- 1.
Ritchie, H.; Rosado, P.; Roser, M. Breakdown of Carbon Dioxide, Methane and Nitrous Oxide Emissions by Sector. Available online: https://ourworldindata.org/emissions-by-sector#article-citation (accessed on 1 April 2025).
- 2.
Zhang, S.; Wang, X.; Xu, J.; et al. Green Manufacturing for Achieving Carbon Neutrality Goal Requires Innovative Technologies: A Bibliometric Analysis from 1991 to 2022. J. Environ. Sci. 2024, 140, 255–269. https://doi.org/10.1016/j.jes.2023.08.016.
- 3.
Bui, T.; Tuong, T.; Nguyen, V.; et al. International Journal of Production Economics Green Manufacturing Performance Improvement under Uncertainties: An Interrelationship Hierarchical Model. Int. J. Prod. Econ. 2024, 268, 109117. https://doi.org/10.1016/j.ijpe.2023.109117.
- 4.
Watari, T.; Nansai, K.; Nakajima, K. Major Metals Demand, Supply, and Environmental Impacts to 2100: A Critical Review. Resour. Conserv. Recycl. 2021, 164, 105107. https://doi.org/10.1016/j.resconrec.2020.105107.
- 5.
Punj, N.; Ahmi, A.; Tanwar, A.; et al. Mapping the Field of Green Manufacturing: A Bibliometric Review of the Literature and Research Frontiers. J. Clean. Prod. 2023, 423, 138729. https://doi.org/10.1016/j.jclepro.2023.138729.
- 6.
Javaid, M.; Haleem, A.; Singh, R.P.; et al. Role of Additive Manufacturing Applications towards Environmental Sustainability. Adv. Ind. Eng. Polym. Res. 2021, 4, 312–322. https://doi.org/10.1016/J.AIEPR.2021.07.005.
- 7.
Manoharan, S.; Lee, K.; Freiberg, L.; et al. Comparing the Economics of Metal Additive Manufacturing Processes for Micro-Scale Plate Reactors in the Chemical Process Industry. Procedia Manuf. 2019, 34, 603–612. https://doi.org/10.1016/j.promfg.2019.06.168.
- 8.
Agnusdei, L.; Del Prete, A. Additive Manufacturing for Sustainability: A Systematic Literature Review. Sustain. Futur. 2022, 4, 100098. https://doi.org/10.1016/j.sftr.2022.100098.
- 9.
Kumar, R.; Kumar, M.; Chohan, J.S. The Role of Additive Manufacturing for Biomedical Applications: A Critical Review. J. Manuf. Process. 2021, 64, 828–850.
- 10.
Chhaya, M.P.; Poh, P.S.P.; Balmayor, E.R.; et al. Additive Manufacturing in Biomedical Sciences and the Need for Definitions and Norms. Expert Rev. Med. Devices 2015, 12, 537–543. https://doi.org/10.1586/17434440.2015.1059274.
- 11.
Kaur, I.; Singh, P. State-of-the-Art in Heat Exchanger Additive Manufacturing. Int. J. Heat Mass Transf. 2021, 178, 121600. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121600.
- 12.
Charles, A.; Hofer, A.; Elkaseer, A.; et al. Additive Manufacturing in the Automotive Industry and the Potential for Driving the Green and Electric Transition. In Proceedings of the 8th International Conference of Sustainable Design and Manufacturing (KES-SDM 2021), Online, 15–17 September 2021; Springer: Singapore, 2022; Volume 262, pp. 339–346. https://doi.org/10.1007/978-981-16-6128-0_32.
- 13.
Mohanavel, V.; Ashraff Ali, K.S.; Ranganathan, K.; et al. The Roles and Applications of Additive Manufacturing in the Aerospace and Automobile Sector. Mater. Today Proc. 2021, 47, 405–409. https://doi.org/10.1016/j.matpr.2021.04.596.
- 14.
Blakey-Milner, B.; Gradl, P.; Snedden, G.; et al. Metal Additive Manufacturing in Aerospace: A Review. Mater. Des. 2021, 209, 110008. https://doi.org/10.1016/J.MATDES.2021.110008.
- 15.
Ambrosi, A.; Moo, J.G.S.; Pumera, M. Helical 3D-Printed Metal Electrodes as Custom-Shaped 3D Platform for Electrochemical Devices. Adv. Funct. Mater. 2016, 26, 698–703. https://doi.org/10.1002/ADFM.201503902.
