A review. Energies 2023, 16, 3444.
- 153.
Manoharan, K.; Sundaram, R.; Raman, K. Expeditious re-hydrogenation kinetics of ball-milled magnesium hydride (B-MgH2) decorated acid-treated halloysite nanotube (A-HNT)/polyaniline (PANI) nanocomposite (B-MgH2/A-HNT/PANI) for fuel cell applications. Ionics 2023, 29, 2823–2839.
- 154.
Jastrzębski, K.; Kula, P. Emerging technology for a green, sustainable energy-promising materials for hydrogen storage, from nanotubes to graphene—A review. Materials 2021, 14, 2499.
- 155.
United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 10 October 2024).
- 156.
Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050.
- 157.
Ali, A.A.; Al-Othman, A.; Tawalbeh, M.; Ali, A.; et al. Membrane Technologies for Sustainable Development Goals: A Critical Review of Bright Horizons. J. Environ. Chem. Eng. 2024, 13, 114998.
- 158.
United Nations. Sustainable Development Goals: 17 Goals to Transform our World. Available online: https://www.un.org/en/exhibits/page/sdgs-17-goals-transform-world (accessed on 10 October 2024).
- 159.
United Nations General Assembly. United Nations General Assembly Resolution A. Antarct. Int. Law 2015, 15900, 1–35.
- 160.
Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531.
- 161.
Cao, X.; Hayyat, M.; Henry, J. Green energy investment and technology innovation for carbon reduction: Strategies for achieving SDGs in the G7 countries. Int. J. Hydrogen Energy 2025, 114, 209–220.
- 162.
Cleaning up water. Nat. Mater. 2008, 7, 341. https://doi.org/10.1038/nmat2178.
- 163.
Tiwari, A. Advanced Materials Research and Innovation Priorities for Accomplishing the Sustainable Development Goals. Adv. Mater. Lett. 2021, 12, 1–6. https://doi.org/10.5185/amlett.2021.061633.
- 164.
Kyoto Protocol. Framework Convention on Climate Change; UNFCCC: Bonn, Germany, 2010.
- 165.
Shukla, P.R.; Skeg, J.; Buendia, E.C.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable land Management, Food Security, and Greenhouse Gas Fluxes in terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 1 April 2025).
- 166.
Bishoge, O.K.; Zhang, L.; Mushi, W.G. The potential renewable energy for sustainable development in Tanzania: A review. Clean Technol. 2018, 1, 70–88.
- 167.
Büyüközkan, G.; Karabulut, Y.; Mukul, E. A novel renewable energy selection model for United Nations' sustainable development goals. Energy 2018, 165, 290–302.
- 168.
Bekhet, H.A.; Harun, N.H. Elasticity and causality among electricity generation from renewable energy and its determinants in Malaysia. Int. J. Energy Econ. Policy 2017, 7, 202–216.
- 169.
Mundaca, L.; Neij, L.; Markandya, A.; et al. Towards a Green Energy Economy? Assessing policy choices, strategies and transitional pathways. Appl. Energy 2016, 179, 1283–1292.
- 170.
Albright, R.; Cooley, S. A review of interventions proposed to abate impacts of ocean acidification on coral reefs. Reg. Stud. Mar. Sci. 2019, 29, 100612.
- 171.
Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development–A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181.
- 172.
Schainker, R.B. Executive overview: Energy storage options for a sustainable energy future. In Proceedings of the 2004 IEEE Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004; pp. 2309–2314.
- 173.
United Nations Development Programme. Goal 12: Responsible Consumption and Production; UNDP: New York, NY, USA, 2016.
- 174.
Sachs, J.D. The age of Sustainable Development; Columbia University Press: New York, NY, USA, 2015.
- 175.
Sachs, J.D. From millennium development goals to sustainable development goals. Lancet 2012, 379, 2206–2211.
- 176.
Martinot, E. Energy efficiency and renewable energy in Russia: Transaction barriers, market intermediation, and capacity building. Energy Policy 1998, 26, 905–915.
- 177.
Olabi, A.G.; Obaideen, K.; Abdelkareem, M.A.; et al. Wind energy contribution to the sustainable development goals: Case study on London array. Sustainability 2023, 15, 4641.
- 178.
Watkins, K. Human Development Report 2007/8. Fighting Climate Change: Human Solidarity in a Divided World (November 27, 2007). UNDP-HDRO Human Development Report 2007. Available online: https://ssrn.com/abstract=2294689 (accessed on April 2025).
- 179.
IEA. Tracking SDG 7-The Energy Progress Report 2024; IEA: Paris, France, 2024.
- 180.
Sharma, R.; Jang, J.-G.; Hu, J.-W. Phase-change materials in concrete: Opportunities and challenges for sustainable construction and building materials. Materials 2022, 15, 335.
- 181.
Ahmed Ali, K.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427.
- 182.
Tian, J.; Culley, S.A.; Maier, H.R.; et al. Is renewable energy sustainable? Potential relationships between renewable energy production and the Sustainable Development Goals. NPJ Clim. Action 2024, 3, 35.
- 183.
Gayen, D.; Chatterjee, R.; Roy, S. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 2024, 21, 5285–5310.
- 184.
Alam, M.S.; Dinçer, H.; Kisswani, K.M.; et al. Analysis of green energy-oriented sustainable development goals for emerging economies. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100368.
- 185.
Bashiru, O.; Ochem, C.; Enyejo, L.A.; et al. The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. Glob. J. Eng. Technol. Adv. 2024, 19, 11–36.
- 186.
Rezk, H.; Olabi, A.G.; Mahmoud, M.; et al. Metaheuristics and multi-criteria decision-making for renewable energy systems: Review, progress, bibliometric analysis, and contribution to the sustainable development pillars. Ain Shams Eng. J. 2024, 15, 102883.
- 187.
Narain, R.S. Recent advancements and challenges in green material technology: Preparing today for nourishing tomorrow. Mater. Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.02.218.
- 188.
Ding, P.; Yang, D.; Yang, S.; et al. Stability of organic solar cells: Toward commercial applications. Chem. Soc. Rev. 2024, 53, 2350–2387.
- 189.
Gupta, D.; Boora, A.; Thakur, A.; et al. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ. Res. 2023, 231, 116316.
- 190.
Herrington, R.J. The Raw Material Challenge of Creating a Green Economy. Minerals 2024, 14, 204.
- 191.
Popescu, C.; Dissanayake, H.; Mansi, E.; et al. Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability 2024, 16, 10790.
- 192.
Tiwari, A. Advancement of materials to sustainable & green world. Sustain. Dev. 2023, 2018, 2028.