- 16.
Hashemi, S.M.H.; Babic, U.; Hadikhani, P.; et al. The Potentials of Additive Manufacturing for Mass Production of Electrochemical Energy Systems. Curr. Opin. Electrochem. 2020, 20, 54–59. https://doi.org/10.1016/J.COELEC.2020.02.008.
- 17.
Sun, C.; Wang, Y.; McMurtrey, M.D.; et al. Additive Manufacturing for Energy: A Review. Appl. Energy 2021, 282, 116041. https://doi.org/10.1016/J.APENERGY.2020.116041.
- 18.
Gulzar, U.; Glynn, C.; O’Dwyer, C. Additive Manufacturing for Energy Storage: Methods, Designs and Material Selection for Customizable 3D Printed Batteries and Supercapacitors. Curr. Opin. Electrochem. 2020, 20, 46–53. https://doi.org/10.1016/j.coelec.2020.02.009.
- 19.
Baroutaji, A.; Arjunan, A.; Robinson, J.; et al. Developments and Prospects of Additive Manufacturing for Thermoelectric Materials and Technologies. Sustain. Mater. Technol. 2024, 41, e01008. https://doi.org/10.1016/j.susmat.2024.e01008.
- 20.
Kellens, K.; Baumers, M.; Gutowski, T.G.; et al. Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications. J. Ind. Ecol. 2017, 21, S49–S68. https://doi.org/10.1111/jiec.12629.
- 21.
ISO/ASTM 52900:2015; Standard Terminology for Additive Manufacturing—General Principles-Terminology. ISO: Geneva, Switzerland, 2015.
- 22.
Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; et al. Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities. Mater. Today 2018, 21, 22–37. https://doi.org/10.1016/J.MATTOD.2017.07.001.
- 23.
Herzog, D.; Seyda, V.; Wycisk, E.; et al. Additive Manufacturing of Metals. Acta Mater. 2016, 117, 371–392. https://doi.org/10.1016/j.actamat.2016.07.019.
- 24.
Baroutaji, A.; Arjunan, A.; Robinsion, J.; et al. Metallic Meta-Biomaterial as Biomedical Implants. Encycl. Smart Mater. 2022, 70–80. https://doi.org/10.1016/B978-0-12-815732-9.00117-0.
- 25.
Körner, C. Additive Manufacturing of Metallic Components by Selective Electron Beam Melting—A Review. Int. Mater. Rev. 2016, 61, 361–377. https://doi.org/10.1080/09506608.2016.1176289.
- 26.
Ahn, D.G. Directed Energy Deposition (DED) Process: State of the Art; Korean Society for Precision Engineering: Seoul, Republic of Korea, 2021. https://doi.org/10.1007/s40684-020-00302-7.
- 27.
Priarone, P.C.; Campatelli, G.; Montevecchi, F.; et al. A Modelling Framework for Comparing the Environmental and Economic Performance of WAAM-Based Integrated Manufacturing and Machining. CIRP Ann. 2019, 68, 37–40. https://doi.org/10.1016/j.cirp.2019.04.005.
- 28.
Costello, S.C.A.; Cunningham, C.R.; Xu, F.; et al. The State-of-the-Art of Wire Arc Directed Energy Deposition (WA-DED ) as an Additive Manufacturing Process for Large Metallic Component Manufacture. Int. J. Comput. Integr. Manuf. 2023, 36, 469–510. https://doi.org/10.1080/0951192X.2022.2162597.
- 29.
Ziaee, M.; Crane, N.B. Binder Jetting : A Review of Process, Materials , and Methods. Addit. Manuf. 2019, 28, 781–801. https://doi.org/10.1016/j.addma.2019.05.031.
- 30.
Chowdhury, S.; Yadaiah, N.; Prakash, C.; et al. Laser Powder Bed Fusion: A State-of-the-Art Review of the Technology, Materials, Properties & Defects, and Numerical Modelling. J. Mater. Res. Technol. 2022, 20, 2109–2172. https://doi.org/10.1016/j.jmrt.2022.07.121.
- 31.
Baroutaji, A.; Arjunan, A.; Singh, G.; et al. Crushing and energy absorption properties of additively manufactured concave thin-walled tubes. Results Eng. 2022, 14, 100424. https://doi.org/10.1016/J.RINENG.2022.100424.
- 32.
Baroutaji, A.; Arjunan, A.; Stanford, M.; et al. Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushing. Eng. Struct. 2021, 226, 111324. https://doi.org/10.1016/j.engstruct.2020.111324.
- 33.
Gao, C.; Wolff, S.; Wang, S. Eco-Friendly Additive Manufacturing of Metals: Energy Efficiency and Life Cycle Analysis. J. Manuf. Syst. 2021, 60, 459–472. https://doi.org/10.1016/j.jmsy.2021.06.011.
- 34.
Baroutaji, A.; Arjunan, A.; Robinson, J.; et al. Additive Manufacturing for Proton Exchange Membrane (PEM) Hydrogen Technologies: Merits, Challenges, and Prospects. Int. J. Hydrogen Energy 2023, 52, 561–584. https://doi.org/10.1016/j.ijhydene.2023.07.033.
- 35.
Atzeni, E.; Salmi, A. Economics of Additive Manufacturing for End-Usable Metal Parts. Int. J. Adv. Manuf. Technol. 2012, 62, 1147–1155. https://doi.org/10.1007/s00170-011-3878-1.
- 36.
Kamps, T.; Lutter-Guenther, M.; Seidel, C.; et al. Cost- and Energy-Efficient Manufacture of Gears by Laser Beam Melting. CIRP J. Manuf. Sci. Technol. 2018, 21, 47–60. https://doi.org/10.1016/j.cirpj.2018.01.002.
- 37.
Kokare, S.; Oliveira, J.P.; Godina, R. A LCA and LCC Analysis of Pure Subtractive Manufacturing, Wire Arc Additive Manufacturing, and Selective Laser Melting Approaches. J. Manuf. Process. 2023, 101, 67–85. https://doi.org/10.1016/j.jmapro.2023.05.102.
- 38.
Oshida, Y. Fabrication Technologies. In Bioscience and Bioengineering of Titanium Materials; Elsevier: Amsterdam, The Netherlands, 2013; pp 303–340. https://doi.org/10.1016/B978-0-444-62625-7.00010-8.
- 39.
Zhang, L.C.; Liu, Y.; Li, S.; et al. Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Adv. Eng. Mater. 2018, 20, 1700842. https://doi.org/10.1002/adem.201700842.
- 40.
Lunetto, V.; Galati, M.; Settineri, L.; et al. Unit Process Energy Consumption Analysis and Models for Electron Beam Melting (EBM): Effects of Process and Part Designs. Addit. Manuf. 2020, 33, 101115. https://doi.org/10.1016/j.addma.2020.101115.
- 41.
Gruber, S.; Grunert, C.; Riede, M.; et al. Comparison of Dimensional Accuracy and Tolerances of Powder Bed Based and Nozzle Based Additive Manufacturing Processes. J. Laser Appl. 2020, 32. https://doi.org/10.2351/7.0000115.
- 42.
Zhong, C.; Gasser, A.; Backes, G.; et al. Laser Additive Manufacturing of Inconel 718 at Increased Deposition Rates. Mater. Sci. Eng. A 2022, 844, 143196. https://doi.org/10.1016/j.msea.2022.143196.
- 43.
Cooke, S.; Ahmadi, K.; Willerth, S.; et al. Metal Additive Manufacturing : Technology , Metallurgy and Modelling. J. Manuf. Process. 2020, 57, 978–1003. https://doi.org/10.1016/j.jmapro.2020.07.025.
- 44.
Wu, B.; Pan, Z.; Ding, D.; et al. A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement. J. Manuf. Process. 2018, 35, 127–139. https://doi.org/10.1016/j.jmapro.2018.08.001.
- 45.
Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; et al. Invited Review Article : Strategies and Processes for High Quality Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 22, 672–686. https://doi.org/10.1016/j.addma.2018.06.020.
- 46.
Li, M.; Du, W.; Elwany, A.; et al. Metal Binder Jetting Additive Manufacturing : A Literature Review. J. Manuf. Sci. Eng. Trans. ASME 2020, 142, 090801. https://doi.org/10.1115/1.4047430/1084395.
- 47.
Liu, Z.; Jiang, Q.; Zhang, Y.; et al. Sustainability of 3D Printing: A Critical Review and Recommendations. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June–1 July 2016. https://doi.org/10.1115/MSEC2016-8618.
- 48.
ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- 49.
Ingarao, G.; Priarone, P.C.; Deng, Y.; et al. Environmental Modelling of Aluminium Based Components Manufacturing Routes: Additive Manufacturing versus Machining versus Forming. J. Clean. Prod. 2018, 176, 261–275. https://doi.org/10.1016/j.jclepro.2017.12.115.
- 50.
Peng, T.; Wang, Y.; Zhu, Y.; et al. Life Cycle Assessment of Selective-Laser-Melting-Produced Hydraulic Valve Body with Integrated Design and Manufacturing Optimization: A Cradle-to-Gate Study. Addit. Manuf. 2020, 36, 101530. https://doi.org/10.1016/j.addma.2020.101530.
- 51.
Swetha, R.; Siva Rama Krishna, L.; Hari Sai Kiran, B.; et al. Comparative Study on Life Cycle Assessment of Components Produced by Additive and Conventional Manufacturing Process. Mater. Today Proc. 2022, 62, 4332–4340. https://doi.org/10.1016/j.matpr.2022.04.840.
- 52.
Torres-Carrillo, S.; Siller, H.R.; Vila, C.; et al. Environmental Analysis of Selective Laser Melting in the Manufacturing of Aeronautical Turbine Blades. J. Clean. Prod. 2020, 246, 119068. https://doi.org/10.1016/j.jclepro.2019.119068.
- 53.
Výtisk, J.; Honus, S.; Kočí, V.; et al. Comparative Study by Life Cycle Assessment of an Air Ejector and Orifice Plate for Experimental Measuring Stand Manufactured by Conventional Manufacturing and Additive Manufacturing. Sustain. Mater. Technol. 2022, 32, e00431. https://doi.org/10.1016/j.susmat.2022.e00431.
- 54.
Guarino, S.; Ponticelli, G.S.; Venettacci, S. Environmental Assessment of Selective Laser Melting Compared with Laser Cutting of 316L Stainless Steel: A Case Study for Flat Washers’ Production. CIRP J. Manuf. Sci. Technol. 2020, 31, 525–538. https://doi.org/10.1016/j.cirpj.2020.08.004.
- 55.
Ahmad, N.; Enemuoh, E.U. Energy Modeling and Eco Impact Evaluation in Direct Metal Laser Sintering Hybrid Milling. Heliyon 2020, 6, e03168. https://doi.org/10.1016/j.heliyon.2020.e03168.
- 56.
Faludi, J.; Baumers, M.; Maskery, I.; et al. Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate? J. Ind. Ecol. 2017, 21, S144–S156. https://doi.org/10.1111/jiec.12528.
- 57.
Ramadugu, S.; Ledella, S.R.K.; Gaduturi, J.N.J.; et al. Environmental Life Cycle Assessment of an Automobile Component Fabricated by Additive and Conventional Manufacturing. Int. J. Interact. Des. Manuf. 2023, 18, 847–858. https://doi.org/10.1007/S12008-023-01532-0.
- 58.
Böckin, D.; Tillman, A.M. Environmental Assessment of Additive Manufacturing in the Automotive Industry. J. Clean. Prod. 2019, 226, 977–987. https://doi.org/10.1016/j.jclepro.2019.04.086.
- 59.
Mami, F.; Revéret, J.; Fallaha, S.; et al. Evaluating Eco‐Efficiency of 3D Printing in the Aeronautic Industry. J. Ind. Ecol. 2017, 21, S37–S48. https://doi.org/10.1111/jiec.12693.
- 60.
Huang, R.; Riddle, M.; Graziano, D.; et al. Energy and Emissions Saving Potential of Additive Manufacturing: The Case of Lightweight Aircraft Components. J. Clean. Prod. 2016, 135, 1559–1570. https://doi.org/10.1016/j.jclepro.2015.04.109.
- 61.
Priarone, P.C.; Ingarao, G. Towards Criteria for Sustainable Process Selection: On the Modelling of Pure Subtractive versus Additive/Subtractive Integrated Manufacturing Approaches. J. Clean. Prod. 2017, 144, 57–68. https://doi.org/10.1016/j.jclepro.2016.12.165.
- 62.
Ahmed, A.A.; Nazzal, M.A.; Darras, B.M.; et al. Comparative Sustainability Assessment of Powder Bed Fusion and Solid-State Additive Manufacturing Processes: The Case of Direct Metal Laser Sintering versus Additive Friction Stir Deposition. Sustain. Mater. Technol. 2024, 39, e00858. https://doi.org/10.1016/j.susmat.2024.e00858.
- 63.
Walachowicz, F.; Bernsdorf, I.; Papenfuss, U.; et al. Comparative Energy , Resource and Recycling Lifecycle Analysis of the Industrial Repair Process of Gas Turbine Burners Using Conventional Machining. J. Ind. Ecol. 2017, 21, S203–S215. https://doi.org/10.1111/jiec.12637.
- 64.
Tran, C.; Duenas, L.; Misra, S.; et al. Specific Energy Consumption Based Comparison of Distributed Additive and Conventional Manufacturing: From Cradle to Gate Partial Life Cycle Analysis. J. Clean. Prod. 2023, 425, 138762. https://doi.org/10.1016/j.jclepro.2023.138762.
- 65.
Paris, H.; Mokhtarian, H.; Coatanéa, E.; et al. Comparative Environmental Impacts of Additive and Subtractive Manufacturing Technologies. CIRP Ann. 2016, 65, 29–32. https://doi.org/10.1016/j.cirp.2016.04.036.
- 66.
Lyons, R.; Newell, A.; Ghadimi, P.; et al. Environmental Impacts of Conventional and Additive Manufacturing for the Production of Ti-6Al-4V Knee Implant: A Life Cycle Approach. Int. J. Adv. Manuf. Technol. 2021, 112, 787–801. https://doi.org/10.1007/s00170-020-06367-7.
- 67.
Priarone, P.C.; Ingarao, G.; di Lorenzo, R.; et al. Influence of Material-Related Aspects of Additive and Subtractive Ti-6Al-4V Manufacturing on Energy Demand and Carbon Dioxide Emissions. J. Ind. Ecol. 2017, 21, S191–S202. https://doi.org/10.1111/jiec.12523.
- 68.
Serres, N.; Tidu, D.; Sankare, S.; et al. Environmental Comparison of MESO-CLAD® Process and Conventional Machining Implementing Life Cycle Assessment. J. Clean. Prod. 2011, 19, 1117–1124. https://doi.org/10.1016/j.jclepro.2010.12.010.
- 69.
Peng, S.; Li, T.; Wang, X.; et al. Toward a Sustainable Impeller Production: Environmental Impact Comparison of Different Impeller Manufacturing Methods. J. Ind. Ecol. 2017, 21, S216–S229. https://doi.org/10.1111/jiec.12628.
- 70.
Gouveia, J.R.; Pinto, S.M.; Campos, S.; et al. Life Cycle Assessment and Cost Analysis of Additive Manufacturing Repair Processes in the Mold Industry. Sustainability 2022, 14, 2105. https://doi.org/10.3390/SU14042105.
- 71.
Kokare, S.; Oliveira, J.P.; Santos, T.G.; et al. Environmental and Economic Assessment of a Steel Wall Fabricated by Wire-Based Directed Energy Deposition. Addit. Manuf. 2023, 61, 103316. https://doi.org/10.1016/j.addma.2022.103316.
- 72.
Reis, R.C.; Kokare, S.; Oliveira, J.P.; et al. Life Cycle Assessment of Metal Products: A Comparison between Wire Arc Additive Manufacturing and CNC Milling. Adv. Ind. Manuf. Eng. 2023, 6, 100117. https://doi.org/10.1016/j.aime.2023.100117.
- 73.
Dias, M.; Pragana, J.P.M.; Ferreira, B.; et al. Economic and Environmental Potential of Wire-Arc Additive Manufacturing. Sustainability 2022, 14. https://doi.org/10.3390/su14095197.
- 74.
Campatelli, G.; Montevecchi, F.; Venturini, G.; et al. Integrated WAAM-Subtractive Versus Pure Subtractive Manufacturing Approaches: An Energy Efficiency Comparison. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 1–11. https://doi.org/10.1007/s40684-019-00071-y.
- 75.
Paolo, C.P.; Emanuele, P.; Filomeno, M.; et al. Multi-Criteria Environmental and Economic Impact Assessment of Wire Arc Additive Manufacturing. In CIRP Annals; Elsevier: Amsterdam, The Netherlands, 2020; Volume 69, pp. 37–40. https://doi.org/10.1016/j.cirp.2020.04.010.
- 76.
Priarone, P.C.; Campatelli, G.; Catalano, A.R.; et al. Life-Cycle Energy and Carbon Saving Potential of Wire Arc Additive Manufacturing for the Repair of Mold Inserts. CIRP J. Manuf. Sci. Technol. 2021, 35, 943–958. https://doi.org/10.1016/j.cirpj.2021.10.007.
- 77.
Kellens, K.; Dewulf, W.; Deprez, W.; et al. Environmental Analysis of SLM and SLS Manufacturing Processes. In Proceedings of the LCE 2010 Conference, Hefei, China, 19–21 May 2010; pp. 423–428.
- 78.
Wang, Y.; Peng, T.; Zhu, Y.; et al. A Comparative Life Cycle Assessment of a Selective-Laser-Melting-Produced Hydraulic Valve Body Using Design for Property. Procedia CIRP 2020, 90, 220–225. https://doi.org/10.1016/j.procir.2020.01.095.
- 79.
Baumers, M.; Tuck, C.; Wildman, R.; et al. Shape Complexity and Process Energy Consumption in Electron Beam Melting: A Case of Something for Nothing in Additive Manufacturing? J. Ind. Ecol. 2017, 21, S157–S167. https://doi.org/10.1111/jiec.12397.
- 80.
Le, V.T.; Paris, H.; Mandil, G. Environmental Impact Assessment of an Innovative Strategy Based on an Additive and Subtractive Manufacturing Combination. J. Clean. Prod. 2017, 164, 508–523. https://doi.org/10.1016/j.jclepro.2017.06.204.
- 81.
Kokare, S.; Shen, J.; Fonseca, P.P.; et al. Wire Arc Additive Manufacturing of a High-Strength Low-Alloy Steel Part: Environmental Impacts, Costs, and Mechanical Properties. Int. J. Adv. Manuf. Technol. 2024, 134, 453–475. https://doi.org/10.1007/s00170-024-14144-z.
- 82.
Catalano, A.R.; Pagone, E.; Martina, F.; et al. Wire Arc Additive Manufacturing of Ti-6Al-4V Components: The Effects of the Deposition Rate on the Cradle-to-Gate Economic and Environmental Performance. Procedia CIRP 2023, 116, 269–274. https://doi.org/10.1016/j.procir.2023.02.046.
- 83.
Shah, I.H.; Hadjipantelis, N.; Walter, L.; et al. Environmental Life Cycle Assessment of Wire Arc Additively Manufactured Steel Structural Components. J. Clean. Prod. 2023, 389, 136071. https://doi.org/10.1016/j.jclepro.2023.136071.
- 84.
Raoufi, K.; Manoharan, S.; Etheridge, T.; et al. Cost and Environmental Impact Assessment of Stainless Steel Microreactor Plates Using Binder Jetting and Metal Injection Molding Processes. Procedia Manuf. 2020, 48, 311–319. https://doi.org/10.1016/j.promfg.2020.05.052.
- 85.
Munguía, J.; Ciurana, J.; Riba, C. Neural-Network-Based Model for Build-Time Estimation in Selective Laser Sintering. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2009, 223, 995–1003. https://doi.org/10.1243/09544054JEM1324.
- 86.
King, D.; Tansey, T. Rapid Tooling: Selective Laser Sintering Injection Tooling. J. Mater. Process. Technol. 2003, 132, 42–48. https://doi.org/10.1016/S0924-0136(02)00257-1.
- 87.
Hopkinson, N.; Dickens, P. Analysis of Rapid Manufacturing - Using Layer Manufacturing Processes for Production. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2003, 217, 31–40. https://doi.org/10.1243/095440603762554596.
- 88.
Ruffo, M.; Tuck, C.; Hague, R. Cost Estimation for Rapid Manufacturing - Laser Sintering Production for Low to Medium Volumes. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 1417–1427. https://doi.org/10.1243/09544054JEM517.
- 89.
Ruffo, M.; Hague, R. Cost Estimation for Rapid Manufacturing - Simultaneous Production of Mixed Components Using Laser Sintering. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 1585–1591. https://doi.org/10.1243/09544054JEM894.
- 90.
Bouquet, J.; Hensgen, L.; Klink, A.; et al. Fast Production of Gear Prototypes - a Comparison of Technologies. Procedia CIRP 2014, 14, 77–82. https://doi.org/10.1016/j.procir.2014.03.066.
- 91.
Hällgren, S.; Pejryd, L.; Ekengren, J. Additive Manufacturing and High Speed Machining -Cost Comparison of Short Lead Time Manufacturing Methods. Procedia CIRP 2016, 50, 384–389. https://doi.org/10.1016/j.procir.2016.05.049.
- 92.
Manogharan, G.; Wysk, R.A.; Harrysson, O.L.A. Additive Manufacturing-Integrated Hybrid Manufacturing and Subtractive Processes: Economic Model and Analysis. Int. J. Comput. Integr. Manuf. 2016, 29, 473–488. https://doi.org/10.1080/0951192X.2015.1067920.
- 93.
Baumers, M.; Tuck, C.; Wildman, R.; et al. Transparency Built-in: Energy Consumption and Cost Estimation for Additive Manufacturing Baumers et Al. Energy and Cost Estimation for Additive Manufacturing. J. Ind. Ecol. 2013, 17, 418–431. https://doi.org/10.1111/j.1530-9290.2012.00512.x.
- 94.
Rickenbacher, L.; Spierings, A.; Wegener, K. An Integrated Cost-Model for Selective Laser Melting (SLM). Rapid Prototyp. J. 2013, 19, 208–214. https://doi.org/10.1108/13552541311312201.
- 95.
Baumers, M.; Dickens, P.; Tuck, C.; et al. The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push. Technol. Forecast. Soc. Chang. 2016, 102, 193–201. https://doi.org/10.1016/j.techfore.2015.02.015.
- 96.
Baumers, M.; Beltrametti, L.; Gasparre, A.; et al. Informing Additive Manufacturing Technology Adoption: Total Cost and the Impact of Capacity Utilisation. Int. J. Prod. Res. 2017, 55, 6957–6970. https://doi.org/10.1080/00207543.2017.1334978.
- 97.
Colosimo, B.M.; Cavalli, S.; Grasso, M. A Cost Model for the Economic Evaluation of In-Situ Monitoring Tools in Metal Additive Manufacturing. Int. J. Prod. Econ. 2020, 223, 107532. https://doi.org/10.1016/j.ijpe.2019.107532.
- 98.
Vasco, J.; Barreiros, F.M.; Nabais, A.; et al. Additive Manufacturing Applied to Injection Moulding: Technical and Economic Impact. Rapid Prototyp. J. 2019, 25, 1241–1249. https://doi.org/10.1108/RPJ-07-2018-0179.
- 99.
Wiedenegger, A.; Bruckwilder, J.; Deutsch, C. Ecological and Economic Benefits of Additive Manufacturing in High Pressure Die Casting. BHM Berg-Und Hüttenmännische Monatshefte 2021, 166, 237–242. https://doi.org/10.1007/s00501-021-01110-5.
- 100.
Mandolini, M.; Sartini, M.; Favi, C.; et al. An Analytical Cost Model for Laser-Directed Energy Deposition (L-DED). Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2022), Ischia, Italy, 1–3 June 2022; pp. 993–1004. https://doi.org/10.1007/978-3-031-15928-2_87.
- 101.
Svetlizky, D.; Das, M.; Zheng, B.; et al. Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications. Mater. Today 2021, 49, 271–295. https://doi.org/10.1016/j.mattod.2021.03.020.
- 102.
Ivántabernero; Paskual, A.; Álvarez, P.; et al. Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing. Procedia CIRP 2018, 68, 358–362. https://doi.org/10.1016/j.procir.2017.12.095.
- 103.
Ehmsen, S.; Conrads, J.; Klar, M.; et al. Environmental Impact of Powder Production for Additive Manufacturing : Carbon Footprint and Cumulative Energy Demand of Gas Atomization. J. Manuf. Syst. 2025, 82, 13–25.
- 104.
Ehmsen, S.; Yi, L.; Glatt, M.; et al. Evaluating the Environmental Impact of High-Speed Laser Directed Energy Deposition: A Life Cycle Assessment. Procedia CIRP 2023, 120, 1606–1611. https://doi.org/10.1016/j.procir.2023.12.003.
- 105.
van Sice, C.; Faludi, J. Comparing Environmental Impacts of Metal Additive Manufacturing to Conventional Manufacturing. Proc. Des. Soc. 2021, 1, 671–680. https://doi.org/10.1017/pds.2021.67.
- 106.
Gutowski, T.; Jiang, S.; Cooper, D.; et al. Note on the Rate and Energy Efficiency Limits for Additive Manufacturing. J. Ind. Ecol. 2017, 21, S69–S79. https://doi.org/10.1111/jiec.12664.